
A DETERMINISTIC APPROXIMATION ALGORITHM FOR THE
DENSEST K-SUBGRAPH PROBLEM

ALAIN BILLIONNET, FRÉDÉRIC ROUPIN

CEDRIC, CNAM-IIE, 18 allée Jean Rostand 91025 Evry cedex, France.

e-mails: {billionnet,roupin}@iie.cnam.fr

Abstract. In the Densest k-Subgraph problem (DSP), we are given an

undirected weighted graph G = (V, E) with n vertices (v1, ..., vn). We seek

to find a subset of k vertices (k belonging to {1, ..., n}) which maximizes the

number of edges which have their two endpoints in the subset. This prob-

lem is NP-hard even for bipartite graphs, and no polynomial-time algorithm

with a fixed performance guarantee is known for the general case. Several

authors have proposed randomized approximation algorithms for particular

cases (especially when k = n
c
, c > 1). But derandomization techniques are

not easy to apply here because of the cardinality constraint, and can have a

high computational cost. In this paper we present a deterministic max(d, 8
9c

)-

approximation algorithm for the Densest k-Subgraph Problem (where d is

the density of G). The complexity of our algorithm is only the one of linear

programming. This result is obtained by using particular optimal solutions

of a linear program associated with the classical 0-1 quadratic formulation of

DSP.

Keywords: Approximation, Quadratic programming, Linear program-

ming, Complexity.

1. Introduction

Consider an undirected and weighted graph G = (V, E) with n vertices (v1, ..., vn),

an integer k belonging to {1, ..., n}, and a non-negative weight wij on each edge

[vi, vj]. The Heaviest k-Subgraph problem (HSP) consists in determining a

subset S of k vertices such that the total edge weight of the subgraph induced by

S is maximized. HSP is also known under the name of p-dispersion problem, p-

defence-sum problem (Krarup et al. 2002), k-cluster problem, and densest
1

k-subgraph problem (DSP) when all the edge weights are equal to 1. HSP is

NP-hard even for unweighted bipartite graphs (using a polynomial reduction from

clique (Corneil and Perl 1984)). For unweighted graphs clique reduces polyno-

mially to DSP: there is a clique of size k in G if and only if the optimal value

of DSP is equal to k(k−1)
2 . Strong negative results have been obtained about the

approximability of the clique problem. Unfortunately, there is no direct way to

use them for the HSP problem.

Recall that a r-approximation algorithm for a maximization problem (Π) returns

for any instance I of (Π) a feasible solution of value va such that va

v∗ ≥ r, where v∗

is the optimal value of I. The parameter 0 ≤ r ≤ 1 is known as the approximation

ratio of the algorithm.

Many approximation results are known for HSP (Kortsarz and Peleg 1993, Asahiro

et al. 2000, Feige et al. 2001b, Jäger and Srivastav 2005) but no approximation algo-

rithm with fixed ratio-bound have been found to date and the question of knowing

if such an algorithm exists is open. However, HSP admits an approximation ratio of

at least max
(
k/2n, nε−1/3

)
for all k and some ε > 0 (Kortsarz and Peleg 1993, Feige

et al. 2001a). A well-known greedy heuristic (Asahiro et al. 2000) returns a feasi-

ble solution of value va, and provides upper and lower bounds on the worst case

approximation ratio R = 1
r of v∗ upon va:

(
1
2

+
n

2k

)2

−O
(
n−

1
3

)
≤ R ≤

(
1
2

+
n

2k

)2

+ O

(
1
n

)
for

n

3
< k ≤ n

and

2
(n

k
− 1

)
−O

(
1
k

)
≤ R ≤ 2

(n

k
− 1

)
+ O

(n

k2

)
for k ≤ n

3

Let c = n
k . For c = 2, R is less than or equal to 9

4 + O
(

1
n

)
, for c = 3, we

obtain 4 + O
(

n
k2

)
, and for c = 4, we get 6 + O

(
n
k2

)
. For some particular cases,

there are better approximation results. For HSP, when the weights satisfy the tri-

angle inequality, there exists a 1
2 -approximation algorithm (Hassin et al. 1997). All

the previous results for HSP obviously apply to DSP (the Densest k-Subgraph

problem).

2 RC-486

On the other hand, many randomized algorithms have been proposed for HSP

and DSP. Some of them use the optimal solution of the natural linear relaxation of

a quadratic formulation of DSP (Han et al. 2000). Others are based on semidefinite

relaxations (Feige et al. 2001b, Han et al. 2002, Jäger and Srivastav 2005). Un-

fortunately, to the best of our knowledge, no derandomization has been explicitly

presented for these algorithms. Note that the task is complicated here because

of the cardinality constraint. For such problems, as noted in (Feige et al. 2001c)

for the max-bisection problem, the impact on the worst-case ratio by "repairing"

the solution is very difficult to analyse. In (Arora et al. 1999), starting from a

0-1 quadratic formulation, such a successful analysis leads to a polynomial time

approximation scheme (PTAS) for DSP in everywhere-dense graphs (the minimum

degree in G is Ω(n)). This last result holds when G is a dense-graph (the number

of edges is Ω
(
n2

)
) and k = Ω(n). But these hypothesis on the density are crucial.

Our contribution is to propose a simple deterministic combinatorial algorithm

which uses as input an optimal solution of a linear relaxation of a quadratic formu-

lation of DSP. The total complexity of our algorithm is only the one of linear pro-

gramming, and its worst case approximation ratio is max
(
d, 8

9c

)
where d = 2|E|

n(n−1)

is the density of G. Indeed, we did not use derandomization techniques which are

not easy to apply here, and can increase dramatically the overall complexity. In

Section 2, we recall the randomized approaches based on linear and semidefinite

programming for HSP and DSP. In Section 3, we present our deterministic algo-

rithm. First, we characterize some optimal solutions of a classical linear relaxation

of the 0-1 quadratic formulation of DSP. Second, we compare the value of these

solutions for the linear objective function and for the quadratic objective function.

Moreover, we study the integrality gap in the quadratic formulation. Using these

results, we design a new deterministic approximation algorithm for DSP. In Sec-

tion 4, we apply our algorithm to a small instance of DSP, then we compare our

worst-case ratio with previous ones. Section 5 is a conclusion.

3 RC-486

2. Randomized approaches

First, note that in DSP the probability to have an edge between two vertices

is d = 2|E|
n(n−1) , thus the expectation of the number of edges of a subgraph with

k vertices in G equals dk(k−1)
2 . For HSP, there is a simple deterministic O

(
n2

)

algorithm which achieves the expected value of a random solution. This greedy

heuristic is used for instance in (Asahiro et al. 2000). Just remove one by one n−k

vertices from G by choosing at each step i the vertex vi such that
∑

[vi,vi]∈E wij is

minimal (i.e. the minimum degree for DSP) in the remaining graph. It can be seen

as a deterministic version of the simplest randomized algorithm for HSP. Using this

greedy procedure, one can prove that (Srivastav and Wolf 1998):

Theorem 2.1. The HSP problem in a weighted graph of n vertices has a k(k−1)
n(n−1) -

approximation polynomial-time algorithm.

Corollary 2.2. The DSP problem in a graph of n vertices has a d-approximation

polynomial time algorithm, where d = 2|E|
n(n−1) is the density of G.

Now, we recall more sophisticated randomized approaches and discuss deran-

domization issues. For HSP, in (Feige et al. 2001b) the authors prove that the ratio

associated to the randomized algorithm proposed in (Srivastav and Wolf 1998) is

incorrect for the particular semidefinite program proposed in this last paper. But by

following similar ideas, they present a randomized approximation algorithm using

a tighter semidefinite relaxation. The exact expression of their ratio uses constants

derived in the approximation algorithms in (Goemans and Williamson 1995) for

max-k-cut and max-dicut. This ratio was the first to beat the target 1
c when c

is close to 2. Semidefinite relaxations for HSP have been also proposed in (Han et

al. 2002) by adding a new constraint to the semidefinite program given in (Srivastav

and Wolf 1998), and more recently in (Jäger and Srivastav 2005), where worst-case

ratios have been improved for 0.04 < c < 0.68. Unfortunately, all these approaches

imply to solve a semidefinite program and to be able to derandomize the algorithm

by using conditional probabilities (Srivastav 2001) which is a polynomial process

but has a very high computational cost here because of the random hyperplane
4 RC-486

approach. For instance, in (Hariharan and Mahajan 1999), authors report a com-

plexity of O
(
n30

)
for the 3-Vertex Coloring problem. Moreover, for our problem

one has still to repair the final solution to satisfy the cardinality constraint. In

(Feige et al. 2001b), this is done when c is close to 2 by using the greedy heuristic

of Theorem 2.1. The same difficulty arises in the linear programming approach

when one uses a rounding randomized algorithm. Indeed, consider the following

formulation of DSP:

(P)

max f(x) =

∑

i<j, [vi,vj]∈E

xixj :
n∑

i=1

xi = k, x ∈ {0, 1}n

where xi = 1 if and only if vertex vi is put into the subset. Let (P) be the continuous

relaxation of (P), obtained by replacing the constraint x ∈ {0, 1}n by x ∈ [0, 1]n.

Note that (P) can be formulated as:

(PL)

max fL(x) =

∑

i<j, [vi,vj]∈E

min (xi, xj) :
n∑

i=1

xi = k, x ∈ {0, 1}n

It is easy to formulate (PL), the continuous relaxation of (PL) (x ∈ [0, 1]n in

place of x ∈ {0, 1}n), as a linear program by adding |E| new variables zij and 2 |E|
constraints zij ≤ xi and zij ≤ xj .

A randomized algorithm based on (PL) is cited in (Feige et al. 2001a) and at-

tributed to Goemans. Its expected worst-case ratio equals 1
c , and it can be roughly

stated as follows. First, consider (x′, z′), an optimal solution of (PL). Second,

randomly round the n fractional components of x′ to 1 with probability
√

x′i. The

probability that an edge [vi, vj] is selected is at least z′ij . Thus the expected number

of edges is at least the optimal value of (PL). One can verify that the expected

number of vertices is less that
√

nk. Getting from
√

nk vertices to k (by randomly

choosing k vertices) looses k2

(
√

nk)2
in the ratio, namely, gives 1

c ratio.

Note that there are two randomized steps in this algorithm. A derandomiza-

tion for the first one (randomized rounding) can be achieved by using the results

presented in the seminal work of (Raghavan and Thompson 1987, Raghavan 1988).

The 0-1 solution obtained here will be such that
∑

i xi ≤
√

nk +O(
√

nlog(n)) with
5 RC-486

high probability. In (Han et al. 2000) the authors do not derandomize the initial

step, but they propose to choose the final k vertices greedily by using Theorem

2.1 (instead of taking them randomly). This leads to an approximation ratio of(
1

1+k−
1
3

)2 (
1
c − 1

2n2e−
n

1
9
3

)
. Thus even for n sufficiently large, it looses a factor

(
1

1+k−
1
3

)2

in the ratio 1
c . For instance, to get a approximation ratio equal to

0.95
c then one must have

(
1

1+k−
1
3

)2

≥ 0.95 and thus k must be larger than 57038.

Moreover, the additional error O(
√

nlog(n)) for the cardinality constraint is not

taken into account since the initial randomized rounding step is not derandomized.

All these results illustrate the difficulty to obtain efficient deterministic versions

with the same worst case ratio of randomized algorithms for HSP and DSP.

3. A simple deterministic algorithm to approximate DSP

In this section, we assume that the graph G = (V,E) is unweighted and that

k ≥ 3 since otherwise the optimal solution of DSP is trivial.

The main result (Theorem 3.5) is obtained by starting from an optimal solution

xL of (PL). First, we build xLβ , a particular optimal solution of (PL) (Lemma

3.1). Second, starting from xLβ we obtain xQ, a particular feasible solution of (P),

and finally, xP , a feasible solution of (P) (formulation of DSP). At each step, we

are able to bound the gap between the values of these different solutions. The

complexity of our approximation algorithm is only the one of linear programming,

because the others steps can be implemented in O
(
n2

)
and no derandomization is

required. Moreover, our worst-case ratio (max
(
d, 8

9c

)
) is valid for any k.

To start, we are going to characterize some optimal solutions of a special mathe-

matical program in order to obtain particular optimal solutions of (PL). Consider

G = (V, E), a graph with n vertices {v1, ..., vn}, and (Π), the following continuous

linear program:

(Π)

Max h(x) =

n∑

i=1

Cixi +
∑

i<j, [vi,vj]∈E

min (xi, xj) :
n∑

i=1

xi = k, x ∈ [0, 1]n

where Ci for all i in {1, ..., n} is a non-negative coefficient.

6 RC-486

Lemma 3.1. Let x∗ be an optimal solution of (Π). If 0 < x∗i < 1 for all i ∈
{1, ..., n} then x′i = k

n (i = 1, ..., n) is also an optimal solution of (Π).

Proof. Consider

∆ = h(x′)− h(x∗)

=
n∑

i=1

Ci

(
k

n
− x∗i

)
+

∑

i<j, [vi,vj]∈E

(
k

n
−min

(
x∗i , x

∗
j

))

Since x∗ is an optimal solution of (Π) we have ∆ ≤ 0. Now consider xo, a feasible

solution of (Π), defined by xo
i = x∗i + ρ

(
x∗i − k

n

)
(i = 1, ..., n), where ρ is a positive

real such that 0 < x∗i + ρ
(
x∗i − k

n

)
< 1 (ρ exists since 0 < x∗i < 1). We get

h(xo)− h(x∗) =
∑

i<j, [vi,vj]∈E

min
(

x∗i + ρ

(
x∗i −

k

n

)
, x∗j + ρ

(
x∗j −

k

n

))

−
∑

i<j, [vi,vj]∈E

min
(
x∗i , x∗j

)

+
n∑

i=1

Ciρ

(
x∗i −

k

n

)

By examining the two cases x∗i ≤ x∗j and x∗i > x∗j , one can see that h(xo)−h(x∗) =

−ρ∆. Since (x∗) is optimal , −∆ ≤ 0 and finally ∆ = 0 ; this implies the optimality

of (x′). ¤

A consequence of Lemma 3.1 is that from any optimal solution of (PL), one can

obtain another optimal solution whose fractional components are all equal.

Lemma 3.2. For DSP, if xLβ is a feasible solution of (PL) whose fractional com-

ponents are all equal to the same value β then f
(
xLβ

) ≥ k
nfL

(
xLβ

)
.

Proof. We define X0 =
{

i | xLβ
i = 0

}
, X1 =

{
i | xLβ

i = 1
}
, Xβ =

{
i | xLβ

i = β
}
,

E1,β =
{

i, j | [vi, vj] ∈ E ; (xLβ
i = 1, xLβ

j = β) or (xLβ
i = β, xLβ

j = 1)
}
,

Eβ,β = {i, j | [vi, vj] ∈ E ; xLβ
i = β, xLβ

j = β},
and E1,1 = {i, j | [vi, vj] ∈ E ; xLβ

i = 1, xLβ
j = 1}. Let n0, n1, nβ , e1,β , eβ,β ,

e1,1 be respectively the cardinality of X0, X1, Xβ , E1,β , Eβ,β and E1,1. Here we

get β = k−n1
n−n1−n0

(since
∑n

i=1 xLβ
i = k and all fractional components are equal).

First, if n1 = 0, one can see that f
(
xLβ

)
= k

n−n0
fL

(
xLβ

) ≥ k
nfL

(
xLβ

)
(for all

(i, j), xLβ
i xLβ

j = βmin(xLβ
i , xLβ

j) since xLβ
i ∈ {0, β}). Otherwise, consider the

7 RC-486

1

1

0

0

X1

X0
βX−ε

−ε

β ’+ε β ’+ε

β ’+ε
β ’+ε

Figure 1.
(
x0

)
is built from

(
xLβ

)

following feasible solution (xo) of (PL) (see Figure 1) : xo
i = xLβ

i − ε (i ∈ X1),

xo
i = xLβ

i (i ∈ X0), xo
i = xLβ

i + ε′ (i ∈ Xβ), where ε and ε′ are two positive real

numbers satisfying ε + ε′ ≤ 1 − β (to have 1 − ε > β + ε′, this implies ε ≤ 1

and ε′ ≤ 1 − β), and εn1 = ε′nβ (to satisfy constraint
∑n

i=1 xo
i = k). Note it

is always possible to find such numbers by taking them small enough. We have

h (xo) − h
(
xLβ

)
= eβ,βε′ − e1,1ε + e1,βε′ ≤ 0 which implies eβ,β

n1
nβ

ε − e1,1ε ≤ 0,

thus e1,1 ≥ eβ,β
n1
nβ

(recall that h is the objective function in (Π)). We know that

f
(
xLβ

)
= eβ,ββ2 + e1,1 + e1,ββ, and fL

(
xLβ

)
= eβ,ββ + e1,1 + e1,ββ. Thus we get

f
(
xLβ

)

fL (xLβ)
≥ e1,1 + eβ,ββ2

e1,1 + eβ,ββ

≥
n1
nβ

+ β2

n1
nβ

+ β
=

n1 + (k−n1)
2

nβ

k

(recall that β = k−n1
nβ

). Note that

n1 + (k−n1)
2

nβ

k
− k

n1 + nβ
=

(k − (n1 + nβ))2
nβ

n1
k(n1 + nβ)

≥ 0

yielding
f(xLβ)
fL(xLβ)

≥ k
n1+nβ

≥ k
n . ¤

In Algorithm 1, we build from any feasible solution x of (P), a particular feasible

solution xQ of (P) such that f
(
xQ

) ≥ f (x). Then we obtain in Algorithm 2 a

feasible solution xP of (P) from xQ. Finally we prove in Lemma 3.3 that the gap

between f
(
xQ

)
and f

(
xP

)
can be bounded.

Algorithm 1 Let x be any feasible solution of (P). Consider two vertices vi

and vj of G such that there is no edge between them, and xi = α, xj = β where

0 < α < 1 and 0 < β < 1 (if such a pair of vertices does not exist then stop).
8 RC-486

Consider the following program obtained from (P) by fixing all the variables xr

(r = 1, ...n ; r 6= i, j) to their values in the feasible solution x.

max L(xi, xj) = Axi + Bxj + C

s.t. xi + xj = α + β

xi ∈ [0, 1] , xj ∈ [0, 1]

where A, B and C are positive constants depending on the xr’s values (r =

1, ..., n ; r 6= i, j). This linear program has an obvious optimal solution. Indeed,

if A ≥ B then (min (1, α + β) , β −min (1, α + β) + α) is optimal, and if A < B

then (α−min (1, α + β) + β, min (1, α + β)) is optimal. In both cases, at least

one variable becomes an integer. By iterating this procedure at most n times, we

obtain V1, V2, and a feasible solution xQ of (P) such that (see Figure 2) :

• xQ
i = 0 or 1 for all i in V1.

• 0 < xQ
i < 1 for all i in V2.

• The edge [vi, vj] belongs to E for all (i, j) in V 2
2 .

• V1 ⊆ V , V2 ⊆ V , V1 ∪ V2 = V , and V1 ∩ V2 = ∅.

0

0

0

1

1

V V1 2

Figure 2. Particular feasible solution xQ of (P) such that
f

(
xQ

) ≥ f (x)

Notation 1 p and q are the respective values of | V1 | and | V2 |, and s is the

number of variables set to one in V1. Moreover, we define

T1×1 =
{
(i, j) ∈ V 2

1 : i < j, [vi, vj] ∈ E
}
,

T2×2 =
{
(i, j) ∈ V 2

2 : i < j, [vi, vj] ∈ E
}
,

and T1×2 = {(i, j) ∈ V1 × V2 : i < j, [vi, vj] ∈ E}.
Algorithm 2 Let x be any feasible solution of (P). Consider the particular

feasible solution xQ of (P) obtained from x by Algorithm 1, and build xP , a feasible

solution of (P), by the following way:
9 RC-486

We can write that

f
(
xQ

)
=

∑

(i,j)∈T1×1

xQ
i xQ

j +
∑

(i,j)∈T1×2

xQ
i xQ

j +
∑

(i,j)∈T2×2

xQ
i xQ

j

Now, fix to their current values all the variables of V1, and consider the following

restricted program

max
∑

i∈V2
Cixi +

∑
(i,j)∈T2×2

xixj +
∑

(i,j)∈T1×1
xQ

i xQ
j

s.t.
∑

i∈V2
xi = k − s

xi ∈ {0, 1} , ∀i ∈ V2

where we have Ci =
∑

j∈Γ(i)∩V1
xQ

i . The optimal value is clearly equal to

∑

i∈V2[k−s]

Ci +
(k − s)(k − s− 1)

2
+

∑

(i,j)∈T1×1

xQ
i xQ

j

where V2[k− s] is the set of the indices of the k− s variables xi (i ∈ V2) having the

k − s greatest Ci. Thus an optimal solution is xi = 1 for i in V2[k − s] and xi = 0

otherwise. Finally, the feasible solution xP of (P) is given by xP
i = xQ

i for i in V1,

xP
i = 1 for i in V2[k − s], and xP

i = 0 otherwise.

Lemma 3.3. Let x be any feasible solution of (P). One can obtain in polynomial-

time a feasible solution xP of (P) (DSP: formulation of HSP in unweighted graphs)

such that f (x)− f
(
xP

) ≤ q
8 , where q is obtained by applying Algorithm 1 to x.

Proof. First, we use Algorithms 1 and 2 to obtain xQ and xP from x. Recall that
∑

i∈V2
xQ

i = k − s. We have:

f
(
xQ

)−f
(
xP

)
=

∑

(i,j)∈T1×2

xQ
i xQ

j +
∑

(i,j)∈T2×2

xQ
i xQ

j −
∑

i∈V2[k−s]

Ci− (k − s)(k − s− 1)
2

Note that
∑

(i,j)∈T2×2
xQ

i xQ
j ≤

(
k−s

q

)2
q(q−1)

2 [A]

and
∑

i∈V2[k−s] Ci ≥
∑

(i,j)∈T1×2
xQ

i xQ
j [B].

Thus we can write:

f
(
xQ

)− f
(
xP

) ≤
(

k − s

q

)2
q(q − 1)

2
− (k − s)(k − s− 1)

2

Let x = k − s. The maximum value of (q−1)
2q x2 − x(x−1)

2 as a function of x is q
8

(obtained in x = q
2), thus f

(
xQ

)− f
(
xP

) ≤ q
8 . ¤

10 RC-486

Corollary 3.4. Let x be any feasible solution of (P) of value greater than 1. One

can obtain in polynomial-time a feasible solution xP of (P) (DSP: formulation of

HSP in unweighted graphs) such that
f(xP)
f(x) ≥ 1

2 .

Proof. First, we use Algorithms 1 and 2 to obtain xQ and xP from x. Since we

have f
(
xQ

) ≥ f (x), to obtain the claimed result we can prove that ρ =
f(xP)
f(xQ)

≥ 1
2 .

We have:

ρ =
a + b + (k−s)(k−s−1)

2

a +
∑

(i,j)∈T1×2

xQ
i xQ

j +
∑

(i,j)∈T2×2

xQ
i xQ

j

where a =
∑

(i,j)∈T1×1

xQ
i xQ

j and b =
∑

i∈V2[k−s]

Ci. By using [A] and [B] we obtain:

ρ ≥ a + b + (k−s)(k−s−1)
2

a + b +
(

k−s
q

)2
q(q−1)

2

=
a + b + (k−s)(k−s−1)

2

a + b + (k−s)2

q
(q−1)

2

and thus ρ ≥
(k−s)(k−s−1)

2
(k−s)2

q
(q−1)

2

≥ (k−s−1)q
(k−s)(q−1) . If k − s ≥ 2 then ρ ≥ 1

2 , and if k − s = 1

then f
(
xP

) ≥ f
(
xQ

) −
(

1
q

)2
q(q−1)

2 thus f
(
xP

) ≥ f
(
xQ

) − q−1
2q , and finally

f
(
xP

) ≥ f
(
xQ

)− 1
2 . Since we have f

(
xQ

) ≥ 1 , we get ρ ≥ 1
2 . ¤

One direct consequence of Corollary 3.4 is that the continuous relaxation (P) is

as hard to approximate as (P): if one admits an ε-approximation algorithm so does

the other.

Now, we are going to apply Lemma 3.1, 3.2, and 3.3 to obtain a deterministic

8
9c -approximation algorithm for DSP, the unweighted case of HSP, where c = n

k .

Algorithm 3 Let G = (V, E) be an unweighted graph of n vertices, k ≥ 3, and

n = ck. Consider the following algorithm which builds a feasible solution xP of (P):

(1) Solve (PL) to obtain xL.

(2) Build xLβ from xL by using Lemma 3.1.

(3) Obtain xQ from xLβ by using Algorithm 1.

(4) Obtain xP from xQ by using Algorithm 2.
11 RC-486

Recall that q is equal to the number of fractional components of xQ (see Notation

1, Algorithm 1).

Theorem 3.5. If n = ck then DSP admits a deterministic polynomial approx-

imation algorithm that gives a feasible solution xP of (P) such that f (x∗) ≤
c
(
f

(
xP

)
+ q

8

)
, where x∗ is an optimal solution of (P). Moreover, the complex-

ity of this algorithm is the one of linear programming.

Proof. We apply Algorithm 3 to (P). We have fL

(
xL

) ≥ f (x∗). xLβ is an optimal

solution of (PL) whose all fractional components are equal (Lemma 3.1). Consid-

ering that xLβ is a feasible solution of (P), we get f
(
xLβ

) ≥ 1
cfL

(
xLβ

)
(Lemma

3.2). Finally, we have f
(
xQ

) ≥ f
(
xLβ

)
(Algorithm 1) and f

(
xQ

) − f
(
xP

) ≤ q
8

(Lemma 3.3). Thus xP is a feasible solution for (P) (Algorithm 2) such that

f (x∗) ≤ c
(
f

(
xP

)
+ q

8

)
. Algorithms 1 and 2 can be implemented in O

(
n2

)
, and

thus the bottleneck complexity of Algorithm 3 is solving (PL). ¤

Corollary 3.6. If n = ck then DSP admits a polynomial approximation algorithm

that gives a feasible solution xa of (P) such that f(x∗)
f(xa) ≤ 9

8c, where x∗ is an optimal

solution of (P).

Proof. We can assume that 2 ≤ q ≤ k−1. Indeed q 6= 1 because
∑n

i=1 xi = k (there

are at least two fractional components or none), if q ≥ k then we have already an

optimal solution (a clique of size k), and obviously if q = 0 then f (x∗) ≤ cf
(
xP

)
.

Recall that Theorem 3.5 implies f (x∗) ≤ c
(
f

(
xP

)
+ q

8

)
[C] , where xP is the

feasible solution obtained by Algorithm 3. Now, we consider two cases:

First, if f
(
xP

) ≥ q then [C] implies f(x∗)
f(xP)

≤ 9
8c, and we set xa = xP .

Second, if f
(
xP

) ≤ q − 1 [D] then [C] implies f (x∗) ≤ c
(
q − 1 + q

8

)
. Now

consider two sub-cases:

* If q ≥ 3 then we consider xa the feasible solution consisting of the q vertices

of the clique completed by k − q arbitrary vertices. We obtain:

f (x∗)
f (xa)

≤ 2c
(
q − 1 + q

8

)

q (q − 1)
≤ 2c

(
9
8q − 1

)

q (q − 1)
≤ 2c9

8q

q (q − 1)
≤ 9

8
c

* If q = 2 then [D] and [C] imply f (x∗) ≤ c
(
q − 1 + 2

8

)
= 5

4c [E]. If there exist

two adjacent edges in G then (k ≥ 3) we consider as xa any feasible solution of
12 RC-486

value 2, and thus [E] implies f(x∗)
f(xa) ≤ 5

8c . Otherwise (there is no adjacent edges

in G), the optimal solution is obvious: simply take edges as many as possible (the

degree of each vertex is less or equal to one). ¤

4. Application to a small example and comparisons

In this section, we apply our algorithm to a small example, then we give for

several values of c the worst-case ratios of our algorithm and compare them with

the ones previously obtained. Let us apply Algorithm 3 to the instance of DSP

described in Figure 3, where n = 8 and k = 5. By solving (PL) (step 1) we get

xL =
(

5
8 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8

)
and fL

(
xL

)
= 10. Here we have xLβ = xL (step 2). Then

(step 3, Algorithm 1), by considering successively the pairs {v1, v3},{v1, v4},{v2, v5},
{v4, v7} and {v5, v6} of non adjacent vertices, we get the feasible solutions of (P):
(

1
4 , 5

8 , 1, 5
8 , 5

8 , 5
8 , 5

8 , 5
8

)
,
(
0, 5

8 , 1, 7
8 , 5

8 , 5
8 , 5

8 , 5
8

)
,
(
0, 1, 1, 7

8 , 1
4 , 5

8 , 5
8 , 5

8

)
,
(
0, 1, 1, 1, 1

4 , 5
8 , 1

2 , 5
8

)
,

and finally xQ =
(
0, 1, 1, 1, 0, 7

8 , 1
2 , 5

8

)
(the sets V1 and V2 are indicated in Figure 3).

v

1

v5

v2

v3

v4

v

V2V1

7

6

v

8

v

Figure 3. Application of Algorithm 3: a small example.

Finally (step 4), we get xP from xQ by Algorithm 2: here C6 = 3, C7 = 2,

C8 = 1, thus xP = (0, 1, 1, 1, 0, 1, 1, 0) and f
(
xP

)
= 9. In this example, xP is

optimal (no integer solution can reach the value 10).

Now, we give in Table 1 our deterministic worst-case ratios when n = ck. “Naive”

is the ratio obtained in Theorem 2.1. This ratio was improved in (Asahiro et

al. 2000) by doing a tighter analysis of the greedy algorithm (column “Tighter”).

“SDP Rand” is the expected ratio obtained by using the randomized algorithm

based on semidefinite programming in (Jäger and Srivastav 2005). “PL Rand” is

the expected ratio achieved by the randomized Goemans’ algorithm (see Section
13 RC-486

2). “PL” is our ratio which uses linear programming (see Theorem 3.5 and corollary

3.6).

Naive Tighter SDP Rand PL Rand PL

Ratio n(n−1)
k(k−1) ≥ c2 R c f(x∗)

f(xa) ≤ 9
8c

c=2 ≥ 4 2.25 + O
(

1
n

)
1.606 2 2.25

c=3 ≥ 9 4 + O
(

n
k2

)
2.227 3 3.375

c=4 ≥ 16 6 + O
(

n
k2

)
2.943 4 4.5

Table 1. Worst-case ratios for DSP

As expected, using linear programming improves R which is obtained by using

only a combinatorial algorithm (Theorem 2.1). The semidefinite approach provides

a better (expected) ratio but involves a higher computational cost (moreover, it is a

randomized algorithm). Let us point out that although our worst case ratio (8
9c) is

slightly less than 1
c , the complexity bottleneck of our deterministic approximation

algorithm is that of solving the linear program (PL) (see Section 3). This should be

compared with the randomized approaches since a complete derandomization has a

high computational cost and/or looses a significant part in the ratio 1
c for arbitrary

k and n (see Section 2). For instance, the expected worst-case ratio of the partially

derandomized algorithm of (Han et al. 2000) is better than our deterministic worst-

case ratio only when k is larger than 4481 (one must have
(

1

1+k−
1
3

)2

≥ 8
9) and for

very large n.

5. Conclusion

We have proposed a simple deterministic approximation algorithm for the Densest-

Subgraph Problem, which complexity is only the one of linear programming. From

a practical point of view, our algorithm is very easy to implement and can provide

good solutions for large instances of DSP. However, we conjecture that using such a

linear programming approach one can not obtain a worst-case ratio that beats the

target 1
c . Recall that some random algorithms based on semidefinite programming

have succeed in achieving better ratio (Feige et al. 2001b, Jäger and Srivastav 2005).

But one has to solve a semidefinite program and to derandomize the algorithm to

get the performance guarantee. Hence, a question remains: is there an efficient

deterministic polynomial-time 1
c -approximation algorithm for DSP?

14 RC-486

References

Asahiro,Y. Iwama, K. Tamaki, H. and Tokuyama, T. 2000, ’Greedily finding a dense subgraph’,

Journal of Algorithms, vol. 34, no. 2, pp. 203-221.

Arora, S. Karger, D. and Karpinski, M. 1999, ’Polynomial time approximation schemes for dense

instances of NP-hard problems’, Journal of Computer and System Sciences, vol. 58, no. 1,

pp. 193-210.

Carlson, R. and Nemhauser, G. 1966, ’Clustering to minimize interaction costs’, Operations Re-

search, vol. 14, pp. 52-58.

Corneil, D.G. and Perl, Y. 1984, ’Clustering and domination in perfect graphs’, Discrete Applied

Mathematics, vol. 9, no. 1, pp. 7-39.

Feige, U. Kortsarz, G. and Peleg, D. 2001, ’The dense k-Subgraph Problem’, Algorithmica, vol.

29, no. 3, pp. 410-421.

Feige, U. Langberg, M. 2001, ’Approximation Algorithms for Maximization Problems Arising in

Graph Partitioning’, Journal of Algorithms, vol. 41, no. 2, pp. 174-211.

Feige, U. Langberg, M. 2001, ’The RPR2 rounding technique for semidefinite programs’,

ICALP’2001, Crete, Greece, Lecture Notes in Computer Science No 2076, pp. 213-224,

Springer, Berlin.

Freize, A. and Jerrum, M. 1997, ’Improved approximation algorithms for MAX k-CUT and MAX

BISECTION’, Algorithmica, vol. 18, pp. 67-81.

Goemans, X. and Williamson, D.P. 1995, ’Improved approximation algorithms for maximum-cut

and satisfiability problems using semidefinite programming’, Journal of ACM, vol. 42, no. 6,

pp. 1115-1145.

Han, Q. Ye, Y. and Zhang, J. 2000, ’Approximation of Dense-k-Subgraph’, Working Paper, De-

partment of Management Sciences, Henry B. Tippie College of Business, The University of

Iowa, Iowa City, IA 52242, USA.

Han, Q. Ye, Y. and Zhang, J. 2002, ’An improved rounded Method and Semidefinite Programming

Relaxation for Graph Partition’, Mathematical Programming, vol. 92, no. 3, pp. 509-535.

Mahajan, S. Hariharan, R. 1999, ’Derandomizing approximation algorithms based on semidefinite

programming’, SIAM Journal on Computing, vol. 28, no. 5, pp. 1641-1663.

Hassin, R. Rubinstein, S. and Tamir, A. 1997, ’Approximation algorithms for maximum disper-

sion’, Operations Research Letters, vol. 21, pp. 133-137.

Jäger, G. and Srivastav, A. 2005, ’Improved approximation algorithms for maximum graph par-

titioning problems’, Journal of Combinatorial Optimization, vol. 10, no. 2, pp. 133-167.

Kortsarz, G. and Peleg, D. 1993, ’On choosing a dense subgraph’, 34th Annual IEEE Symposium

on Foundations of Computer Science, Palo Alto, California, pp. 692-701.

Krarup, J. Pisinger, D. and Plastria, F. 2002, ’Discrete location problems with push-pull objec-

tives’, Discrete Applied Mathematics, vol. 123, pp. 363-378.

15 RC-486

Raghavan, P. Thompson, C. 1987, ’Randomized Rounding: a technique for provably good algo-

rithms and algorithmic proofs. Probabilistic construction of deterministic algorithms’, Com-

binatorica, vol. 7, pp. 365-374.

Raghavan, P. 1988, ’Probabilistic construction of deterministic algorithms. Approximate packing

integer problems’, Journal of Computer and System Sciences, vol. 37, no. 2, pp. 130-143.

Sahni, S. and Gonzalez, T. 1976, ’P-complete approximation problems’, Journal of ACM, vol. 23,

pp. 555-565.

Srivastav A. 2001, ’Derandomization in Combinatorial Optimization’, In Handbook of Randomized

Computing, Volume II, Chapter 18, pp. 731-842, Pardalos, Rajasekaran, Reif, Rolim (eds.),

Kluwer Academic Publishers.

Srivastav, A. and Wolf, K. 1998, ’Finding Dense Subgraphs with Semidefinite Programming’,

International Workshop on Approximation’98, Lecture Notes in Computer Science vol. 1444,

pp. 181-191.

An erratum: Srivastav, A. and Wolf, K. 1999, ’Erratum on Finding Dense Subgraphs with

Semidefinite Programming’, Preprint, Mathematisches Seminar, Universitaet zu Kiel, 1999.

16 RC-486

