
Fast Event Ordering and Perceptive Consistency in
Time Sensitive Distributed Multiplayer Games

Nicolas Bouillot
CEDRIC-CNAM 292 rue St Martin

75141 Paris cedex 03 France
Email: bouillot@cnam.fr

KEYWORDS

Fully distributed games, consistency, dead reckoning,
ordering of event, network latency, temporal user
requirements, algorithm.

ABSTRACT

Distributed games provide to users an immersive and
co-present virtual environment. In time sensitive games,
this is achieved if remote perceptions of events respect
some physical properties as the passing of time, the
spatial positions, the dimensions... and if local updates
are displayed instantaneously (fast responsiveness). As
shown in the literature, spatio-temporal requirements
are satisfied by dead reckoning coupled with timed
consistency management. In this paper, we provide a
consistency model for fully distributed game systems
and an optimistic consistency management that works
friendly with (or without) dead reckoning schemes. Our
protocol presents two benefits: it provides a consistent
state as fast as the network allows and it is well suited
for both discrete and continuous media.

INTRODUCTION

Time-Sensitive Distributed Multiplayer Games are
subject to consistency at the user level. In fact, each user
interacts directly with its own “replica” which maintains
the local game state and send local updates to the others.
As these replica reflect the same virtual environment
they are supposed to respect the temporal characteristics
of the game. Fully distributed and mirrored games
architectures deal with this kind of architecture (Cronin
et al., 2002). In this paper we are interested by a timed
consistency (i.e. with strict temporal requirement) for
games that provides highly interactive collaborations as
in First Person Shooter games (FPS), in racing games

or in fast action games. In a previous work (Bouillot
& Gressier-Soudan, 2004), we have specified these
requirements as follows:

1 For the usability of the game, each local updates
(or actions) are played out instantaneously (i.e. as
fast as the local computation can do for a fast
responsiveness)

2 Each update occurs in the same order for each
replica (free of conflicts)

3 The physical time between the playout of two
updates is the same for all users. It is called simul-
taneity for updates coming from different sources
and ∆ legality for updates from the same source
(spatio-temporal requirements)

In time sensitive distributed games, these requirements
must be respected by the system. Let’s look at an
example, a racing game with two players:

• When a user move the car with its own device, the
car must move sufficiently fast at the screen (item
1)

• When two remote cars (but close in the race) cross
the finish line, the same car must be declared as the
winner for the two users (item 2).

• Remote collisions are consensually detected if for
the users, both cars are considered at the same place
at the same time (simultaneity)

• The speed of a car is respected if the time between
two successive positions of a given car is the same
for the two users (∆ legality)

In Time-Sensitive Distributed Multiplayer Games,
Dead Reckoning is used to achieve the first requirement



but also to reduce the amount of bandwidth used to
send updates among players. In fact, for a predictable
behavior, it is not necessary to send each state as the next
states can be efficiently predicted (if the update message
contains information that permits to predict future). For
example, updates in a position stream can be optimized
by sending absolute positions, velocity and direction
(Aggarwal et al., 2004). However, some consistency
errors remain because the prediction is optimistic and
users actions are sometimes unpredictable.

Synchronized 
physical clock

Update displayed

Remote update

Local update

pos(y)

tk

ti, pos(x), info(x)

tj

DR(ti, tj, pos(x), info(x))pos(y)

Fig. 1. Dead Reckoning and the playout of the updates

The figure 1 highlights how Dead Reckoning can
hide the network latency to the user (according to the
(Aggarwal et al., 2004) method) while minimizing the
update number. According to the item 1, local and remote
updates must be immediately computed. Local updates
(like pos(y)) are displayed as fast as possible, because
the games must keep a good responsiveness. In other
words the update and its playout occur approximately at
the same physical time tk (In fact the time taken by the
local peripherals to play out the update). For the same
reason, remote updates are computed to be displayed
immediately when received.
However according to item 3, the received updates
may have been computed at ti (i.e. at the effective
time of the action corresponding to the update). Then,
the displayed update (at tj) is the estimated position
from the Dead Reckoning information info(x) if x

was at the position pos(x) at time ti. In this way
dead reckoning allows the game to respect the previous
requirements but errors still occur as each remote update
locally played out are predicted. These errors can be
repaired with new arriving real update, causing some
divergent/convergent/divergent... effects (Pantel & Wolf,
2002).

Errors are tolerated (or accepted) if updates are not
critical, as basic movements of a player, but it leads
to different states if the update leads to an important
decision (as collision detection for example) during the
divergence phase. The Trailing State Synchronization
(Cronin et al., 2002) provides a solution to keep the
consistency strong consistency with dead reckoning (and
then the instantaneity of the local updates). It maintains a
set of background states called the Trailing states where
updates are delayed with a specified delay (the remote
game replicas share a synchronized physical clock with
NTP (Mills, 1989)). Then, when one of the delayed states
allows to detect an inconsistency with the displayed state,
the new consistent event is displayed and the old one
discarded (for example with a rollback).

Protocols from (Mauve et al., 2004; Bouillot, 2003;
Cronin et al., 2002; Gautier & Diot, 1998; Akyildiz
& Yen, 1996) provide consistency management that
maintains a consistent state. They can be used as
Trailing States because in these protocols, local events
are delayed to satisfy the spatio-temporal requirements.
However, TSS (Cronin et al., 2002), as (Mauve et al.,
2004; Gautier & Diot, 1998) use a global physical
clock to decide when the updates must take effect in
the Trailing states. It is function of time of the write
(T (c(x)v) = d + T (w(x)v where T is the time given
by a (NTP-)synchronized clock the operation performed
on the media instance x which returns the value v. w is
the write operation and c is the handle operation, next
section). They define d as a constant for all participants
(and for a given Trailing State). TSS uses two trailing
states, d = 200ms for the first and d = 400ms for
the second. This allows to repair inconsistencies after
200ms or 400ms. This “static” provisioning of d can
be improved if the consistency management take into
account the network latencies. In fact, if d is chosen
as a constant then a latency between users bigger than
d would cause inconsistencies at each update. On the
other side, if the latency is lesser than d, the state may
be updated faster.

In this paper we propose an consistency management
scheme adapted from the one proposed in (Bouillot,
2003) for Networked Musical Performance. We take
into account the latency between players and show
that it provide an ordering of updates that avoid
potential conflicts (item 2). Thanks to our consistency
management, the distributed game system take decisions
as fast as possible, i.e. as fast as the network latencies
allows.



A MODEL FOR FULLY DISTRIBUTED
MULTIPLAYER GAMES

A distributed multiplayer game system is composed
of a finite set of sequential processes P = (p1, ..., pn)
that interact with a set X = (x1, ..., xm) of shared
objects (called media instances). We denote these pro-
cesses replicas, because they are supposed to maintain a
consistent state of the virtual environment by exchanging
media updates.

In our model, we identify the set of updates related to
a particular object as a media instance (i.e. a stream).
Thus a single media instance is composed of logical
data unit (LDU’s) (Steinmetz, 1996) resulting from write
operation and that will be handled by the receiver’s
system. For example, a sample is a LDU in an audio
stream and an action performed by an avatar (or a player)
is a LDU in a stream of events. Continuous media have
a constant or variable rate whereas discrete media have
not but they share the same temporal requirements, i.e.
simultaneity and ∆ legality. Thus our model supports
both kinds of media.

Intuitively, at the user’s replica a write on a data
corresponds to the generation of a new value for a media
instance and a handle (associated to a write by its value)
is the operation that decides when the write takes effect
(the playout). A write of a value v into object x by
process pi is denoted wi(x)v and each value v written
is considered as unique. In the same conditions a catch
operation (the handle that returns the value coming from
the previous write) is denoted ci(x)v. In order to simplify
the notation, op will denote either a write or a handle.

Previously introduced by (Raynal & Schiper, 1996)
for Distributed Shared Memory, the local history ĥi of
pi is the sequence of operations issued by pi. If op1
and op2 are issued by pi and op1 is issued first, then
we say op1 precedes op2 in pi’s process-order, which is
noted op1 →i op2. Let hi denotes the set of operations
executed by pi, then the local history ĥi is the total order
(hi,→i).

A history Ĥ of a distributed multiplayer game is a
partial order Ĥ = (H,→H) such as:

- H =
⋃

i hi

- op1 →H op2 if :
i) ∃pi : op1 →i op2 (in that case, →H is called
process-order relation)
or ii) op1 = wi(x)v ∧ op2 = cj(x)v (in that case,
→H is called handled-from relation)
or iii) ∃op3 : op1 →H op3 and op3 →H op2

Each replica maintains a local physical clock that

dates local events, i.e. local writes and local handles.
More formally, we denote ti the physical local clock
of the process pi. Then ti(wi(x)v) dates locally and
physically the write of the value v on object x. We
notice that ti(wj(x)v) is a non-sense as ti can date
only events that are local to pi. Although we use only
local clock to specify our requirements, we use T the
universal clock to understand some global properties of
the consistency model (as the delays between replicas).

THE PERCEPTIVE CONSISTENCY MODEL

In this section, we provide formal and intuitive
definitions of the consistency requirements. We discard
causality as it was shown in (Zhou et al., 2002)
that Lamport’s causality is not adapted to interactive
multimedia communications. In fact, causality is
not adapted because it supposes that the virtualized
environment is centralized (the processor) while in
many time sensitive distributed games users’ accesses of
the virtual environment is not turn based but naturally
parallel.

Concurrency and Conflicts

In this paper, we define that two operations op1
and op2 are concurrent if they are conflicting, more
formally if op1 and op2 operate on the same object
and ∃i, j : ci1 →i ci2 and cj2 →j cj1. For example if
we have both ci(x)v →i ci(x)u and cj(x)u →j cj(x)v.
More intuitively, conflicts are caused in distributed
multiplayer games by the fact that different replicas
schedules handle operations in a different order.
Intuitively our definition expresses the fact that updates
are all seen in the same order by all the users.

∆ Legality

Inside the distributed multiplayer games and on the
same media instance, the temporal relation between two
local handles with their respective write (local or not)
must be kept. For example for continuous media or
for discrete media that reflect continuous event, such
as movements where the speed must be maintained.
Suppose that in figure 2 w2(x)v, w2(x)u and w2(x)y
are successive positions of the car driven by user p2,
then the speed of the car is maintained for p1 if d1 = d

′

1

and d2 = d
′

2.
This relation is used in many streaming engines witch

maintain a constant latency between writes and handles.



Physical
time

Physical
time

p2

p1

w2(x)u

c1(x)v c1(x)u

d1 d2

w2(x)y

c1(x)y

w2(x)v

d
′

1
d

′

2

Fig. 2. The ∆ legality criterion

We call this criterion ∆ legality. More formally, an
history Ĥ is ∆ legal if:
i) ∀x∀u, v∀i, j : ti(wi(x)v)− ti(wi(x)u) = tj(cj(x)v)−
tj(cj(x)u)

In other words, the latency for a given media instance
x between two processes pi and pj must be kept
constant to be ∆ legal. We call such a constant latency
δx,i,j .

Simultaneity

With ∆ legality, we have specified temporal relations
among events coming from the same media instance.
With the simultaneity, we specify temporal relation
among each media instances.

In its “kinematical part” (Einstein, 1905) defines si-
multaneity as follows:

If [...] I say “That train arrives here at 7
o’clock”. I mean something like this: “The
pointing of the small hand of my watch to 7
and the arrival of the train are simultaneous
events”

This definition of simultaneity fits well with highly
synchronous interactions. For example, in a racing game,
it is important to have simultaneous events: “when a car
A crosses the finish line, the car B is 2 meters behind”.
We can understand it like this: “the car A is finishing
and the car B is 2 meters behind the finish line are
simultaneous events”.

In the next part, “on the relativity of lengths and
times”, (Einstein, 1905) shows that a human can
perceive two events simultaneously only in its own
local time system, and that common perception of time
is possible only among close persons.

An example is given figure 3: if d1 = d
′

1 and d2 = d
′

2

then events occur on the same order for p1 and p2 and
relative times are respected at the playout. Suppose that
w2(x)u and w1(x)v are positions of the cars (at their

respective time) in a racing game. The fact that updates
occur with the same relative times (d1 = d

′

1) allows the
systems of p1 and p2 to detect identically a collision
(according to the spacial positions u and v and to the
delay d1).

Physical
time

Physical
time

p2

w1(x)v c1(x)v

w2(x)u

c1(x)up1

w2(x)y

c1(x)y

d1 c2(x)y

d2

d
′

1

d
′

2

Fig. 3. The simultaneity criterion

Formally, in a history Ĥ cj(xk)v and cj(xl)u are
simultaneous if:
∀p : t(cj(xk)v) − t(cj(xl)u) = t(cp(xk)v) − t(cp(xl)u)

Then, we define a history Ĥ as simultaneous if:
∀p∀v, u∀k, l : cp(xk)v and cp(xl)u are globally
simultaneous.

Perceptive Consistency and Conflicts

We define the perceptive consistency with two criteria:
the simultaneity and the ∆ legality. In this section, we
show that a perceptively consistent history Ĥ is free of
conflicts.

If two events are dated by the same physical clock,
then they are ordered:
tj(cj(x)v) < tj(cj(x)u) ⇔ cj(x)v →j cj(x)u
Then, from the definition of the simultaneity, conflicts
are avoided:
∀cj(x)v, cj(x)u ∈ H ∀k : (cj(x)v →j cj(x)u) ⇔

(ck(x)v →k ck(x)u)
However, the ∆ legality specifications allows to run
two handle operations at the same local date, as the
following shows:
δx,i,j + T (wi(x)v) = δx,k,j + T (wk(y)u)
⇒ T (cj(x)v) = T (cj(y)u)
⇒ tj(cj(x)v) = tj(cj(y)u)
Where δx,i,j and δx,k,j are constants used to specify the
network latency, and T the universal clock (cf definition
of the ∆ legality). In this case, conflicts can be avoided
by giving the priority to the operation which have
the smaller writer’s id (as in the (Mauve et al., 2004)
protocol). This allows replicas to order well operations
without message passing.



1 int vectormyid[n], initialized with 0
2 while provisioning
3 receive an artificial update (u, ti(u)) from pi

4 if currentLocalT ime − ti(u) > vectormyid[i]
5 then vectormyid[i] := currentLocalT ime − ti(u)
6 endwhile
7 Broadcast vectormyid[n]

Fig. 4. Calculation of the local vector

THE ALGORITHM

The proposed algorithm provides a state compliant to
the perceptive consistency (i.e. ∆ legal and the simulta-
neous). It is composed of three phases: the calculation
of the local vector, the calculation of the local lag and
the messages processing.

The two first phases are part of the initialization.
The calculation of the local vector (figure 4) is an
estimation of the latencies between the local replica and
the other. vectormyid[n] is the vector that saves the value
measured: it contains absolute differences between the
perception of the remote clock and the local clock. It
can be seen as an estimation if the real latencies (if the
clocks are synchronized with NTP).

Then each replica broadcasts regularly some artificial
events ((u, ti(u)) where u is the artificial update coming
from pi and sent at ti(u), a value measured by the pi’s
clock). Provisioning is a variable used to control the
duration of the calculation. During this duration, several
updates are received from each pi but only the higher
difference is kept in order to take avoid the effect of the
network jitter. Then vectormyid[i] contains the latencies
considered as the maximum latency from pi to pmyid.
Our algorithm is optimistic as network latency can grow
through the time. However in good network conditions,
we consider that next messages will arrive before these
delays. Finally, when the vector is computed, it is send
to the group (line 7).

With vectors and for each source, each replica can
compute the lags to introduce locally (before playing out
the updates) in order to obtain the simultaneity property:
this is the goal of the calculation of the local lags.

When a user’s process receives the n vector (line 8),
it becomes aware of the temporal perception that each
replica have of the other. The algorithm compare each
“temporal perceptions” (the vectors) and adjusts the local
lags according to the process which receives updates with
the higher latency.

pref is the “reference process” (line 12) used to

8 sync = false variable to stop the calculation
9 diftemp[n]

10 Receive the n vectors
11 While sync != true
12 Chose pref as max(px) where 1 ≤ x ≤ n and

px has never been chosen
13 For i from 1 to n
14 pajust := pi
15 For j from 1 to n
16 diftemp[pj ] :=

vectorj [pref ] − vectorj [pajust]
17 EndFor
18 dif [pi] := max

j
(diftemp [pj ])

19 EndFor;
20 If ∀i ∈ [1 . . . n] dif [pi] > 0 then
21 sync := true
22 for i from 1 to n
23 ajust[pi] := dif [pi]−

(vectormyid[pref ] − vectormyid[pi])
24 EndFOr
25 EndIf
26 EndWhile

Fig. 5. Calculation of the local lags

28 while(MessagesAreSuposedToArrive)
27 receive (u, ti(u)) from pi

28 play u when
29 tmyid == ti(u) + vectormyid[i] + ajust[pi]
30 EndWhile

Fig. 6. The updates processing

compute the clocks differences (line 16). For each media
instances, the maximum difference is computed (line 18)
and stored in table dif []. However, a process can be
chosen as reference only if its clock is always perceived
late by another (line 20). If not, the lag to introduce
would be negative (line 23). Thus the algorithm ends
when each process is supposed to add a positive lag.

If the current pref fails the test line 20, another process
is chosen. In order the decide on the same value, the
computation tests processes as reference from the bigger
id to the smaller to finish when the reference process
satisfy the “if” line 20. The next section provide a proof
of the termination.

When the computation arrives at line 22, table dif [pi]
contains the differences of the worst receivers, i.e. for
each media instances the ones which have the higher
latency. Then in line 23, the local process compute the
local delays to add to be as delayed as the worst receiver.

When the table ajust[] is computed, the replica pro-
cesses the received update as shown by figure 6.

TERMINATION OF THE ALGORITHM

The fact that one of the involved processes is a suc-
cessful reference (pref ) need to be demonstrated. More



precisely: it exits a process, when chosen as the reference
process, that satisfies the formula ∀idif [ppi] > 0 with
1 < i < n and i 6= ref (line 20). In other words, each
processor pi (1 < i < n and i 6= ref ) is measured
at least once late compared to pref . We exclude the
comparison between the processor reference with itself,
because dif [pref ]0 is always null.

Definition 1: Let the local precedence f(i, j) = i
k
→ j

be the binary relation such as from the processor pk point
of view pi is measured late compared to the processor
pj . Otherwise if pk measures a null delays between pi

and pj , then i > j ⇒ i
k
→ j

f is anti-reflexive (f(i, i) is undefined) and antisym-
metric:

¬(i
k
→ j) ⇔ j

k
→ i (1)

Additionally:

∀k(¬(i
k
→ j)) ⇒ ∀k(j

k
→ i) (2)

Moreover from the pk point of view, if pi is late
compared to pj , which is itself late compared to pl, then
pi is late compared to pl, i.e. f is transitive:

(i
k
→ j) ∧ (j

k
→ l) ⇒ i

k
→ l

Additionally, from the conjunction property of the ∀

quantifier:

∀k(i
k
→ j) ∧ ∀k(j

k
→ l) ⇒ ∀k(i

k
→ l) (3)

Theorem 1: In the local lags calculation it exists
pi (1 ≤ i ≤ n) that satisfies the formula ∀i ∈

[1 . . . n] dif [pi] > 0.
With the local precedence relation the theorem (1) is
specified as follows (pj has been chosen as a successful
reference):

∃j∀i 6= j∃k(i
k
→ j) (4)

Proof 1: Theorem (1) is proved if (4) is true. We
proceed by reducing it to the absurd, i.e. we prove that
the following formula (5) is false:

¬ (4) ⇒ ¬(∃j∀i∃k(i
k
→ j)) ⇒ ∀j∃i∀k¬(i

k
→ j)

Thus, from the formula (1):

⇒ ∀j∃i∀k(j
k
→ i) (5)

Let us suppose that (5) is true, then:
j = x1 ⇒ ∃i = x2 : ∀k(x1

k
→ x2)

Similarly, j = x2 ⇒ ∃i = x3 : ∀k(x2
k
→ x3)

And generally, ∀k(xnp

k
→ xnp+1) (j = xnp

and i =

xnp+1)
Thus:

∀k(x1
k
→ x2) ∧ . . . ∧ ∀k(xnp

k
→ xnp+1) (6)

In (6) for the local precedence binary relation we have np

left members and np right members. But xi goes from
x1 to xnp

+ 1, we found a member that appears as a
right member and as a left member. Let xa = xb be this
member.

If ∀k(xn
k
→ xn+1) (n ∈ [1 . . . np]

def
⇒ xn 6= xn+1

Thus it exists xc such as:
∀k(xa

k
→ xa+1) ∧ . . . ∧ ∀k(xc−1

k
→ xc) ∧ ∀k(xc

k
→

xc+1) ∧ . . . ∧ ∀k(xb−1
k
→ xb)

In this case, we apply the property (3) to (6) with xa,
xb and xc:

∀k(xa
k
→ xc) ∧ ∀k(xc

k
→ xb)

As xa = xb, if is a contradiction to the property (2):

∀k(xa
k
→ xc) ∧ ∀k(xc

k
→ xa) (7)

Then (5) is false
We have proved the theorem (1), i.e. the local lags
calculation ends with a success.

CONCLUSION AND OUTLOOK

In this paper we investigate the problem of consistency
in highly interactive and fully distributed video games
when coupled with a dead reckoning mechanism. We
provide a consistency model based on user requirement,
i.e. local operations are instantaneous and conflicts are
discarded thank to the simultaneity property. Then we
provide an optimistic consistency protocol that permits to
maintain a consistent state as fast as the network allows,
and for both discrete and continuous media.

Our consistency model and our protocol show for-
mally that time sensitive interactions are subject to the
network latencies. Indeed inconsistencies are detected af-
ter an amount of time closely related to the real network
delay and repaired with a rollback-like mechanism. It
formally shows that dead-reckoning techniques with our
protocol are efficient when the network delays are close
to the user requirement. Thus it formally shows that a
network providing latencies lesser than l is able to hide
latencies for interactivities constrained by a response
time bigger than l. Otherwise, when games run over a
high latency network (as mobile games), additional or
other tricks must be used to compensate the network
delays.

The protocol was already tested in the continuous
domain for Networked Musical Performance (Bouillot,



2003) on MAN where conflicts cannot appear but not
yet in the discrete domain. Then we plan to test it in an
interactive game to enhance the conflict resolution delays
and particularly for contacts resolutions.

REFERENCES

Aggarwal, Sudhir, Banavar, Hemant, Khandelwal, Amit,
Mukherjee, Sarit, & Rangarajan, Sampath. 2004.
Accuracy in dead-reckoning based distributed
multi-player games. Pages 161–165 of: SIGCOMM
2004 Workshops: Proceedings of ACM SIGCOMM
2004 workshops on NetGames ’04. New York, NY,
USA: ACM Press.

Akyildiz, I., & Yen, W. 1996. Multimedia Group
Synchronization Protocols for Integrated Services
Networks. IEEE Jounal on selected area in com-
munications, Vol. 14(No. 1), p. 162.

Bouillot, N. 2003 (October). Un algorithme d’auto
synchronisation distribuee de flux audio dans le
concert virtuel reparti. In: Proc. of The Confe-
rence Francaise sur les Systemes d’Exploitation
(CFSE’3).

Bouillot, Nicolas, & Gressier-Soudan, Eric. 2004. Con-
sistency models for distributed interactive multime-
dia applications. SIGOPS Oper. Syst. Rev., Vol.
38(4), 20–32.

Cronin, E., Filstrup, B., Kurc, A., & Jamin, S. 2002. An
efficient Synchronization Mechanism for Mirrored
Game Architectures. In: ACM Netgames’02.

Einstein, A. 1905. On the electrodynamics of moving
bodies. Annalen der Physik, Vol. 17(June). trans-
lated from german.

Gautier, L., & Diot, C. 1998. Design and Evaluation
of MiMaze, a Multi-Player Game on the Internet.
Pages 233–236 of: International Conference on
Multimedia Computing and Systems.

Mauve, M., Vogel, J., Hilt, V., & Effelsberg, W. 2004.
Local-lag and Timewarp: Providing Consistency for
Replicated Continuous Applications. IEEE Trans-
actions on Multimedia, Vol. 6(Nr. 1).

Mills, D. 1989 (Sept.). Network Time Protocol (ver-
sion 2) specification and implementation. Network
Working Group Request for Comments: 1119.

Pantel, L., & Wolf, L. C. 2002. On the suitability of
dead reckoning schemes for games. Pages 79–84
of: Proceedings of the 1st workshop on Network
and system support for games. ACM Press.

Raynal, M., & Schiper, A. 1996 (Sept.). A Suite
of Formal Definitions for Consistency Criteria in
Distributed Shared Memories. Pages 125–130 of:

Proceedings Int Conf on Parallel and Distributed
Computing (PDCS’96).

Steinmetz, R. 1996. Human Perception of Jitter and
Media Synchronization. IEEE Jounal on selected
area in communications, Vol. 14(No. 1), p. 61.

Zhou, S., Cai, W., Turner, S. J., & Lee, F. B. S.
2002. Critical causality in distributed virtual en-
vironments. Pages 53–59 of: Proceedings of the
sixteenth workshop on Parallel and distributed sim-
ulation. IEEE Computer Society.


