
XyView: Universal Relations Revisited

Dan Vodislav Sophie Cluet Grégory Corona Imen Sebei

CNAM/CEDRIC
Paris, France

vodislav@cnam.fr

INRIA
Rocquencourt, France

Sophie.Cluet@inria.fr

Xyleme
Paris, France

Gregory.Corona@xyleme.com

CNAM/CEDRIC
Paris, France

imen.sebei@cnam.fr

Abstract

We present XyView, a practical solu-
tion for fast development of user- (web
forms) and machine-oriented applications
(web services) over a repository of het-
erogeneous schema-free XML documents.
XyView provides the means to view such a
repository as an array that can be queried
using a QBE-like interface or through sim-
ple selection/projection queries. It ex-
tends the concept of universal relations in
mainly two ways: (i) the input is not a re-
lational schema but a potentially large set
of XML data guides; (ii) the view is not
defined explicitely by a unique query but
implicitly by various mappings so as to
avoid data loss and duplicates generated
by joins. Developed on top of the Xyleme
content management system, XyView can
easily be adapted to any system support-
ing XQuery.

Keywords: XML views, heterogeneous data integration,

application development tools, universal relation

1 Introduction

For decades, companies have produced digital
data such as notes, contracts, emails, progress re-
ports, minutes, etc. This data constitute a mine
of useful information that is largely unexploited.
The advent of XLM provides the opportunity to
change that. Many enterprises are now consider-
ing storing their home data in XML repositories
so as to be able to query them in a significant way,
i.e., with tools more sophisticated than full text
search engines. In this paper, we are addressing
the problem of querying such repositories. More

precisely, we are interested in developing, easily
and quickly, simple query API (web services) or
user interfaces (web forms) over these repositories.

An important characteristic of the applications
we are considering is that they deal with legacy
data that have been mostly produced by human
beings using standard text editors. As a result,
the data is (i) poorly typed (well formed rather
than valid XML) and (ii) highly heterogeneous
(although documents have strong semantic con-
nections). These features are particularly chal-
lenging since they call for sophisticated tools to
ease the application programmer task while at the
same time disabling most existing approaches.

The solution we propose borrows from the uni-
versal relation paradigm of the seventies [18]:
XyView provides the means to easily view a set of
heterogeneous XML documents as a single array
that can be queried through simple selections and
projections. Obviously, the context being XML,
the array contains XML subtrees and is built us-
ing XQuery. But the fundamental differences be-
tween universal relations and our approach are
the following:

• The array is not defined by one query but
by a specification of how a simple selection-
projection user query is to be translated into
an XQuery.

This difference is important. The problem
with universal relations is that, unless the
database schema has particularly nice prop-
erties which is rarely the case, projection op-
erations generate many duplicates that are
not always easy to remove. This is due to
the join operations entering the definition of
the universal relation. Alternatively, the join
operations can also be the cause of missing
information. This is usually solved by intro-

ducing outer-joins but at the cost of having
to deal with null values.

Note that these problems of data loss and du-
plicates may occur any time a view is defined
as a structured query (SQL or XQuery).

Our approach is not to define the view as a
query but rather as a virtual set of queries
that are generated on the fly to fit the user
current requirements. In this way, we avoid
incomplete or verbose answers.

• To deal with the complexity of the input
data, we define views in two steps. The first
deals with data heterogeneity and somehow
maps semantically connected heterogeneous
documents into a target structure. At run
time, this step generates unions. The second
step corresponds to a standard view defini-
tion where data is aggregated. At run time,
this leads to joins.

Somehow similar to a general wrapper-
mediator architecture, our view model adds
an intermediary level that (i) strongly struc-
tures the view by separating unions from
joins, and (ii) provides homogeneous XML
typing for the universal relation elements.

We implemented XyView as a set of tools on
top of the Xyleme [19] XML repository, but it
can easily be adapted to any system supporting
XQuery. The XyView tools cover the view def-
inition process but also generation of web form
applications and web services. Although its ex-
pressive power is limited as will be explained in
this paper, XyView has proved its worth with sev-
eral industrial applications.

The rest of the paper is organized as follows.
The next section presents an example application
scenario that illustrates the problem we are ad-
dressing. Section 3 describes the XyView model.
Section 4 explores the expressiveness and some
more subtle features of the model, then section 5
describes the XyView system that is built on top
of an XML repository. The final sections present
the related work and explore some future work.

2 Example Application Scenario and
Motivation

The example that we present here is a drastic sim-
plification of a real life application. A sports news

company handles several types of news wires. The
wires are well formed XML documents, with no
global schema, that have been extracted from text
files. These files have been edited by various lo-
cal correspondents over the years, according to
the company (mostly verbal) editing recommen-
dations. The wires have different structures, de-
pending on the sport and the kind of information
they contain.

For lack of space and ease of understanding,
we show here only two such wires about foot-
ball (soccer) and in a simplified form. The first
considers results from national leagues (e.g., Doc-
ument 1), and the second results from interna-
tional inter-country games (e.g., Document 2).
The news company wants to build an application
that queries through simple web forms the various
football results wires and a sports encyclopedia
with detailed information about football players
(Document 3).

The application manipulates documents whose
structures are similar, but not necessarily identi-
cal, to Documents 1, 2 and 3. Notably, other doc-
uments may have more or less information. These
three kinds of documents are stored in a single
XML content management system in collections
whose respective identifiers are NationalURI, In-
ternationalURI and EncyclopediaURI.

<!-- Document 1: National league result -->
<GameResult>

<WireHeading> ... </WireHeading>
<Description> Real Madrid 1 - Valencia 0 </Description>
<Date> 2004-05-22 </Date>
<Team>

<Name> Real Madrid </Name>
<Scored> 1 </Scored>
<Scorer><Name> Zidane </Name>

<Goals> 1 </Goals>
</Scorer>

</Team>
<Team>

<Name> Valencia </Name>
<Scored> 0 </Scored>

</Team>
</GameResult>

<!-- Document 2: Inter-country game -->
<Result Date="2004-03-15">

<Summary> France 1 - Spain 1 </Summary>
<Scorers>

<Scorer Goals="1">
<Name> Zidane </Name>
<Country> France </Country>

</Scorer>
<Scorer Goals="1">

<Name> Raul </Name>
<Country> Spain </Country>

</Scorer>
</Scorers>

</Result>

<!-- Document 3: Sports encyclopedia -->
<Encyclopedia>

<Football>
<Player><Name> Zidane </Name>

<Biography>...</Biography>
</Player>
...

</Football>
...

</Encyclopedia>

The application queries, as those in Figure 1,
may concern football results (Q1), player biogra-
phies (Q2), or both (Q3).

These apparently simple queries are in fact
rather hard to program in XQuery as illustrated
by Figures 2, 3 and 4 (issues regarding the typing
of results are discussed in Section 4, we assume
here that queries return simple strings). First,
one must find what documents are needed among
the various document types in the system, and
what are their underlying structures (documents
may be schema-free). Then, one must understand
what are the XML elements (and their access
paths) involved in each query, and how to com-
bine them to produce the result (e.g. Q1 simply
involves a union while Q3 involves two joins and
a union). And last, but not least, the application
queries must be correctly expressed in XQuery.

Q1: “Games in which Zidane scored more than once”

Q2: “The biography of Zidane”

Q3: “Biographies of scorers from games on 2004-09-08”

Figure 1: Sample queries

Programmers of graphical user interfaces are
not database experts. They are usually more com-
fortable with Java, servlets, stylesheets, etc. than
with database schemas or XQuery. Yet, they have
to program (and modify) many queries to sat-
isfy their customers needs. Our objectives with
XyView is to optimize their productivity by al-
lowing them to view the database as something
as simple as a query form consisting of fields that
can be used to filter or extract data.

Note that this is an old idea, universal relations
in the seventies addressed the same problem. The
database was viewed as a single relation queried
using simple selections and projections.

Yet, there is a crucial difference between
XyView and universal relations as they were de-
fined in the seventies. As a matter of fact, XyView

union(
For $doc in collection(NationalURI)

$var1 in $doc/GameResult,
$var2 in $var1/Team/Scorer,
$var3 in $var1/Description

Where $var2/Name ftcontains ’Zidane’ and
$var2/Goals > 1

Return string($var3),
For $doc in collection(InternationalURI)

$var1 in $doc/Result,
$var2 in $a//Scorer,
$var3 in $a/Summary

Where $var2/Name ftcontains ’Zidane’ and
$var2/@Goals > 1

Return string($var3))

Figure 2: Query Q1 in XQuery

differs from any standard view mechanism relying
on query composition: a XyView view is not
defined by a query and is not equivalent to
a query. In the next section, we explain this in
more details. But let us first see why defining a
universal relation using a query may be problem-
atic.

So, we consider that a view is defined by a
query and that a query on a view corresponds to
the combination of two queries. Going back to our
example, a first interesting exercice is to define the
view query that, combined respectively with the
three selection-projection queries Q1-Q3, would
return the queries of Figures 2-4. This query has
to provide a full view over the various documents
structures. Thus, it would naturally feature (i)
the join and union operations of Query Q3, as
well as (ii) a variable for each internal nodes so as
to preserve the connexion between the elements
belonging to the same subtree. As a consequence:

• The join operations would make it impossi-
ble to return the biography of players who
are not part of some games, and, alterna-
tively, would lead to returning several biogra-
phy occurences for most players. Information
loss can be solved by introducing outer-joins,
but they generate null values and the need to
deal with them. As for duplicates, they can
be eliminated by introducing distinct oper-
ations, but (i) it is sometimes very difficult

For $doc in collection(EncyclopediaURI)
$var1 in $doc/Football/Player,
$var2 in $var1/Name,
$var3 in $var1/Biography

Where $var2 ftcontains ’Zidane’
Return string($var3)

Figure 3: Query Q2 in XQuery

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/Date = xs:date(’2004-09-08’) and
$var1/Team/Scorer/Name = $var2/Name

Return string($var3),
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/@Date = xs:date(’2004-09-08’) and
$var1//Scorer/Name = $var2/Name

Return string($var3))

Figure 4: Query Q3 in XQuery

to distinguish between good and bad dupli-
cates and (ii) distinct operations have a cost
(notably when the desired order is not that
required by the distinct operation).

• In a similar way, but with no apparent rea-
sonnable XQuery solution, variables may be
responsible for information loss. E.g., con-
sider a variable on the internal node rep-
resenting scorers (required if one wants to
query both their name and their goals). If
it cannot be instanciated, the corresponding
parent element would be discarded. As a re-
sult, games with no scorer would be discarded
from all results.

Finally, the example we gave is rather simple.
In real applications, the view designer has to ma-
nipulate many more structures. Defining the view
query then becomes near to impossible for a non-
expert. As for the optimization of the generated
nested queries, the chances are that it will be
poor.

The next section details the basic XyView
model. Then, Section 4 adds some expressive
power to this simple model and Section 5 briefly
describes the graphical tools that the GUI pro-
grammer uses to build his/her simple query envi-
ronment and to ease the GUI programming.

3 The XyView model

In XyView, views are defined by a set of map-
pings and join conditions that specify how a sim-
ple selection-projection user query is translated
into an XQuery. This approach overcomes the
problems discussed above. Useless joins and vari-
ables are not considered at query translation; the

view definition is equivalent to a virtual set of flat
and easily optimizable queries that are generated
on the fly to fit the user current requirements.
Notably, given the appropriate specification, the
queries of Figures 2-4 would be generated at run
time by XyView to answer Queries Q1-Q3.

This results in a simpler definition and main-
tainance of views, using intuitive graphical edi-
tors. Given the complexity of view queries caused
by data heterogeneity, this is a crucial advantage
for the view designer.

Also, in order to cope with heterogeneous data,
XyView adds an intermediary level in the view
definition process. To the physical and view
schemas, we add logical schemas whose purpose
is to provide homogeneity to semantically related
data. More precisely:

1. The first level deals with schema-free data, by
defining physical data views that summarize
XML access paths to useful information in
documents.

2. The second level deals with heterogeneity,
by defining integrated logical data views over
unions of physical data views with similar
contents.

3. The third level defines the user data view as
joins between the logical data views.

Figure 5 illustrates this three level definition.
It is built using the sample data introduced in
Section 2.

On the right handside is the user data view.
It consists of a set of so-called “concepts” that
the user wants to query. Concepts are typed
by the view designer. For instance PlayerGoals
and TeamGoals are integers, GameDate is of type
date, the other concepts are considered as XML
strings (or elements, as will be explained in the
next section).

As is the case with universal relations, the
query language supported at this level consists of
selections and projections. For instance, Query
Q3, that returns biographies of scorers from games
on 2004-09-08 consists of a selection on GameDate
= 2004-09-08 and a projection on Biography.

On the left handside of the figure, are the phys-
ical data views (PDV). They represent the
data as it is stored in the repository. In the exam-
ple, there are three physical data views (National,
International and Encyclopedia), the first two rep-
resenting respectively local and international soc-

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography

Encyclopedia

Football

Player

Name Biography

GameDescription

GameDate

Game

TeamGoals

Team

Biography

PlayerGoals

Player

Description Date Team

Name Scored

Name

GameResult

Scorer

Goals

Result

Date(@) Scorer

//

Country

Summary

Goals(@) Name

Encyclopedia

International

Physical Data Views

National

Encyclopedia

Game

User Data ViewLogical Data Views

Figure 5: From Trees to Table

cer games results, the other a sport encyclopedia.
The trees are data summaries, i.e. trees gath-
ering useful access paths to data elements in the
XML documents. Similar to Lore data guides [8],
they are generated by the system to cope with the
fact that many documents are simply well-formed
and do not come with a DTD or XML Schema.

In Xyleme, these summaries are generated at
loading time, there is one summary per distinct
root element. XyView also provides a tool to ex-
tract these summaries from a given set of doc-
uments. In both cases, we use an incremental
algorithm that takes all the XML paths in docu-
ments and extends the data summaries (initially
restricted to the root elements) with eventually
new subpaths. Note that the algorithm does not
care about data types. It is the view designer who
associates types to view concepts. More will be
said on this topic in the sequel.

When designing the view, one can edit data
summaries to remove branches that are useless
for the application or to create shortcuts in long
branches by using a descendant (//) connection
between two nodes. This is what we have done in
the example. E.g;, the subtree WireHeading has
been removed from the structure of Document 1,
while the structure of Document 3 only features
the Football element, other sports having been dis-
carded. Also, the Biography element is not de-
tailed in the PDV, because its internal structure is

not useful for the application. PDV International
contains an example of shortcut: element Scorers
has been discarded from the path to Scorer, be-
cause it is useless and removing it introduces no
ambiguity; the edge leading to Scorer is marked
with //. This simplification process can greatly
ease the view design process, by keeping only use-
ful access paths from possibly cumbersome docu-
ment structures. In the example, document struc-
tures are simple and the difference between the
two types of soccer games result is light. In real
life, structures are often much more complex.

In the center of the figure, we have gotten rid
of the soccer games results heterogeneity by in-
troducing so-called logical data views (LDV).
Logical data view Game unifies in a single struc-
ture game results from documents described by
PDVs National and International. Note that the
second LDV (Encyclopedia) is a duplication of the
corresponding PDV. In real life, we do not dupli-
cate data views, we did it here for the sake of
clarity.

We now illustrate how one goes first from phys-
ical to logical then to user data views and the
queries that are associated with each level. Next,
we further detail how user queries are translated
into queries against the repository.

3.1 From Physical to Logical Data Views

Before we detail the way one goes from physical
to logical data views, let us say a little more about
physical and logical data views.

A physical data view consists of a data
summary and a set of so-called clusters in
which we find documents conforming to the sum-
mary (there may be documents conforming to
other summaries as well). A cluster is the unit in
which we store documents and provides an entry
point in the repository. A cluster can be queried
in XQuery as a collection of documents, by us-
ing the fn:collection function on the cluster URI.
Since a PDV is defined over a set of clusters,
querying a PDV implies a union operation over
these clusters. For the sake of clarity, in the fol-
lowing examples we consider a single cluster for
each PDV.

A logical data view is an annotated data
summary. The annotations represent the corre-
spondence (mappings) between physical and log-
ical data views. This is illustrated in Figure 6 for
LDV Game and the National and International
PDVs. Note that to each node in the LDV data
summary is associated the set of corresponding
nodes in the physical data views. To keep the fig-
ure readable, only mappings for LDV nodes Game
and Date are illustrated.

Mappings between LDVs and PDVs are based
on correspondences between LDV and PDV tree
nodes. If one considers that a node in a tree can
easily be identified by its path from the root, one
can note that this approach to representing cor-
respondence between trees is close to the path-
to-path mappings used in [4]. Although an LDV
node can be mapped to several PDV nodes, we
impose the following restriction: a LDV node can
be mapped to at most one node in the same PDV.
This restriction eliminates any ambiguity in going
from LDV to PDV for query processing. The con-
sequence is that any query on the LDV is trans-
lated on the PDV in a unique (and easy to com-
pute) way. The restriction transforms the corre-
spondence between LDVs and PDVs into a DTD-
to-DTD mapping, following the approaches com-
pared in [4]. The advantages are precision (no risk
of incorrect combinations of PDV nodes at query
translation) and fast translation. It is always pos-
sible to respect the restriction by carefully choos-
ing in each PDV at most one node with the same

GameResult

Description Date Team

Name Scored Scorer

Name Goals

Result
//

Date(@) Summary Scorer

Goals(@) Name Country

Date Description Team

Game

NbOfGoals ScorerName

Name NbOfGoals

Physical Data Views Logical DataViews

Game

Mappings

Game:Game/Date −−> National:GameResult/Date, International:Result/Date
............

International

National

Game:Game −−> National:GameResult, International:Result

Figure 6: From physical to logical data views

meaning; document structures not respecting the
restriction can be split into several PDVs.

Compared to classical query-based methods to
define correspondences between schemas, the sim-
plicity of our node-to-node mappings approach
provides several advantages.

• In many cases, mappings can be semi-
automatically generated by relying on the se-
mantics carried by a sequence of tags (see
[15, 17]).

• The process of creating these mappings can
easily be supported by a graphical interface.

• Correspondences based on node-to-node
mappings are easier to maintain than query-
based ones.

• In Section 4, we will see that such mappings
can easily be extended in order to support a
richer semantics.

A query against a logical data view is trans-
lated straightforwardly into a union of queries
against its corresponding physical data views. As
will be explained in Section 3.3, each member of
the union is obtained by transforming paths from
the LDV query into the corresponding paths in
each PDV.

3.2 From Logical to User Data Views

A user data view consists of a set of typed
concepts, their correspondence with nodes
in the logical data views and a set of pred-
icates that are used to join the logical data
views (in the example, a single join predicate is
defined). This is illustrated in Figure 7. Note that

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography

GameDescription

GameDate

Game

TeamGoals

Team

Biography

PlayerGoals

Player
Game

Encyclopedia

Logical Data Views User Data View

PlayerGoals −−> Game:Game/Team/Scorer/NbOfGoals

Player −−> Game:Game/Team/Scorer/Name
Encyclopedia:Encyclopedia/Football/Player/Name

Biography −−> Encyclopedia:Encyclopedia/Football/Player/Biography
.................

Joins

Mappings

(Game:Game/Team/Scorer/Name, Encyclopedia:Encyclopedia/Football/Player/Name, "=")

Figure 7: From logical to user data view

each concept has at least a mapping to some LDV
node, concept Player being the only one mapped
to both LDVs. The join predicate specifies the
joined LDV nodes and the join operator (’=’ in
our example). If several join predicates connect
two LDVs, the global join condition is the con-
junction of the individual predicates.

A query against a user data view consists of
a set of selection predicates and a set of pro-
jected concepts. As a simple example, consider
Query Q3 whose corresponding user query is given
on the left side of Figure 8.

We now explain in details the translation algo-
rithm from user queries to physical queries, via
logical queries.

3.3 More on Translating User Queries

Let us now consider Query Q3 as an example to
illustrate the translation algorithms. It involves
a join between the two LDVs in order to return
the biographies of scorers from games played on
2004-09-08.

Definition 1 A user query in XyView has the
form

Q: Select c1, ..., cn

Where cond1(cc1) and ... and condm(ccm)

where ci and ccj, i = 1, ..., n, j = 1, ..., m, are
user data view concepts and condj are predicates
over a single concept, based on a predefined set of
operators (’=’, ’contains’, ’>’, etc).

Figure 8 shows on the left side the user query
Q3 and illustrates step by step its translation into
XQuery. The translation algorithm for a user
query Q consists of five steps:

1. Identify LDVs and joins involved in user
query Q;

2. Produce a tree representation of Q by adding
query annotations to the LDV trees;

3. For each LDV annotated tree, find the subset
of PDV trees that match Q;

4. Generate all combinations of joins between
PDVs;

5. Generate the final XQuery by unioning the
combinations of step 4.

Step 1
One identifies the sets of concepts (CQ), LDVs
(LQ) and joins (JQ) involved in Q. They are the
following:

CQ = {c1, ..., cn}
⋃

{cc1, ..., ccm}

LQ = LQstrict

⋃
LQjoin

LQstrict contains all LDVs having at least a
non-join node mapped to some concept in CQ

LQjoin contains all LDVs not in LQstrict nec-
essary to connect by chained joins LDVs from
LQstrict

JQ = {j=((l1, path1), (l2, path2), op) | j is a join,
li ∈ LQ, pathi is a path in li, i=1,2, op is the
join predicate}

In the example (Figure 8, Step 1),

CQ3={Biography, GameDate}

LQ3={Game, Encyclopedia}, because Game
has a node mapped to concept GameDate and
Encyclopedia has a node mapped to concept
Biography

JQ3={((Game, Game/Team/Scorer/Name),
(Encyclopedia, Encyclope-
dia/Football/Player/Name), ’=’)} includes
the only existing join, because LQ3 contains both
joined LDVs.

Note that the definition of LQ is such that it
discards useless joins.

Step 2
One adds query annotations to nodes of LDV
trees from LQ.

Concepts
Biography
GameDate

LDVs
Game
Encyclopedia

TeamDate

Game

{= 2004−09−08}
Scorer

. . .

. . .

Name

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Team

Scorer. . .

Name

{= 2004−09−08}
Date

GameResult

. . .

National

 (=)

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Scorer
{= 2004−09−08}

Name

. . .

. . .

Result
//

International

Date(@)

 (=)

1

2

Return string($var3)

For $doc1 in collection(NationalURI),
$var1 in $doc1/GameResult,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/Date = xs:date(’2004−09−08’) and
$var1/Team/Scorer/Name = $var2/Name

Return string($var3)

Where $var1/@Date = xs:date(’2004−09−08’) and
$var1//Scorer/Name = $var2/Name

For $doc1 in collection(InternationalURI),
$var1 in $doc1/Result,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Select
Biography

Where
GameDate=2004−09−08

Q3

User Query

Joins
Game/Team/Scorer/Name =

LDV

Join (=)

LDV

Game

Encyclopedia

Step 1
identify LDVs and joins in query generate XQuery

Encyclopedia/Football/Player/Name

add query annotations to LDVs

Step 2
find PDVs matching the query

PDVs for LDV

PDVs for LDV Game

Encyclopedia

National
International

both have mappings for
the marked nodes
Date and Name

Encyclopedia

has mappings for
the marked nodes
Name and Biography

Step 3 Step 4
generate and annotate combinations of PDV joins

union (

)

,

Step 5

Figure 8: Steps for translating Query Q3

Definition 2 The following query node annota-
tions are defined for LDV nodes:

• isProjected, a boolean that is true iff the node
is mapped to a projected concept (c1, ..., cn);

• condSet, a set of condition predicates com-
posed of predicates condj of Q over a concept
mapped to the node;

• isJoined, a boolean that is true iff the node
occurs in JQ.

Definition 3 A LDV tree node is called a
marked node if isProjected = true or condSet6= ∅
or isJoined = true.

Figure 8, Step 3 shows query annotations added
to LDV trees for Q3. The projected node, Bi-
ography (isProjected=true), is in bold font; join
nodes (isJoined=true) are connected through a
dashed line; and the selection node (condSet 6= ∅)
is annotated with the set of condition predicates.
We removed nodes that are not marked and not
involved in the query.

Step 3
For each l ∈ LQ, the set of PDVs matching Q is

PQ,l = {p | p is a PDV, ∀ n marked node of l ⇒
∃ n′ of p mapped to n}

This is one of the two semantics implemented
by XyView, the strict matching. It requires that
all marked nodes of the LDV have a correspon-
dence in the PDV. The other semantics, relaxed
matching, allows selection and join nodes without

correspondence. For simplicity, we consider strict
matching in the rest of the section.

In the example, we obtain
PQ3,Game={National, International} and
PQ3,Encyclopedia={Encyclopedia}, because all
the marked nodes in Step 2 are mapped into
all the corresponding PDVs. This not always
the case; suppose that game dates are lacking
from PDV National, in that case National must
be removed from PQ3,Game, because Date is a
marked node in LDV Game.

Step 4
One computes all the combinations CombQ of
joins between PDVs found at Step 3.

Note that joins may be n-ary (in opposition
to binary), this may occur when the schema has
more than two LDVs.

For each comb ∈ CombQ, the PDV nodes get
the same query annotation as the LDV nodes to
which they are mapped. A PDV node mapped to
no LDV node gets isProjected=false, condSet=∅
and isJoined=false.

Also, for each comb ∈ CombQ, the set Jcomb

of joins on the PDVs is obtained from JQ by re-
placing the LDV nodes by the corresponding PDV
nodes.

In our example, there are two such combina-
tions, shown in Figure 8, Step 4.

Step 5
For each comb ∈ CombQ, representing a join be-
tween PDVs, a For-Where-Return query is gener-

ated. The final XQuery is obtained by unioning
all these join queries.

The algorithm for generating a For-Where-
Return query from a combination is described in
Figure 9. The For / Where / Return clauses are
concatenations of the clauses generated for each
individual PDV. To the Where clause, one must
also concatenate the join conditions from Jcomb.

ForWhereReturn(comb, Jcomb) → String
for each pi ∈ comb repeat

forClausei = For(pi)
whereClausei = Where(pi)
returnClausei = Return(pi)

end for
forClause = concat(forClause1, ...)
whereClause = concat(whereClause1, ..., Join(Jcomb))
returnClause = concat(returnClause1, ...)
return concat(’For ’, forClause,

’ Where ’, whereClause, ’ Return ’, returnClause)
end ForWhereReturn

Figure 9: For-Where-Return algorithm

Let us describe now the algorithms For,
Where and Return that generate the corre-
sponding clauses for a single annotated PDV.

The For clause defines variables and access
paths to queried data in the PDV. Variable gen-
eration respects the following rules:

Rule 1 A variable is defined for each projected
node in the PDV.

Rule 2 For any two marked nodes of a PDV,
there is a variable definition for their least com-
mon ancestor in the PDV tree.

Rule 2 ensures the closest possible context for
the XML elements addressed by the query, i.e.
those corresponding to marked nodes in the PDV.
For instance, it ensures that in query Q3 the date
and the scorer name belong to the same game.
Considering the annotated PDV National in the
first combination in Figure 8, Step 4, there are
only two marked nodes Date and Name, none of
them projected. Then, the only variable element
defined on national games is that of GameResult,
their least common ancestor.

The algorithm for generating the For clause for
a single PDV is presented in Figure 10. It adds
some new query annotations to tree nodes:

• variable, a string (possibly null) containing
the name of the variable generated for the
node;

• markedAncestor, a boolean, true iff the
node’s subtree contains at least a marked

node.

It also adds the following annotation for each
PDV:

• variable, the name of the variable generated
for the documents that match the PDV;

• varNodeList, the list of variable nodes in the
PDV, following the order of variables in the
For clause.

ForClause(pdv) → String
pdv.variable = GenerateVar()
pdv.varNodeList = VariableGen(pdv.root)
forClause = concat(pdv.variable, ’ in collection(’,

pdv.collectionURI, ’)’)
for each ni ∈ pdv.varNodeList repeat

forClause = concat(forClause, ’,’, ni.variable,
’ in ’, AncestorVarAndPath(ni, pdv))

end for
return forClause

end ForClause

VariableGen(n) → NodeList
for each ni ∈ n.children repeat

varNodeListi = VariableGen(ni)
end for
childrenVarNodeList = concat(varNodeList1, ...)
if n.isProjected then

n.variable = GenerateVar()
n.markedAncestor = true

else maChildren = NbMarkedAncestor(n.children)
n.markedAncestor = n.condSet 6= ∅ or

n.isJoined or maChildren > 0
if maChildren > 1 then

n.variable = GenerateVar()
else n.variable = null
end if

end if
if n.variable 6= null then

return concatList([n], childrenVarNodeList)
else return childrenVarNodeList
end if

end VariableGen

Figure 10: “For” clause generation for a PDV

The ForClause function uses the VariableGen
function to obtain the ordered list of variable
nodes in the PDV. The For clause starts by defin-
ing the document variable iterating in the collec-
tion associated to the PDV. All variable names
are generated by calls to function GenerateVar,
that returns a different string at each call. The
rest of the For clause defines variables for each
variable node. The AncestorVarAndPath function
searches for the first variable ancestor of the node,
then returns this variable concatenated with the
path from this ancestor to the node. If no vari-
able ancestor exists, one uses the PDV variable
and the path from the root to the node.

The VariableGen function builds the list of
variable nodes in the subtree of the parameter

node n, but also annotates with variable and
markedAncestor each node in the subtree. First, it
recursively builds the variable node lists for each
child of n, then concatenates these lists. Then, it
must decide if n is a variable node or not; if not,
the result is the concatenated list from children,
else n is added in front of this list. This produces
a consistent order for the For clause, because a
node is always placed before its descendants.

Rules 1 and 2 are used to decide if n is a vari-
able node. This is true either if n is projected, or
if it has at least 2 children being markedAncestor.
In the latter case, it is easy to demonstrate that
n is the least common ancestor of marked nodes
from the subtrees of these children. Function
NbMarkedAncestor returns the number of nodes
being markedAncestor in the parameter list. Also,
n is itself markedAncestor if it is projected or if it
has at least one child being markedAncestor.

Note that the algorithm does not generate use-
less variables, only marked nodes (i.e. needed in
the user query) are connected through variables
on the last common ancestor.

We end this section by briefly describing algo-
rithms for the other clauses. The algorithm for
the Where clause produces a conjunctive condi-
tion. It takes all the PDV nodes with condSet 6= ∅
and generates a condition predicate on the node,
for each element of condSet. The node is identi-
fied by the path from its first variable ancestor.
A similar algorithm is used to generate join con-
ditions in the Where clause; the difference is that
join predicates concern two nodes, not one.

Note that the types of the view concepts are
used to generate well-typed constants in the
Where clause. For instance, because concept
GameDate is of type date, condition GameDate =

2004-09-08 in Query Q3 is translated into ... =

xs:date(’2004-09-08’). Note that the previous ex-
pression may produce an error if the element value
type is not compatible with the constant type.
In reality we use a dedicated comparison func-
tion that checks also type compatibility (return-
ing false if types are not compatible). For the sake
of clarity, we use the simple form of conditions in
this paper.

The Return clause describes the query result,
using the variables of projected PDV nodes. The
Return clause determines the XML type of the
result. Several choices are possible in XyView;
they are discussed in the next section. Here, we

transform the biography elements to return sim-
ple strings.

The final XQuery corresponding to Q3 is shown
in Figure 8, Step 5.

4 Deeper inside XyView

So far, we have presented views as providing a flat,
relational-like, representation of arbitrary XML
trees. The flattening is performed by access-
ing nodes through path expressions (preserving
the nodes dependency) and applying the XQuery
string() operation on the projected nodes. The
transformation from logical to user data views
then corresponds to a simple sequence of join op-
erations between results of path expressions fol-
lowed by projection/map operations. The main
difference with a standard view mechanism is that
the view query is not defined a priori but rather
in an opportunistic way, depending on the user
query, so as to avoid duplicates and information
loss that would be generated by unecessary joins.
In the transformation from physical to logical
data views, joins are replaced by unions.

Note that if a projected concept has an atomic
type other than string, a cast operator is applied
to the flatten string value. For instance, when
concept PlayerGoals, of type integer, is projected,
the Return clause has the form:

Return xs:integer(string($var)).
To avoid errors produced by cast operations,

we use in reality a dedicated function that checks
if the conversion is possible and if not returns the
input string value. For the sake of clarity, we use
only the cast operator here.

We now address two issues concerning (i) the
possibility to return trees rather than flat results
and (ii) the addition of some expressive power.

4.1 Tree Results

There are three possibilities to return tree rather
than flat results. The first and simplest one con-
sists in typing results according to the PDVs, i.e.,
returning trees as they are stored in the reposi-
tory. In other words, the trees are flattened from
their roots to the projected nodes, the projected
nodes are returned as they are. Note that this
solution leads to heterogeneous results.

For instance, consider the example of Query
Q1, modified to ask for all the game information
(concept Game), instead of only the game de-

scription (concept GameDescription). This query
would be translated as follows:

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult,
$var2 in $var1/Team/Scorer

Where $var2/Name ftcontains ’Zidane’ and
$var2/Goals > 1

Return $var1,
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result,
$var2 in $var1//Scorer

Where $var2/Name ftcontains ’Zidane’ and
$var2/@Goals > 1

Return $var1)

Note that, in that case, the result of the query is
heterogeneous, featuring games as they are stored
in National and International PDVs. This solu-
tion is well adapted for ad hoc queries expressed
by users who want to see the data as it has been
produced. Also, it is an interesting semantics for
the view designer who, in the preliminary phase,
wants to get some information about data types.
However, if the results are to be fed to an applica-
tion or if the end users are not aware of the data
as it is stored, we need to provide an alternative.

This is what the second and third solutions are
about. The second solution provides the means to
type results according to the logical data views.
This can be performed in a simple way by as-
sociating to each leaf node the full text (or typed
atomic value) corresponding to the physical nodes
to which they are mapped. It is then simple to
re-construct the elements as they are defined in
the logical data view. The query becomes:

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult,
$var2 in $var1/Team/Scorer,
$var3 in $var1/Date,
$var4 in $var1/Description,
$var5 in $var1/Team,
$var6 in $var5/Name,
$var7 in $var5/Scored,
$var8 in $var5/Scorer,
$var9 in $var8/Name,
$var10 in $var8/Goals

Where $var2/Name ftcontains ’Zidane’ and
$var2/Goals > 1

Return
<Game>

<Date>xs:date(string($var3))</Date>
<Description>string($var4)</Description>
<Team>

<Name>string($var6)</Name>
<NbOfGoals>xs:integer(string($var7))</NbOfGoals>
<Scorer>

<Name>string($var9)</Name>
<NbOfGoals>xs:integer(string($var10))</NbOfGoals>

</Scorer>
</Team>

</Game>,
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result,
$var2 in $var1//Scorer,
$var3 in $var1/Summary,
$var4 in $var1//Scorer,
$var5 in $var4/Country,
$var6 in $var4/Name

Where $var2/Name ftcontains ’Zidane’ and
$var2/@Goals > 1

Return
<Game>

<Date>xs:date(string($var1/@Date))</Date>
<Description>string($var3)</Description>
<Team>

<Name>string($var5)</Name>
<Scorer>

<Name>string($var6)</Name>
<NbOfGoals>

xs:integer(string($var4/@Goals))
</NbOfGoals>

</Scorer>
</Team>

</Game>)

Note that new variable definitions are gener-
ated in the For clause, in order to access PDV
nodes necessary to build the LDV subtree for the
game. Results of both unioned queries have the
same type, given by the logical data view. Note
also that the team’s number of goals is not re-
turned by the second query, because PDV Na-
tional has no node mapped to the corresponding
LDV element.

Both typing solutions above can be per-
formed automatically by activating the appropri-
ate translation option. Still, there are some cases
where we want to achieve more sophisticated typ-
ing. For instance, we may want to add some PC-
DATA or attributes to the internal nodes. This
is what the third solution is about. With this so-
lution, the application programmer further anno-
tates the nodes of the data summaries with trans-
formation functions.

Consider for instance the previous example, but
in which we want the returned games to keep only
the date and the description. We also want to add
an attribute called source that gives the URI of
the source document. Suppose that the document
URI can be obtained by applying the function el-
ement2URI(element) to some element of that
document. To get this behavior, node Game in
the LDV must be annotated as follows:

Return : <Game source=element2URI($$)> $1 $2 </Game>

As in Yacc, we use $$ to signify the current
node (Game), $1 and $2 to represent its first
(Date) and second (Description) children. Typing

Figure 11: XyView view editor and XyGen web-form application generator

of children $1 and $2 is recursively done following
the same method. Note that producing only flat
string results is equivalent to the following anno-
tation for all LDV nodes:

Return : string($$)

4.2 More Features

The possibility to annotate the nodes can be used
for other purposes than typing, e.g. to apply any
external function to the node value. Besides $$
and $i, other special symbols may be used in an-
notations, e.g. # to represent user input, i.e. the
list of constant values in the user query coming
from conditions on the current node.

Another important use of annotations is to ex-
press selections to the view. Suppose that we
want to discard from our view all the games be-
fore 2000. This can be simply done through a new
type of node annotation: selection predicates. In
the example, the following annotation must be
added to the Date node in the LDV:

Where : $$ >= xs:date(’2000-01-01’)

If the user query concerns some LDV, all the
selection predicates of that LDV are added to
the conjunctive Where clause of the generated
XQuery.

These modifications are easily added to the al-
gorithm detailed in the previous section. How-
ever, note that, even with these additions, the
view mechanism is far from supporting all the

features of XQuery. Notably, XyView does not
provide grouping/nesting, sorting or disjunctive
join predicates. Some of the missing features can
be supported by the client program, using e.g.,
stylesheets. In any case, there is a necessary
tradeoff between ease of use and expressive power.
So far, the tool has proven useful for most appli-
cations.

5 The XyView system

XyView has been implemented as a set of tools
for rapid development of web applications over
the Xyleme XML repository. Yet, XyView is not
dependent on Xyleme and can be easily adapted
to any content management system that supports
XQuery.

The XyView system is composed of the follow-
ing modules:

• A view editor that enables visual creation and
modification of XyView views.

• A run-time environment that provides a sim-
ple API for using XyView views in web appli-
cation, user- (web forms) or machine-oriented
(web services).

• A web-form application generator that pro-
vides a graphical environment for designing
and generating simple web-form applications
over the Xyleme repository.

The view editor (left-bottom window in Fig-
ure 11) provides a graphical interface for creating
and modifying XyView views. Each view level

is edited in a separate tab, physical and logical
data views as annotated trees, the user data view
as a list of typed concepts. The editor also pro-
vides a data summary extractor. In Figure 11, the
current tab corresponds to the editing of physical
data view International. Additional tabs allow
mappings and join editing. Once the view defini-
tion is completed, the in-memory view represen-
tation is saved in a persistent form, as a set of
XML files.

The run-time environment provides a sim-
ple API for querying XyView views in Java appli-
cations. The XyView API covers all the actions
illustrated in Figure 12, which shows the typi-
cal workflow of an application that uses XyView
views:

1. Ask XyView to load in memory a given view.

2. Send to XyView a user query against the
view.

3. Receive from XyView the XQuery translation
of the user query.

4. Use the XQuery string returned by XyView
to query the XML repository.

5. Receive and process the XML results.

Note that XyView simply translates the user
query into XQuery and do not interfere after-
wards in the communication between the applica-
tion and the XML repository. This architecture
has the advantage to minimize the dependency
between XyView and the underlying XML con-
tent management system, allowing easy adapta-
tion of XyView to any system supporting XQuery.

Get XQuery (3)

Load view (1)

Application Send user query (2)

XML
Repository

query (4)
Get XML
results (5)

Send XQuery

Persistent view
representation

XML

files
view

XyView

Figure 12: Flow of actions in XyView applications

The XyGen web-form application gener-
ator enables complete development of simple ap-
plications for end-users that query the Xyleme
repository through a web-form interface. The
right side of Figure 11 shows an example of web-

form application development that corresponds to
Query Q1. The generator provides a graphical in-
terface (window on top of the figure) that helps
the application programmer to choose a XyView
view (left side of the window), then to formulate
queries on the view concepts (conditions and pro-
jected concepts on the right side of the window).
Then, XyGen automatically generates:

• An HTML web-form for each user query
(bottom-middle window) and the corre-
sponding result report (bottom-right win-
dow).

• Servlets for each web-form, that handle com-
munication with XyView and with Xyleme,
following the flow presented in Figure 12.
Servlets are automatically installed on the
target web server (myxzs in the example).

Several applications were developed with
XyView on top of Xyleme, to integrate more or
less heterogeneous, semi-structured data sources,
covering domains such as news publishing, finan-
cial reports, press archives, etc. The examples
used in this paper are summaries of one such ap-
plication involving about 50 PDVs and 11 LDVs
(an encyclopedia, 10 different sports and an av-
erage of 5 kinds of wires for each). The original
documents were well annotated ASCII files trans-
formed into XML documents using a dedicated
tool.

6 Related work

Various approaches for simplifying query formula-
tion over XML data were proposed. Systems like
XQBE [1] and Xing [6] use visual specification of
XML queries based on tree patterns. But even if
it is simpler to express queries graphically than in
XQuery, the user must handle XML structures,
express joins, etc. Other systems allow writing
queries with minimal knowledge about the struc-
ture of documents: keyword search in XML data
[5, 12, 9] or tag and keyword search [14]. Such sys-
tems are not adapted for application development
over heterogeneous XML documents, because of
their limited expressive power (e.g. no joins) and
lack of precision and/or meaningfulness.

XyView’s approach of adapting the universal
relation paradigm [18] to simplify query formula-
tion fits well the needs of both end user and ap-
plication development. Querying XyView views
is very simple, it guarantees precision, meaning-

fulness of results and minor processing overhead.
The price to pay is the view designer’s effort to
create and maintain the view. But the XyView
model is not query-based and rather borrows from
mediator-like [2, 13, 4, 7] or P2P [10] XML data
integration systems, to define views through ba-
sic one-to-one mappings, like those used in [4, 7].
This allows the use of graphical tools, which
greatly simplifies the view designer’s task.

An alternative approach is to shred XML in re-
lations, physically (like many RDBMS today) or
virtually ([11]), then to create a relational view
on top. This solution may work efficiently for ho-
mogeneous XML documents, with no structural
variation and when XML is really stored in ta-
bles. Our application context is more general; we
build views over heterogeneous and schema-free
XML, stored in any system supporting XQuery.

Among the tools for rapid development of web
applications over XML data, Qursed [16] comes
probably the closest to our application devel-
opment context. Qursed enables rapid devel-
opment of user-oriented applications over XML
data, based on web query forms and reports. Its
main module is a visual editor, which roughly
takes an HTML query form (input for the user),
a report template (output for the user) and an
XML Schema describing the data. The program-
mer defines mappings between input query fields
and XML data, then between XML data and re-
port output. Qursed is similar to our XyGen web-
form application generator, but can produce more
sophisticated output reports. Yet, Qursed is not
appropriate for heterogeneous, schema-free XML
data. It needs XML Schema for data and can han-
dle a single document schema in the same appli-
cation. Also, Qursed is designed for user-oriented
applications, but not to program web services.

In the same category of tools, BEA Liquid
Data [3] is a commercial product providing an ad-
vanced environment for data integration and web
application development. It overcomes the limita-
tions of Qursed by defining data views over several
schemas connected through joins. Unions are also
possible, but the method to define them is some-
how unnatural based on a cloning of data view ele-
ments. Beyond the fact that this complex tool fo-
cuses on specialized programmers, its support for
heterogeneous schema-free XML documents has
several limitations: (i) data sources must provide
a schema, (ii) views are defined by queries, with

all the problems of useless joins and variables, (iii)
one cannot reasonably mix in the same data view
several joins and unions, etc. Even if the latter
problem can be bypassed by chaining several data
views, this results in bad query processing perfor-
mances.

7 Conclusions and future work

We have presented a view model and system that
allow the fast development of user- (web forms)
or machine- (web services) oriented applications
on top of heterogenous collections of XML docu-
ments. The model builds a universal relation-like
view and relies on a three-level representation of
data: physical, logical (to deal with heterogene-
ity) and user (flat view). The system relies heavily
on an algorithm that translates a user query into
an XQuery against the stored data. It comes with
a set of tools to generate run-time programs. The
core of the system can easily be ported on any
content management system supporting XQuery.

Although far from complete, the view mech-
anism has proven its efficiency with several in-
dustrial applications. From our experience, its
main limitation concerns its inability to deal with
grouping and aggregate functions, required by
some applications (mainly financial). So far, these
features are supported at the client level which
forbids the use of interesting optimization tech-
niques (especially, when the underlying system is
distributed) and implies some hard work for the
programmer.

The addition of grouping and aggregates with-
out destroying the much appreciated simplicity of
the system is rather challenging. We are working
on some applications to understand what is re-
ally needed and how we can restrict the expressive
power of XQuery in this domain so as to provide
a reasonable tradeoff.

References

[1] E. Augurusa, D. Braga, A. Campi, and
S. Ceri. Design and Implementation of a
Graphical Interface to XQuery. Proceed-
ings ACM Symposium on Applied Comput-
ing, pages 1163 – 1167, 2003.

[2] C. K. Baru, A. Gupta, B. Ludäscher, R. Mar-
ciano, Y. Papakonstantinou, P. Velikhov,
and V. Chu. XML-Based Information Media-
tion with MIX. Proceedings SIGMOD, 1999.

[3] BEA Liquid Data. http://www.bea.com.

[4] S. Cluet, P. Veltri, and D. Vodislav. Views in
a large scale XML repository. Proceedings of
the 27th VLDB Conference, pages 271–280,
2001.

[5] S. Cohen, J. Mamou, Y. Kanza, and Y. Sa-
giv. XSEarch: A Semantic Search Engine for
XML. Proceedings VLDB, 2003.

[6] M. Erwig. Xing: A Visual XML Query
Language. Journal of Visual Languages and
Computing, pages 5–45, Februray 2003.

[7] I. Fundulaki, B. Amann, C. Beeri, M. Scholl,
and A.-M. Vercoustre. STYX: Connecting
the XML Web to the World of Semantics.
Proceedings EDBT, pages 759–761, 2002.

[8] R. Goldman and J. Widom. DataGuides:
Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. Proceed-
ings of the 23rd VLDB Conference, pages
436–445, 1997.

[9] L. Guo, F. Shao, C. Botev, and J. Shan-
mugasundaram. XRANK : Ranked keyword
search over XML documents. Proceedings
SIGMOD, 2003.

[10] A. Halevy, Z. Ives, P. Mork, and I. Tatari-
nov. Piazza: Data management infrastruc-
ture for semantic web applications. Proceed-
ings WWW, 2003.

[11] A. Halverson, V. Josifovski, G. Lohman,
H. Pirahesh, and M. Mörschel. ROX: Rela-
tional over XML. Proceedings VLDB, 2004.

[12] V. Hristidis, Y. Papakonstantinou, and
A. Balmin. Keyword proximity search on
XML graphs. Proceedings ICDE, 2003.

[13] Z. G. Ives, A. Y. Halevy, and D. S. Weld.
An XML query engine for network-bound
data. The VLDB Journal, 2:380–402, De-
cember 2002.

[14] Y. Li, C. Yu, and H. Jagadish. Schema-Free
XQuery. Proceedings VLDB, 2004.

[15] J. Madhavan, P. A. Bernstein, and E. Rahm.
Generic Schema Matching with Cupid. Pro-
ceedings VLDB, pages 49–58, 2001.

[16] Y. Papakonstantinou, M. Petropoulos, and
V. Vassalos. QURSED: Querying and Re-
porting Semistructured Data. Proc. SIG-

MOD, 2002.

[17] C. Reynaud, J.-P. Sirot, and D. Vodislav.
Semantic Integration of XML Heterogeneous
Data Sources. Proceedings IDEAS, pages
199–208, 2001.

[18] J. D. Ullman. Universal Relation Interfaces
for Database Systems. Proceedings IFIP,
1983.

[19] Xyleme. http://www.xyleme.com.

