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Abstract

Modern hypertext applications require new system support for hypertext authoring and user navigation
through large sets of documents connected by links. This system support must be based on advanced,
typed data models for describing the information structure in different application domains. Schema based
structuring through strongly typed documents and links has already been proposed and put to practical use in
a multitude of hypertext applications. Systems such as Multicard/O, and MORE have moreover exploited
conceptual schemas for querying the resulting hyperdocuments in a more structured way. In this paper,
we show how hypertext schemas and query languages can be utilized for designing hypertext authoring
and browsing environments for large hypertexts. We illustrate our mechanisms using the Gram data model
and describe their implementation on top of the Multicard hypermedia system connected to the O» object-
oriented database management system.

1 Introduction

Managing large-scale hypertext applications as well as simplifying navigation in large hypertexts are key
issues for the next generation of hypertext systems. Traditionally, hypertext systems are viewed as networks
of documents where the typical way of accessing data is based on step-by-step navigation by following links
from one document to the other. Users not only traverse links without prior indication to their meaning, but
also can add new documents and links without necessarily specifying their semantics. This flexibility, which
is due to the absence of structure in hypertext information, is at the origin of the success of such systems.
Basic hypertext browsing, i.e. following links one by one, however, is not sufficient for exploring large
hypertext networks efficiently. User disorientation and cognitive overhead (Utting and Yankelovich 1989)
are two well known problems due to the size of most hypertexts. In answer to these problems, current
hypertext systems implement a variety of additional navigation mechanisms such as graphical browsers,
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fish-eye views, guided tours and backtracking. These tools are put at the disposal of the readers but they are,
in general, inaccessible to the authors for tailoring to specific application domains.

A first solution to this limitation were procedural script languages such as Hypertalk (Apple Com-
puter Inc. 1987), MultiTalk (Rizk and Sauter 1992) or WebTalk (Nanard and Nanard 1991). These lan-
guages are based on control structures and commands for navigating in the network, investigating node and
link attributes, defining guided tours or synchronizing external events. Whereas this technique allows the
procedural description of rather complex navigation semantics, its application is limited to small hyper-
text networks. In order to manipulate large sets of nodes and links in a coherent way, authors need more
declarative models and description languages.

We argue that hypertexts should be considered as typed semi-structured documents?. Typing usually im-
plies the classification of documents into relations or classes specified by a few attributes. Such attributes can
express a document semantics which is more or less related to its contents. By storing structured information
about documents, and possibly documents as well, in databases, it becomes possible to take advantage of
database technology in terms of persistence, versioning, distribution, transaction management, concurrency
control and recovery, fast access by structure, etc. In addition to these benefits, document structuring is
a tool for better conception (strong typing of documents is a means of constraining the author’s choices),
organization, maintenance and evolution of documents. However, this does not imply that hypertext sys-
tems should be viewed as another application of database systems since they keep their specificities, among
which access by contents or by step-by-step navigation through links are the most important ones.

This need for (1) a better hypertext structuring and for (2) an integration with database systems has
already been widely recognized in the past few years (see for example (Rossiter, Sillitoe, and Heather
1990)). The emphasis of this paper is on the first requirement. Our objective is to demonstrate and to validate
through an implementation the use of declarative database modeling and querying for developing general
query based user navigation tools. In particular typed paths in the network of documents are expressed by
database queries. This has several simple applications such as restricting navigation to those paths in the
hypertext which satisfy a query.

By integrating hypertexts and database concepts (schema, query language), a new class of users emerges
which is that of designer (or analyst). We provide a set of basic mechanisms that could serve as a generic
platform for authors and designers to develop navigation tools for their specific application domains. The
role of the designer consists of (1) identifying the application basic type constituents, (2) creating the hy-
pertext schema to which the author has to adhere, and (3) providing the interface and tools, based on the
mechanisms we will describe, for the author to use when creating his navigation patterns. The role of the
author is the same as for classical hypertexts except that, in our case, he/she is restrained by the system
to abide by the rules defined by the designer. The author has at his disposal a rich set of menus, buttons
and tools, created by the designer for the particular application domain. Finally, the reader can use a set of
graphical and interactive interface tools for navigating and creating queries based on the schema.

A fundamental underlying assumption to our work is of course the fact that typing is both a good struc-
turing mechanism that results in better authoring, as well as a support for structured querying that results in
better authoring and reading. A direct effect of this assumption is that for the result to be useful to readers,
a significant effort must be put into authoring/design. In the CSCW (Computer Supported Collaborative
Work) field, this mismatch between who does the extra work (the author) and who gets the benefit (the
reader) is considered a potential reason for failure (Grudin 1994). Contrary to CSCW, for hypertext systems
we argue that this mismatch in effort due to typing is the only way to resolve the management of large
hypertext applications, for many reasons:

e Typing has been proven in hypertext as an aid for structuring (Nanard and Nanard 1991; Garzotto,
Paolini, and Schwabe 1993).

Being sets of documents, they should be managed and queried on their contents using information retrieval and full-text indexing
techniques. We shall not consider this issue in this paper.



e Querying in hypertext has often been stated as a requirement (Halasz 1988; Consens and Mendelzon
1989; Beeri and Kornatzky 1990; Amann and Scholl 1992; Lucarella, Parisotto, and Zanzi 1993).
Typing in our model is an aid not only to structuring, but also to querying. We admit that this could
be even more effective if coupled to information retrieval by contents, but it is not in the scope of our
work.

e In addition to the classical hypertext author/reader model, we introduce the designer/analyst role who
is in fact the one who really takes on the extra effort. The author’s role in our model is simplified
because the designer will put at his disposal a set of domain tailored authoring tools and mechanisms.

e The role of the designer taking on the extra effort from readers is a validated common practice in
database systems.

This kind of problems however must not be ignored at the application design, which should result in a
tailorable environment providing flexibility to both authors and readers.

In the rest of this paper, we will present a platform for implementing advanced authoring and browsing
mechanisms in large hypertexts. We use the Gram data model (Amann and Scholl 1992) for the presentation
of these mechanisms, because we believe it is well adapted to the expression of typed paths in the hypertext.
These mechanisms can nevertheless be expressed in other query languages with similar expressive power.
In particular, relational or object-oriented query languages are good candidates.

In Section 2, we give a short review of the Gram data model through examples of data and queries. Sec-
tion 3 is the main contribution of this paper and describes the application of query languages to hypertext
authoring. We introduce a few basic mechanisms, namely virtual link, reverse link and structural backtrack-
ing as new interpretations of structural queries in hypertexts. A visual query interface that allows naive
readers to formulate ad hoc queries by following paths in graphical schema representations is presented in
Section 4. Section 5 introduces the concept of “zooming” as a new information structuring mechanism for
making hypertext systems cooperate in a transparent way. Finally, Section 6 describes the feasibility of our
approach through an implementation with the O, Database Management System (DBMS).

Related Work

Typing has appeared for the first time in hypertext systems for specific application domains such as collabo-
rative work. In these medium-sized collaborative hypertext applications (Rada 1991), discussion, authoring
and annotating are supported by powerful user interfaces and authoring environments. Privacy, messag-
ing, and synchronization are other important issues addressed by these systems. The gIBIS (graphical
IBIS) (Conklin and Begeman 1988) hypertext system supports collaborative system design and discussion
by providing a fixed set of node and link types defined by the IBIS (Issue Based Information Systems) de-
sign method. The storage manager is implemented on top of a relational DBMS and allows to select nodes
according to simple predicates on their contents and attribute values. The cooperative hypermedia authoring
environment SEPIA (Structured Elicitation and Processing of Ideas for Authoring) (Streitz, Hannemann,
and Thiring 1989) supports both individual and cooperative writing of hypermedia documents. The design
space is divided into several activity spaces providing specific design objects and operations according to
the authors activities. In the planning space, authors can for example control their activities by developing
issue structures based on IBIS. The Aquanet (Marshall, Halasz, Rogers, and Janssen 1991) system is a more
general platform which allows designers to customize knowledge structures by the definition of specific
node and link types. A graphical browser-based user interface can be used to create, compose and modify
large graphical knowledge structures.

Typing has also been used for a better representation of rich hypertext structures. These systems take
advantage of typed nodes and links for the creation of flexible user interfaces and allow authors to define
different semantic views (conceptual documents) of the same underlying hypertext network. MacWeb (Na-
nard and Nanard 1991) uses structured types and the WebTalk script language for defining generic document



models (conceptual documents) which are instantiated according to the underlying hypertext network. For
each document, the author can define the logical structure, the presentation and the modification behavior
by using selection, presentation and interaction rules. A similar approach is proposed in the HyperPro (Os-
terbye and Normark 1994) prototype which introduces the notion of interaction schema for defining and
controlling the interaction on typed hypertext networks.

An important step towards general typed hypertext models has been the design of large hypertext appli-
cations according to hypertext schemas that describe some semantics of the application domains. In HDM
(Hypertext Design Model) (Garzotto et al. 1993), application schemas describe overall classes of informa-
tion sources (node types) in terms of their common presentation characteristics, their internal organization
structure and their mutual interconnections (link types).

All of the above systems introduce strong typing as an authoring and modeling tool without using the
underlying structure for formulating queries. Nevertheless, hypertext querying has been an evolving re-
search topic since the early systems. In (Marchionini and Shneiderman 1988), browsing and searching were
observed as complementary user interaction styles for powerful user interface models.

Standard information retrieval techniques have been adapted to the hypertext context in systems such
as the Medical Handbook (Frisse 1988), I12R (Croft and Turtle 1989) and Intermedia (Coombs 1990). The
document base consists of a set of documents each of which has an associated set of links and an information
retrieval style description (Dunlop and Rijsbergen 1991). Hypertext links are mainly used to improve the
description of documents and the presentation of search results.

A different approach is necessary for querying hypertext networks with respect to their structure. The
hypermedia system PHIDIAS (McCall, Bennett, D’Oronzo, Ostwald, Shipman, and Wallace 1990) supports
computer-aided design based on CAD graphics and IBIS argumentation. The core of PHIDIAS is an aug-
mented version of MIKROPLIS (McCall, Mistrik, and Schuler 1981), one of the first hypertext systems
allowing both content- and structure based search. The query language can be used interactively and for
defining virtual (dynamic) structures : queries are embedded in nodes and evaluated when the nodes are
displayed. In the object-oriented hypermedia system Panorama (Chen, Ekberg, and Thompson 1990), an
information navigator allows users to create typed hypertexts and specify queries by using a menu-based
natural language interface. These queries are translated into the query language provided by the underlying
object-oriented database management system Zeitgeist (Ford, Joseph, Langworthy, Lively, Pathak, Perez,
Peterson, Sparacin, Thatte, Wells, and Agarwal 1988).

The following graph-based models and query languages are to our knowledge the first systematic uses
of database modeling, not only as an authoring tool, but also as a reader query based navigation tool. All
of these approaches (Consens and Mendelzon 1989; Afrati and Koutras 1990; Beeri and Kornatzky 1990;
Amann and Scholl 1992; Lucarella et al. 1993) use queries for selecting (typed) paths in the graph of
documents. Compared to other approaches using SQL and relational algebra (Gallagher, Furuta, and Stotts
1990), they are more powerful since they allow some recursion in paths. However, the importance of path
recursion in hypertext navigation has never been precisely stated and quantified.

Among the above graph-based models, GraphLog (Consens and Mendelzon 1989) is noteworthy. It is
a visual query language for graph based information. Queries are formulated by drawing graph patterns
which are then matched against the underlying hypertext graph. Paths are described by regular expressions
on node and link labels. Whereas it has been shown that GraphLog is well adapted to the formulation of
structured hypertext queries, it is essentially a graphical user interface, where some queries can easily be
expressed by naive users, while the formulation of others remain complex.

The MORE (Multimedia Object Retrieval Environment) (Lucarella et al. 1993) system supports the
direct manipulation of multimedia information which is described by a graph-based object model. A visual
user interface allows designers and readers to define conceptual schemas, visualize object instances and
formulate queries by manipulating object graphs on the screen. Whereas direct object manipulation is
realized by two basic operations for viewing and browsing the results of ad-hoc queries, the query language
is not part of the authoring environment itself.



Gram (Amann and Scholl 1992) is described in the following section. Similar to GraphLog and various
object-oriented query languages (e.g. the standard OQL (?)), Gram is based on path expressions. Although
different from GraphLog, the path expressions of Gram are also described by regular expressions on the
node and link types. Its SQL like syntax is convenient for the reader familiar with SQL. It uses regular
expressions to describe the query range (FROM clause) which is well adapted to the user in the presence of
a schema graph (see below). A graphical query interface under development is a first step toward a complete
visual query language and tool for query based navigation through hypertexts.

2 Préiminaries

We first give a brief review of the Gram model which serves as the underlying data model for the description
of the mechanisms presented in Section 3. For a formal presentation of Gram, see (Amann and Scholl 1992).

2.1 Hypertext Schema

A hypertext schema is a directed labeled graph. Nodes represent document types and edges correspond to
the possible types of links between documents. Figure 1 shows the schema of a MovIE GUIDE hypertext
storing multimedia information about movies and artists.

soundtrack director

-

sequence actor

sequence play
e

Figure 1: Gram Schema for the MovIE GUIDE hypertext

Each document has one of the types Song, Article, Movie, Artist, Video and Frame. Movies
are connected to their directors and actors by links of type director or actor respectively. Review
articles about movies are accessible via links of type review. These articles and the documents about artists
(directors, actors and composers) might refer to specific video sequences through links of type sequence.
In fact, running a video corresponds to the selection of a link of type play followed by the automatic
traversal of next links connecting the different video frames. This kind of automatic guided tour can be
used to model, and navigate within, active media such as video and sound. Actors appearing in videos
are referenced by links of type actor. Movie soundtracks can be listened to by following links of type
soundtrack. They are connected to their composers by links of type composer. Note that links may
contain information such as an actors role (type actor) or the starting and ending frame of a video sequence

(type play).

2.2 Hypertext Query Language

The Gram query language is based on a path algebra and makes it possible to (1) select paths in hypertext
networks according to regular expressions over document and link types, (2) select paths according to doc-
ument and link values, (3) construct new paths by projection and concatenation, (4) construct connected



subgraphs by joining paths sharing documents. For illustration, assume a reader is interested in horror
movie pictures and wants to get documents about their soundtracks and composers. The following answers
his query? :

SELECT Song composer Artist
FROM Movie soundtrack Song composer Artist
WHERE Movie.genre = ““horror”’

Paths satisfying the regular expression Movie soundtrack Song composer Artist (FROM-
clause) and the WHERE-clause condition are selected and projected on the regular expression Song composer
Artist (SELECT-clause).

The answer to the following query contains all review articles of movies directed by Ingmar Bergman.
Note that any pair of paths p; |= Movie director Artist and p, = Movie script Articlein the range
of the query have to share the document of type Movie :

SELECT Article
FROM Movie director Artist + Movie review Article
WHERE Artist.name = ““Ingmar Bergman’’

The relational algebra or SQL would be powerful enough to express Gram queries without Kleene clo-
sure (recursion) by using natural join for navigating in the relational schema. On the contrary, the following
query requires recursion capabilities and returns all video frame sequences of movie pictures directed by
Alfred Hitchcock :

SELECT (Frame next)* Frame
FROM Movie review Article sequence Video play (Frame next)* Frame
+ Movie director Artist
WHERE Artist.name = ““Alfred Hitchcock””

Kleene closure introduces a restricted form of recursion into the Gram algebra. Gram has less expres-
sive power than first-order logic with transitive closure (FO+TC) and therefore than GraphLog (Consens
and Mendelzon 1990) since we restrict hypertexts to be connected graphs (Amann 1994). However, Gram
queries can keep the whole information about paths of variable length, while first-order formulas with tran-
sitive closure only return the extremities of recursive path.

3 Query-Based Hypertext Authoring

This section is devoted to the application of query languages to hypertext authoring and describes a few
basic query-based mechanisms for implementing a variety of hypertext navigation patterns in a declarative
way.

We assume a multi-window user interface where several documents can be displayed at the same time.
Without querying capabilities, navigation consists of clicking on a button in a displayed source doc-
ument s, which results in the traversal of a binary link I = (s, t) and the display of the target document ¢.
Without loss of generality, we assume a global navigation context including a set of displayed documents
D and a navigation history stack 7. Whenever a link [ = (s,t) is followed from some source document
s € D, the target document ¢ is displayed on the screen and pushed on the navigation history stack . At the
same time, in order to restrict the number of displayed documents, the window of the source document is

2\Whereas an SQL like syntax is used for clarity, one has to observe that the underlying data model defines a path algebra on typed
graphs.



deleted, i.e. removed from D. More formally, we define the following navigation operation that is executed
by clicking on a button [—, ], I = (s, 1) :

D=DuU{t} display target document
next(l) : | push(H,t) push target on history stack
D =D —{s} undisplay source document

Step 3, i.e. the undisplay of the source document, might be inappropriate in situations such as, for
example, when the user wants to see two documents side by side. A solution to this is to attach distinct
behaviors to the different mouse buttons (left, middle, right) selected by the user. As it is the case for some
hypertext interfaces, the left button might replace the displayed document, whereas the middle button might
open a new window without replacement.

In order to backtrack navigation history and to return to some previous navigation context, readers might
click on a “back” button and repeat the following navigation operation :

d = pop(H) pop last document
d' = pop(H)  pop previous document
back: | D=DU{d'} display previous document
push(H,d") push previous document on history stack
D=D-{d} wundisplay last document

In the following, we will show how conceptual schemas and query languages can support a number of
homogeneous navigation mechanisms and browsing facilities in large hypertext networks.

3.1 Virtual Links

A number of existing hypertext systems support advanced information retrieval and indexing mechanisms
for the definition of virtual or intensional links (DeRose 1989) between documents. In contrast to extensional
“hard-wired” links, virtual links are the result of queries on the hyperdocument contents and structure.
Independently of the underlying data model, queries are supposed to return sets of paths and documents d
and d’ are said to be connected by a virtual link if there is a path p from d to d’ in the hypertext network.

More formally, a virtual link, defined by a (path) query @ and denoted link(Q), is the set of node
(document) couples connected by paths in Q :

link(Q) = {(dv,dy)|ds . .. dy, € Q}.

While @ brings complete information on its paths, link(Q) only keeps the paths end-nodes. A virtual
link link(Q) is followed from some document s by the following operation :

T = {t|(s,t) € link(Q)} get target documents

. | D=DUT display target documents
newt(s, link(Q)) : push(H,T) add target documents to history
D=D-{s} undisplay source document

Instead of opening all target documents 7" simultaneously, some control strategy has to be used to avoid
an “explosion” of the number of windows displayed on the screen. For example, if the number of documents
in T is less than some limit, say 4, all documents are opened and displayed simultaneously. Otherwise, the
user can choose the documents to be opened from a menu showing all document titles.

Virtual links introduce flexibility and allow the control of the hypertext size by avoiding unnecessary
extensional links between documents. Note also that next(d, link(Q)) might be precomputed for faster
navigation — which implies recalculation when the hypertext graph is modified — and that this mechanism
could be implemented in a relational model by a view mechanism (as long as ) does not contain any Kleene
closure).



Example 3.1 In order to play the stored video sequences of the movie Jurassic Park, a reader can first
display all review articles by successively selecting links of type review and then follow links of type
sequence to the specific videos. A better solution is to use the following query @ defining a virtual link
link(Q) between the Mov i e document with the title Jurassic Park and all video sequences that can be
reached by paths satisfying the regular expression Movie review Article sequence Video:

SELECT Video
FROM Movie review Article sequence Video
WHERE Movie.title = ““Jurassic Park”’

By clicking on a new button attached to the previous query @, readers might then directly display
all Video documents containing video sequences of the movie Jurassic Park. Instead of selecting the source
document explicitly by the condition Movie.title = ““Jurassic Park””, anauthor could specify
the following ““generic” query, where the formal parameter Active Document is replaced by the active
document, i.e. the document with the button ;

SELECT Video
FROM Movie review Article sequence Video
WHERE Movie = Active Document

Afterwards, the same query can be reused for creating virtual links between any movie and its video
sequences. This example also illustrates how virtual links prevent unnecessary navigation by following
several paths to the same document. Although there might exist different review articles pointing to the
same video, the latter appears only once in the result of the query.

Hypertext browsing implies an asymmetric view of data since documents are accessed through directed
paths in a graph. However, this asymmetry is only apparent and we can always obtain the set of starting
nodes of paths satisfying some query @ and leading to a given node. This corresponds to the projection
of the paths in @ on their source nodes. A virtual link link(Q) is traversed from some document ¢ in the
reverse direction by the following operation :

T = {s|(s,t) € link(Q)} get source documents

. . | D=DUT display source documents
previous(t, link(Q)) : push(H,T) add source documents to history
D=D-{t} undisplay target document

As for “forward” links this mechanism can be implemented either by storing ) with a button or
by ad-hoc querying.

3.2 Dynamic Guided Tours

Navigation, even when query assisted, becomes extremely complex when the number of nodes and edges
in the hypertext network passes some limit. Navigation space restriction is then necessary. Several mech-
anisms such as guided tours (Trigg 1988; Marshall and Irish 1989) or active paths (Zellweger 1989) have
been proposed in literature. We suggest to implement such mechanisms by restricting navigation to paths
returned by a query Q. Then readers navigate step-by-step but only in the predefined space. Only buttons
corresponding to the paths of @) are active in each document, the others being disabled. In some cases, for
example when the author only wants to suggest a guided tour to the readers, the corresponding buttons might
be signalized by a special color or font without deactivating the buttons outside the guided tour. In that case,
readers can follow the proposed paths but also start side-trips for exploring new parts of the network and, if
required, easily return to the guided tour. As for virtual links this mechanism can be implemented either by

storing @ with a button or by ad-hoc querying.



3.3 Structured Backtracking

Most hypertext systems implement a stack based history model and allow readers to return to previously
visited documents by using a special back button &=]. More sophisticated mechanisms distinguish between
several types of traversal history logs and backtracking strategies (e.g. chronological and task-based) (Bieber
and Wang 1994). Conditional or parametric backtracking (Garzotto, Mainetti, and Paolini 1993) evaluates
query expressions in the navigation history log and returns to the most recently displayed document satisfy-
ing the queries.

Virtual links as defined above obviously are insufficient for implementing history mechanisms. For
example, after having followed a link of type d i rector from the movie Le Dernier Metro to the document
about Frangois Truffaut, the activation of the button [<—, Movie director Artist]in this document
does not return only to the movie Le Dernier Metro, but to all movies directed by Frangois Truffaut.

A (path) query language can be used for implementing structured backtracking. Instead of following
the history step-by-step (button =]), a whole path returned by a query might be “popped” from the history
stack : a path p can be popped from a history stack H, denoted pop(p, H), if all documents in p have been
visited in the same order as they occur in p. A number of different backtracking strategies are possible :

e A query might contain several candidate paths that can be popped from the history. Different solutions
might be proposed where it is for example possible to select the shortest (longest) path automatically
or to let the reader choose a path in a menu and, in this way, influence the backtracking strategy.

¢ A path might be popped from the history stack if the reader has followed all its links one by one, but
also if (2) all nodes have just been visited in the same order. The second strategy is less restrictive and
accepts “side-trips” to documents that do not occur in the selected path.

As we have done for the definition of virtual links, we can use a back button attached to a query @ : by
clicking on the button [«=, @}, the starting document of the selected path p in @ will be displayed.

Example 3.2 A reader who watches a video sequence of a movie, i.e. follows a path satisfy-
ing the regular expression Movie review Article sequence Video play Frame (next
Frame)*, can interrupt the video display and return to the review article by clicking on the button
<, Article sequence Video play Frame (next Frame)*|

4 Schema Browsing

We have illustrated how hypertext authors can prepare virtual links and dynamic guided tours by attaching
(path) queries to buttons. A different solution is to provide readers with a high-level user interface for ad-
hoc querying during hypertext browsing. Such an interface can be implemented in the form of a schema
browser where users (authors and readers) select node and link types in order to create path expressions
in an interactive style. In this section, we describe the general functionalities of a schema browser that
we have implemented on top of the Multicard/O, hypermedia database prototype (Section 6). Hypermedia
applications are built by using a hypermedia toolkit, a script language and the schema browser.

The schema browser is composed of three windows containing (1) a visual representation of the hyper-
text schema graph, (2) the active document (node) and (3) the generated query that can be used ad-hoc or
stored in a script, attached to a button in the active document.

Example 4.1 An example of the ad-hoc definition of a reverse link by using the schema browser is shown
in Figure 2. In order to display all cinemas featuring a movie directed by Alfred Hitchcock, the user has
activated the document Alfred Hitchcock and selected the link types show and di rector in the schema
graph representation of the movie guide. This graphical selection is equivalent to the following Gram query :



SELECT Cinema
FROM Cinema show Movie director Artist
WHERE Artist = Active Document

St Andre des Arts

Program
NURAP—

RPR

30, rue St Andre des Arts
Metro St. Michel - 43 26 48 18
Pl. 41F. TR. 31F: wed and mon

Active Node

i select show.source

’ from show in CinemashowMovie,

director in MoviedirectorArtist

{ where show.destination = director.source and

H director.destination = Browser.ActiveNode

Figure 2: All cinemas featuring a movie of Alfred Hitchcock

The bottom window of the schema browser shows the automatic translation of the equivalent Gram
query into O,SQL, the query language of O,. The destination documents of these paths have to be the
active document Alfred Hitchcock. Finally, the answer to this query, i.e. the document St. André des
Arts, is displayed on to the screen.

Example 4.2 The definition of a virtual (reverse) link by using the schema browser is illustrated in Figure 3.
In order to define a virtual link from the document Twin Peaks to the cinemas featuring this movie, the
author has created a button and attached to it a script (displayed by the script editor) that includes
the query generated by the selection of the link type show in the hypertext schema.

Such an intensional browsing (Batini, Catarci, Costabile, and Levialdi 1991) reconciles hypertext brows-
ing with querying in several ways :

e The user is not obliged to learn any formal query language, but keeps the same interaction style, both
for following hypertext links and virtual links.

e The conceptual schema of the application is displayed on the screen and can be manipulated under a
uniform interface.

e In order to define virtual links, the queries generated by the schema browser can automatically be
attached to buttons inside the hyperdocument.

The current implementation of this schema browser is limited to the description of simple path expres-
sions. Whereas this is sufficient to demonstrate the benefits of such a tool, we plan to extend it to a complete
visual query interface supporting the definition of joins, selections, projections and Kleene closure.
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Figure 3: Defining a reverse link from a movie to its cinemas

5 Multiple-Schema Hypertext Organization

The mechanisms we have described so far assumed that a hypertext is an instance of a single predefined
schema. However, there are many situations where a single schema is either not desirable or not possible to
achieve. Such situations are generated by :

requirements for hypertext links between already available heterogeneous information based on an
information network. This is typically illustrated by the WWW project (Berners-Lee, Cailliau, Groff,
and Pollermann 1992) and its need for better information organization. In the WWW scenario, local
servers consist very often of highly typed and structured databases which are not exploited at their real
value by the loose connection the WWW provides.

requirements for a better organization of a single hypertext base through decomposition and associa-
tion of a number of multiple-schema hypertexts. These situations typically arise when the semantics
of the application naturally gives rise to a hierarchical decomposition into many sub-hypertexts, or
when one hypertext application might want to create/update its own hypertext which reuses or shares
information stored in some already existing and separately maintained hypertext. As an example of
hierarchical organization, consider passenger transportation networks. A high-level hypertext might
represent cities flight interconnection (one document node per city), while with each city there might
be associated a low level network of local station-airport connections by car, train and bus.

Organization of complex hypertexts is done traditionally via the well known composition mechanism
at instance level. Composite nodes, contexts, or groups of nodes serve as a hierarchical backbone to the
hypertext. This method however has its shortcomings :

The hierarchy is managed at instance level and does not take into account the various information
types and schemas.

Cross-reference links can traverse the hierarchy regardless of the organization semantics.

Hierarchical links are another type of link that requires an orthogonal management to the cross-
reference link type both at user and system level.

Hierarchy does not cater for hypertext reuse and sharing of information, especially between multiple-
schema based hypertexts.
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We suggest below a structuring mechanism that organizes hypertext design at type and schema level.
The result is better management of encapsulation of hypertexts as well as federation of existing hypertexts,
whilst simplifying the author’s view of the hypertext by getting rid of the artificial hierarchical structure at
instance level. We illustrate our mechanism through an example in which a CULTURAL PROGRAM hypertext
(schema of Figure 4) is coupled to the already existing MovIE GUIDE hypertext.

Our structuring mechanism allows to connect a node n from a given hypertext H to another hypertext
H'(n). We assume of course that designers of separate hypertexts conceptualize domains in compatible
ways. Of course, this might be a restrictive assumption in various real-life situations. More specifically, we
assume the following simple scheme : in some nodes n. of H, the user has the choice between (1) following
a link in H and (2) entering (zooming in) another hypertext H'(n), following a path in H' (entering another
hypertext H", etc.) and eventually come back to n in H. Using this mechanism, it becomes possible to
define queries involving paths in different loosely-coupled hypertexts.

The following examples illustrate the above scheme as well as the usage of queries in the context of
loosely-coupled typed hypertexts. Figure 4 shows two hypertext schemas. In addition to the already pre-
sented MovIE GUIDE schema (Section 2), we can see a second schema CULTURAL PROGRAM describing
cultural programs for tourists.

:
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Figure 4: Cultural Program and Movies

A program is composed of different activities each of which is described in a document of type
Activity and represents one stop in a guided tour defined by links of type next. The schema dis-
tinguishes three types of activities : (1) going to the cinema, (2) visiting an exhibition or (3) going to a
concert. Looking at this schema, we can think of two independent hypertext applications. Nevertheless,
readers of the CULTURAL PROGRAM hypertext might want to enter or “zoom into” the MoviE GUIDE
hypertext in order to obtain more information about the featured movies.

Definition 5.1 Let S be a hypertext schema and I(.S) denote the set of hypertext instances of S. Let ¢ be
a node type (not necessarily in S) and I(t) denote the set of node instances of type ¢. A zoom from ¢ into
S, denoted zoom : I(t) — I(S), is a function that associates with each node of type ¢ a (possibly empty)
hypertext with schema S.
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By this definition, we can define zoom : I(Activity) — I(Movie Guide) from nodes of type
Activity into MoviE GUIDE hypertexts. Each document of type Activity now contains a button
that can be activated in order to enter the MoviE GUIDE hypertext. Clicking on button || in activity A
suspends navigation in the CULTURAL PROGRAM hypertext, activates the zoom and opens the hypertext
zoom(.A) which describes the movie associated with .A. Afterwards, in order to resume navigation in the
CULTURAL PROGRAM hypertext, a “return” button || has to be clicked on which brings the user back to .A.

Instead of following a path from A into zoom(A) and navigate, say from an activity to the featured
movie, we might directly apply a query @ on zoom(A). The activation of the zooming button then
enters hypertext H = zoom/(.A) and applies query () on H. Furthermore, a query might involve both, a path
p on activities in the CULTURAL PROGRAM hypertext as well as a path p’ on movies and artists embedded

inp.

Definition 5.2 Let @) be a set of paths satisfying some regular expression r. Let ¢ be a type in r and
zoom : I(t) — I(S) be a zooming function. Let Q'(H) be a query on a hypertext instance H of schema S.
A path p’ € Q'(H) is embedded in a path p € @ if p contains a document d of type ¢ (7(d) = t) such that
p'isapathin H = zoom(d) :

embed(Q, Q") ={(p,p') | PEQAIdEp:7(d) =tAp € Q'(z00m(d))}

defines all pairs of paths (p, p) such that p' can be followed from path p. Let (p,p) € embed(Q, Q") be
a pair of embedded paths such that p satisfies » = utv and p' satisfies /. Then (p, p') is said to satisfy the
regular expression s = ut.(r')v.

The above definition selects paths p in H, and for each path p going through document d, a set of paths
p'" in zoom/(d). There might be one or several entry points in zoom(d). Specifying the entry points, implies
restricting the path expressions 7’ that p’ must satisfy.

Example 5.1 The following query gets the cultural programs with at least one activity where it is possible
to see a film directed by Robert Altman :

SELECT Program
FROM Program start (Activity next)* Activity._.Movie director Artist
WHERE Artist.name = "Robert Altman"

The dot notation is used for accessing attribute values (Artist._name) as well as paths in the
““zoomed” hypertexts (Activity.Movie director Artist).

Example 5.2 The following example selects all programs (guided tours) where the first activity is to see a
movie with Romy Schneider followed by a visit of an exhibition in the Louvre museum.

SELECT *

FROM Program start Activity.(Movie actor Artist) next Activity visit Exhibition
WHERE Artist.name = "Romy Schneider"

AND Exhibition.address = "Le Louvre"

6 Implementation
Some of the above mechanisms have been implemented with the Gram model and validated on top of the

hypermedia system Multicard (Rizk and Sauter 1992) and the object-oriented DBMS O, (Deux 1989). The
overall system architecture is shown in Figure 5.
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Figure 5: Multicard / Oy Architecture

In a first step, we have connected Multicard with O, by using the C++ programming interface of
O- (Amann, Christophides, and Scholl 1993). This integration provides a clean separation of the hyper-
text structure (storage layer) stored in an O, database from the node contents (within-component layer)
manipulated by Multicard compliant editors (MCEditor, Emacs, Go, etc.).

Afterwards, in order to introduce new hypertext query facilities, we have extended the Multicard data
model with typed nodes and links. We used O,SQL (Bancilhon, Cluet, and Delobel 1989), the query
language of O, which is powerful enough to express Gram queries without Kleene closure, and concentrated
our attention to the implementation of a schema browser on top of O, (Section 4). O.SQL can be used as
an ad-hoc query language, but also be embedded into code written in the O,C programming language. An
important generic feature of the O, SQL language is the possibility to construct new values from existing
objects and values. In our context, this feature is especially useful for creating paths between nodes in the
form of lists of link objects.

7 Conclusions

The general problem of creating and managing large-scale hypertext applications as well as simplifying
navigation in large hypertexts remains one of the key issues for the next generation of hypertext systems.
Previous research efforts have gone a long way into resolving this issue. Such efforts vary widely depending
on the approach adopted. Some propose tailored design methodologies in the form of a set of do’s and don’ts
for effective authoring. Others propose automatic creation of hypertext links as an aid to authoring coupled
to information retrieval techniques for navigation.

Our work builds on the approach that consists in using strong typing as a means of constraining the
author’s choices as well as for developing query-assisted navigation. Although this approach is considered
controversial by some, our choice results from the positive conclusions of previous research which has been
carried out along two largely independent main lines, namely :

e typing as a good management model for authoring. This has been applied in pretyped hypertext
systems such as IBIS structure based applications (SEPIA and gIBIS), as well as in schema-based
authoring (such as HDM) and strongly typed systems such as Mac\Web.

e querying in hypertext is an effective user tool, complementary to navigation. We have seen this in
work by (Consens and Mendelzon 1989; Afrati and Koutras 1990; Beeri and Kornatzky 1990; Amann
and Scholl 1992; Lucarella et al. 1993).

Our approach has both of the above advantages. In addition, we have demonstrated how schemas and
queries in typed hypertexts can be used not only as a user tool, but also as an authoring/design mechanism.
In particular, we have shown how queries in our model could be used by a designer as a generic means for
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building more tailored authoring/navigation tools, and we have illustrated this concept through the classical
guided tours and virtual links examples.

The zooming function we introduced allows a new information structuring through interconnected hy-
pertexts. The above mechanisms can be applied, beyond a single typed hypertext, to such interconnected
hypertexts each having its own schema and types.

Most of these mechanisms have been implemented on top of the hypermedia system Multicard/O,. An
important feature of this prototype is a schema browser that lets the user formulate queries during hypertext
navigation. We plan to extend this graphical query interface to cater for all operations of the Gram algebra
such as join, concatenation, projection and selection and Kleene closure.
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