
1070-986X/01/$10.00 © 2001 IEEE 1

Distance Learning

We describe a new
approach to
interactive and
collaborative
learning in an
industrial training
environment. Users
learn in the 3D world
where multiple
instructors can
observe, advise, and
correct in real time.
Our distributed
building site
metaphor provides
distribution services
for sharing a virtual
world and enables
different
collaboration styles.

Distance-learning environments gen-
erally focus either on broadcasting
knowledge, a virtual classroom, or
educational games. When the solu-

tions use a virtual environment (VE), it’s to
immerse the students in a virtual classroom where
they use videoconferencing to interact with teach-
ers and other students. Sometimes, a student can
play with the VE to get feedback from an educa-
tional game.

Many of the current collaborative learning
solutions however have prohibitive limitations.
For example, they don’t have adapted distributed
VEs. They don’t address the requirements of con-
current learning because they don’t preserve the
work’s progress (that is, learners must redo their
work because of concurrent operations), and they
limit parallel learning. Moreover, they don’t let
instructors easily switch between different learn-
ing styles. Client–server approaches are also inef-
ficient in many ways. They introduce a bottleneck
and a failure point in the system. Requiring a spe-
cific quality of service (QoS) from the underlying
network limits a solution’s ease of deployment
and openness. (See the sidebar “State of the Art in
Distance Learning” for more information.)

Our Distributed Building Site Metaphor
(DBSM) system provides several improvements.
The basic idea behind our proposal is that a learn-
er uses the VE to interact with the distant partici-
pants. Thus, we augmented that interaction so
that the virtual scene mediates human interac-
tions. For example, an instructor can introduce a
virtual scene in a meeting that learners can inter-
actively modify. The virtual scene becomes the
learning subject, and the learners use the scene to
respond and interact with each other. Typically,
the collaboration enables modifications, annota-
tions, and sharing.

Thus, we’ve improved collaborative learning
with real-time interactions in a shared virtual
scene. The participants collaborate in real time
during a meeting, but they can take work home to
continue learning offline. In later meetings, learn-
ers introduce their homework into the shared
scene and can merge and compare different solu-
tions. During a meeting, the participants in the
distributed environment find the best answer to a
given problem together.

We can easily deploy our solution on any
Internet protocol (IP) network infrastructure. It
doesn’t require a specific quality from the under-
lying network such as resource reservation. Our
solution also doesn’t transmit the scene events
with a classical reliable multicast, which doesn’t
scale well due to the positive acknowledgment
problem. In addition, it doesn’t implement an
ordered multicast1 (that is, a causal and total
order) that introduces a high overhead.
Moreover, a reliable or ordered properties of the
multicast protocols don’t preserve the work’s
progress. In our solution, parallel work isn’t lim-
ited and we achieve consistency by using a light-
weight protocol that’s processed uniquely at the
appropriate time. A peer, a system agent provid-
ing the end-user collaboration services, can check
if its copy is up to date by multicasting a request
to get the version of distant objects. With version
numbers, the peer can request retransmission of
out-of-date objects.

Finally, we can deploy our solution securely
over the Internet. It uses standardized authenti-
cation tools embedded in any email client. Users
can set up a project and schedule meetings using
email. We also use email to distribute a session
key, so we can maintain confidentiality.

DBSM features
We developed the DBSM concepts and tech-

nologies under a European Aeronautic Defense

Collaborative
Learning with
the Distributed
Building Site
Metaphor

Fabien Costantini and Christian Toinard
Center for Study and Research in Information

Technology, National Conservatory of
Industrial Arts and Crafts (CNAM), France

Space Company, Research Center (EADS-CCR) con-
tract. (See Sgambato’s thesis for the content this
contract covers.2) The DBSM merges disconnected
works into a shared scene that satisfies the func-
tional relationships between the different works.
After a global-scene merging, meeting participants
interact efficiently through the DBSM by updating
the shared scene. The DBSM implements a distrib-
uted designation, distributed protection, and own-
ership transfer. Thus, it supports parallel working
and work progression both online and off-line.

The DBSM has two phases. In the management
phase, a group of participants forms and uses email
to communicate securely. The collaboration phase
lets the participants share a 3D scene. We can sub-
divide the collaboration phase into the scheduling
and working phases. Costantini et al.3 give the basic
principles of the DBSM. Here, we give a wider
description and we add detail to the working phase.

Preparation and scheduling
During the management phase, the DBSM pro-

vides two major services:

❚ Project negotiation: A project manager and select-
ed participants communicate by email to set up
a project. We achieve security using the Secure
Multipurpose Internet Mail Extension (S/MIME)
for authentication and confidentiality through
X509 certificates. The negotiation phase does-
n’t require a specific tool.

❚ Management transfer: Managers send an email
to transfer the responsibility of their project.
That email contains a signed text certifying
the transfer.

After the project negotiation phase, a schedul-
ing phase lets the project members prepare a

2

IE
EE

 M
ul

ti
M

ed
ia

Researchers have proposed several different styles of distance
learning in the literature. Several solutions focus on broadcasting
knowledge. Egan et al.1 used television to broadcast courses. In
that case, the main drawback of television instruction is the lack
of interaction between faculty and students.

Others use the Web to support asynchronous activities.
Online programs use Web pages to access course materials,
announcements, electronic libraries, and other information.
Online activities can include forums using threaded bulletin
boards, chat rooms, and email. In addition, the Web lets students
submit assignments online in multimedia formats and receive
their professor’s online reviews of assignments in the same for-
mats. However, students still don’t have direct interaction with
professors and other students.

Maly et al.2 developed a virtual classroom where a student has
a conventional classroom experience through a workstation. The
teacher and students interact with videoconferencing. They share
tools like Netscape and PowerPoint through a window-sharing
engine. The environment incorporates XTV,3 an X-Windows-
based group-collaboration system. Thus, any participant can take
control of a window to multicast his inputs to the distant partici-
pants. XTV is based on the Remote Multicast Protocol protocol4

that achieves a reliable and ordered multicast. The key disadvan-
tages of the environment are speed and bandwidth. First, an
extraordinary load is put on the reliable multicast protocol
because it must replicate the X traffic. Second, the environment
only works on high-speed network. Typically, the participants are
connected through a high-speed local area network, so the envi-
ronment is devoted to Intranet use.

Arikawa et al.5 proposed a server for managing an augmented
3D scene. They rendered graphical objects and videos at the same

time onto the display. Incorporating live videos into virtual spaces
makes the virtual space more attractive. To share the virtual space,
the multimedia application uses high-speed computer networks
with asynchronous transfer mode links at 155 Mbps. To give
smooth motion from one space to another, a prefetching tech-
nique is necessary, where the multimedia application prefetches
adjacent virtual spaces when required.

This solution resembles MPEG-4,6 where a server broadcasts a
virtual scene including videos. In contrast, MPEG-4 multiplexes
and synchronizes the data associated with media objects so that
they can be transported over network channels providing a qual-
ity of service (QoS) appropriate for the nature of the specific
media objects. If a user wants to send information to other users,
the interaction must be sent to server and processed before
being forwarded to the distant users.

Saini-Eidukat, Schwert, and Slator7 studied how to immerse
students in a VE that provides them with feedback. The system
computes the student interactions, thus reacting like an educa-
tional game. Their purpose was to facilitate the design of edu-
cational games, so they didn’t focus on how to share a virtual
world among students.

Collaborative environments let a stand-alone application be
shared among participants. The general idea is that inputs occur-
ring at a user interface are caught by a cooperation module/library
that is integrated in the local application. Thus, the cooperation
module/library sends the local inputs to the server that distributes
them to the distant applications. For example, Saddik et al.8 used
JavaBeans and Java Remote Method Invocation (RMI). The differ-
ent solutions from the literature8,9 all use a central server. The serv-
er receives a message from a replica, processes the message, and
sends out further messages to the other replicas. The Java Shared

State of the Art in Distance Learning

meeting. It provides the following services:

❚ Scheduling: A subset of the project members
uses email to schedule a meeting.

❚ Address allocation: During the scheduling phase,
the project members negotiate a multicast
address by email. In practice, each recipient can
use a local directory service (that is, Lightweight
Directory Access Protocol) to reserve the
requested address. We can omit this reservation
procedure and detect and resolve a conflicting
address automatically during the meeting.

❚ Distribution of a session key: The scheduling
phase serves also to distribute a private key K,
which the participants will use as a session key
during the scheduled meeting. That private
key is transmitted securely by email using

S/MIME to authenticate the participants and
encrypt the key.

Meeting
A meeting runs in three phases. The first

phase is real-time gathering and global-scene
merging. Thus, each participant gets a copy of
the shared scene using an application peer.
Peers communicate through the DBSM services.
During a second phase, different operations
(object creation, deletion, or modification)
process the shared scene. In the third phase,
participants leave the meeting and take with
them a subset of the shared space.

Real-time meetings. An entering peer multi-
casts participants’ names as they join. Distant
participants reply by multicasting their names.
Thus, a new participant maintains his knowledge

3

July–Sep
tem

b
er 2001IE

EE
 M

ul
ti

M
ed

ia

Data Toolkit uses the same principle where broadcasting by the
server can be replaced by a reliable multicast protocol.

The main drawback of a central server is a poor performance.
First, a central server introduces a bottleneck in the system.
Second, these solutions generally use multiple transmission con-
trol protocol (TCP) connections either in straightforward man-
ner or through RMI invocations. Third, using a reliable multicast
doesn’t always improve the performances and doesn’t guaran-
tee a consistent progression of the work.

Distributed virtual environments are guided by the historical
requirements coming from battlefield simulations. Thus, several
works consider how to reduce the network traffic due to a high
number of moving objects.10-13 Generally, DVEs provide a way to
divide the scene statically or dynamically for scalability. These
systems don’t support parallel work10 or don’t guarantee the
work consistency.11,12,14 Moreover, client–server pitfalls12,14 or QoS
requirements11 limit these solutions.

References
1. M. Egan et al., “Learner’s Perceptions of Instructional Delivery

Systems: Conventional and Television,” The American J. Distance
Education, vol. 2, no. 4, Aug. 1993, pp. 47-55.

2. K. Maly et al., “Interactive Distance Learning over Intranets,” IEEE
Internet Computing, vol 1, no. 1, Jan./Feb. 1997, pp. 60-71.

3. H. Abdel-Wahad and K. Jeffay, “Issues, Problems, and Solutions in
Sharing X Clients on Displays,” J. Internet-Working Research and
Experience, vol. 5, no. 1, Mar. 1994, pp. 1-15.

4. B. Whetten, T. Montgomery, and S. Kaplan, “A High Performance
Totally Ordered Multicast Protocol,” Theory and Practice in Distrib-
uted Systems, LCNS 938, Spriner Verlag, Berlin, 1994, http://
research.ivv.nasa.gov/RMP.

5. M. Arikawa et al., “Real-Time Spatial Data Management for Scal-

able Networked Augmented Virtual Spaces,” IECIE Trans. Informa-
tion and Systems, vol. E82-D, no.1, 1999, pp. 099-112.

6. R. Koenen, Coding of Moving Pictures and Audio, MPEG-4 Overview
(V.18 – Singapore Version), ISO/IEC JTC1/SC29/WG11-N4030,
Int’l Organization For Standardization, Mar. 2001,
http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm.

7. B. Saini-Eidukat, D.P. Schwert, and B.M. Slator, “Designing, Build-
ing, and Assessing a Virtual World for Science Education,” Proc.
Int’l Conf. Computers and Their Applications, 1999, pp. 59-65.

8. A. Saddik et al., “Collaborative Working with Stand-Alone
Applets,” Proc. Intelligent Mutimedia and Distance Education (ISI-
MADE 99), 1999, pp. 203-209.

9. C. Kuhmünch, T. Fuhrmann, and G. Schäppe, “Java Teachware—
The Java Remote Control Tool and its Applications,” Proc. World
Conf. Educational Multimedia and Hypermedia and World Conf. Edu-
cational Telecommunications (ED–MEDIA 98), Association for the
Advancement of Computing in Education, 1998, http://
www.informatik.uni-mannheim.de/~cjk/publications/ed-media98.

10. J.W. Barrus, C. Waters, and D.B. Anderson, “Locales: Supporting
Large Multiuser Virtual Environments, IEEE Computer Graphics and
Application., vol. 16, no. 6, Nov. 1996, pp. 50-57.

11. Defense Modeling and Simulation Office, HLA Data Distribution Man-
agement Design Document Version 0.5, US Dept. Defense, Washing-
ton D.C., 1997, http://www.dmso.mil/index.php?page=64.

12. O. Hagsand, “Interactive Multiusers VEs in the DIVE System,” IEEE
MultiMedia, vol. 3, no. 1, Spring 1996, pp. 30-39.

13. M.R. Macedonia et al., “Exploiting Reality with Multicast
Groups,” IEEE Computer Graphics and Applications, vol. 15, no. 5,
Sept. 1995, pp. 38-45.

14. W. Broll, “DWTP-An Internet Protocol For Shared Virtual World,”
Proc. Int’l Symp. Virtual Reality Modeling Language (VRML 98),
ACM Press, New York, pp. 49-56.

of the meeting membership locally. The protocol
allocates a session color to each participant. (See
Cosstantini et al.3 for more on real-time meet-
ings.) The top of Figure 1 gives an example of this

phase. It shows Christian entering concurrently
with Nicolas. The protocol resolves the conflict-
ing color (blue) at the end of Christian’s mem-
bership phase. Only Christian’s peer multicasts a
new message since it has the smallest IP address.
Finally, note that the mechanism can have
minor side effects like when Christian’s color
changes from blue to green during the same
meeting.

Global-scene merging. After the system
achieves a real-time meeting, it processes a glob-
al-scene merging. Each peer multicasts a list part
[List: VL, TotParts, NPart, (G1, V1), ..., (GN, VN)],
where VL is the version number of the list,
TotParts is the total number of parts forming that
list, NPart is the part number, and each couple
(GX, VX) defines the global name and the version
number for an object X. Using TotParts list mes-
sages, a peer announces the objects it enters into
the meeting. Afterwards, the announcing peer
multicasts an object state [State: VL, GX, VX, TX, SX]
for each object X of the list where TX is the type of
X and SX is the state associated with VX. Thus, a
distant peer recovers all the announced objects.
At the end of the scene merging, each peer has a
copy of the shared scene.

Because a distant peer has a list of the
objects, it can request retransmission of a miss-
ing object X by asking for a version number
equal or higher to VX. Thus, an emitting peer
simply only has to retransmit its current version
V′X of X (V′X ≥ VX).

Because each state transports a list version VL,
a receiving peer that misses the corresponding list
message can ask for a retransmission by request-
ing the list part for the object GX. Generally, the
emitting peer will retransmit the corresponding
list part. When the emitter adds or retrieves an
object, the requested version VL is no longer avail-
able because the list has changed. In that case, the
emitter retransmits all the new parts with V′L ≥ VL.
After receiving the new list, the requester must
request retransmission of the missing states based
on the received list.

We should note that a selective list [SLIST: VL, TL,
TotParts, NPart, (G1, V1), ..., (GN, VN)] transmits only
object references of type TL. A selective list is a sub-
set of the list VL. Figure 1b illustrates the messages
exchanged during the global-scene merging phase.

Real-time operations. A peer modifies an
object X by multicasting a message [State: VL, GX,
VX, TX, SX]. A receiver uses the event either to cre-

4

IE
EE

Fabien Christian Nicolas

Conflict
-> choose green

Request

List:
VL , TotParts,

NPart, (GL , VL),
…

List:
VL , TotParts,
NPart, (GL , VL),
…

State:
VL , G1 , V1 , T1 , S1.

State:
VL , G1 , V1 , T1 , S1.

State:
VL , G2 , V2 , T2 , S2.

Reply red

Choose blue

Choose blue

Begin
membership

for
Christian

Begin
membership

for
Nicolas

End
membership

for
Christian

End
membership

for
Nicolas

Request

(a)

(b)

Figure 1. (a) Real-time membership and (b) gobal scene merging. The
distributed membership protocol maintains for each communication peer the
meeting membership and colors of the participants. The global-scene merging
builds a copy of the shared scene for each communication peer by aggregating
the different pieces at the right functional places.

ate a new object or update an existing object. The
receiving peers don’t acknowledge that message.

When a peer deletes or creates an object, it
changes its list (myList:=myList-X or
myList:=myList+X) and increments the list ver-
sion (myListVersion++;). Afterwards, the peer
multicasts a message [Deletion: V′L] or [State: V′L,
GX, VX, TX, SX], where V′L equals myListVersion.
A receiving peer removes or adds GX and updates
its local knowledge of the distant list. Thus, an
emitter multicasts a small deletion or update mes-
sage instead of using the list messages. The receiv-
ing peers don’t need to acknowledge these
operations.

Shared scene tree. The global scene is a scene
tree where each node contains graphical and col-
laboration attributes. The application maintains
that tree and inherits the collaboration attributes
from the DBSM classes. Each peer builds a copy of
that global scene tree by collecting the different
subtrees through the global-scene merging. A cen-
tral server doesn’t maintain the global scene. It’s
accessible when all the participants reach the
meeting, but an absentee doesn’t prevent the
scene from merging. If participants are absent, the
shared scene is a subset of the global scene.

The scene tree is an application tree that gives
high-level, concise information about the graphi-
cal objects. For example, a pipe is defined by its
diameter and a set of routing points. So a peer
multicasts a small amount of data for the update
of an object. For example, a peer transmits the

diameter and routing points but not the different
polygons to draw the pipe. Thus, a receiver will
compute the corresponding polygons locally.

Collaboration attributes include ownership
and protection attributes. Protection attributes
prevent distant participants from observing or
modifying the corresponding object. There’s only
one owner of a given object at a time. Only the
owner can modify the corresponding object, but
the ownership can be transmitted.

Distributed designation. The DBSM locally
computes a unique name when a designer creates
a new node. A unique name contains the IP
address (@IP) of the creation machine, a local time
stamp, and the position within the tree—for
example, @IPA,stampA,1.3 corresponds to the
first child and third grandson of the node
@IPA,stampA. Only a node’s owner can create a
child for that node. For example, A creates the
node @IPA,stampA,1.3 as owner of @IPA,
stampA,1. That way, unique names are defined
in a distributed way by each computation peer.
Moreover, the system can create those distributed
names before the part reaches the meeting. A par-
ticipant doesn’t need any name server to create a
unique name. The father–son relationships are
implicitly maintained by the distributed names,
so the system doesn’t have to explicitly store
those relationships.

A time stamp includes a date corresponding to
the local creation date and a random number.
Therefore, a peer can change its IP address with-

5

July–Sep
tem

b
er 2001

Other collaborative learning solutions use a server to download
the scene1 and manage the meeting membership.2 Hagsand1 used
a reliable multicast with negative acknowledgements to continu-
ously provide fresh updates and recover errors. Several peers reply
to the negative acknowledgement. Broll2 developeds a classical
reliable multicast with positive acknowledgements for the events
requiring reliability. However, neither Hagsand nor Broll guaran-
tee that users are modifying the latest state of the corresponding
object. Generally, they don’t give a clear definition of the consis-
tency they tackle. Hagsand used a token-passing algorithm to
schedule the concurrent requests. To guarantee a copy’s fresh-
ness, Broll periodically transmitted the state of the VRML nodes
and required precise clock synchronization.

Handley and Crowcroft3 also considered freshness as a con-
sistency property and used synchronized clocks to maintain a
fresh copy. They don’t guaranty that a site modifies an object
starting from its latest state since two modifications occur simul-

taneously. Generally, their solutions don’t integrate security
properties or define how to allocate a multicast address. They
also don’t consider how to disseminate a global scene tree
among different workers for disconnected improvements and
reintegration into the shared environment.

References
1. O. Hagsand, “Interactive Multiusers VEs in the DIVE System,” IEEE

MultiMedia, vol. 3, no. 1, Spring 1996, pp. 30-39.
2. W. Broll, “DWTP-An Internet Protocol For Shared Virtual World,”

Proc. Int’l Symp. Virtual Reality Modeling Language (VRML 98),
ACM Press, New York, pp. 49-56.

3. M. Handley and J. Crowcroft, “Network Text Editor (NTE) A Scal-
able Shared Text Editor for the Mbone,” ACM Computer Sommuni-
cations Review, vol. 27, Oct. 1997, pp. 1997-208.

Related Work

out any difficulty. An already created name
remains unique in time and space because a name
is unchanged during the node life. The new IP
address will produce distinct names because the
probability that two machines will use the same
address to produce the same name (same local
time and same random number) is close to zero.
If in the future another machine allocates the
same IP address with completely desynchronized
clocks, the random numbers will discriminate the
two names.

Responsibilities and permissions. The DBSM
provides the basic services that let the application
respect the different responsibilities and permis-
sions. The application uses the project definition
(transmitted during the project negotiation) and
protection attributes of the nodes to control the
requested operation’s validity.

Refreshing. Since receiving peers don’t
acknowledge updates and deletions, a distant peer
can lose events. Using the refresh service, a peer
requests a list from a distant peer. The requester
replies by multicasting the list messages. The
requesting peer uses the received list to remove or
add objects. If the objects already exist, that list
lets the peer request retransmission of newer ver-
sions. Therefore, the system only transmits miss-
ing versions. A retransmission request is a kind of
negative acknowledgement (NACK), but NACKs
aren’t generated each time a version is missing or
to recover all of a given object’s state. The refresh
service is used typically on application demand to
process an accurate copy of the scene.

The retransmission request and the reply are
multicast. Thus, a peer observing a retransmis-
sion request from another peer waits for the
reply. Finally, a peer packages different retrans-
mission requests into a single multicast message,
so only a small number of retransmission
requests are multicast.

Consistency through the ownership trans-
fer. The ownership transfer guarantees that a
modification is processed starting from the latest
state of the corresponding object. The owner
refuses the ownership transfer when the user dis-
ables a write attribute. Otherwise, the requesting
peer receives the current state and the ownership
at the same time.

A transfer runs in three phases. First, the
requester multicasts a message to locate the owner.
Second, the owner replies to the requester with a
point-to-point message including the ownership
and the node’s current state. Third, when receiving
the reply, the granted peer sends a point-to-point
acknowledgement that terminates the transfer.

The ownership transmission must be reliable,
so a local number is associated with the request.
The owner replies with the same number. When
receiving the reply, the requester sends an
acknowledgment, including the same number.
The requester resends a request in absence of a
response. The granting peer resends the reply in
absence of an acknowledgment. This avoids faulty
situations where an object has no owner because
of a transmission error.

Real-time awareness. Because each modifica-
tion (update and deletion) is multicast, a receiv-
ing peer is aware of the distant modification.
Moreover, a receiving peer speeds up the delivery
of a recent update by discarding an older version.
This reduces the workload because the receiving
peer doesn’t process out-of-date updates.

Parallel work. Two distant peers process
simultaneously two different tasks dealing with
two distinct nodes. Two tasks for the same node
are serialized to guarantee the consistency prop-
erty. The peer that currently owns the node
processes the first task. Afterwards, the owning
peer processes the ownership transfer with the
distant peer to carry out the second task. Thus, the
second task starts processing the node after the
first task ends.

Security and address allocation. By using the
session key K, the DBSM symmetrically encrypts
each message. The shared secret K is distributed
securely with S/MIME when the participants sched-
ule the meeting. If another application uses the
same multicast address, the DBSM will automati-
cally detect the situation because the message can’t
be decrypted using the session key K. The peer with
the smallest network address looks for a free address

6

IE
EE

 M
ul

ti
M

ed
ia

The ownership transfer guarantees

that a modification is processed

starting from the latest

state of the corresponding object.

by listening for activity on that address. Afterwards,
the peer transmits the new address to the distant
peers. On receiving the proposed address, each peer
will join the new multicast address. This mecha-
nism lets the system allocate and exchange secure-
ly a new address during the meeting.

Leaving. Departing participants select the
nodes that they want to keep in their isolated
workspace. All the owned nodes are automatical-
ly included in their isolated workspace, but they
can also select other nodes. Thus, departing par-
ticipants define the subset of the shared scene they
include in their isolated workspace. At the end of
the selection, the peer multicasts a leaving message
to inform the distant participants of its departure.
Then, the peer leaves the multicast address.

The leaving message doesn’t require an acknowl-
edgment. An unreliable departure suffices as the peer
already has the selected nodes within the user’s iso-
lated workspace. When it’s leaving, the peer will
normally save the isolated workspace within a local
store. Thus, designers can recover their isolated
workspace at any time. Furthermore, the saved
workspace lets users make improvements without a
network connection. Users can introduce the results
of their offline work in a subsequent meeting.

Collaborative training of industrial
designers

DBSM was originally integrated into a virtual
prototyping tool to support collaborative design
of aeronautical systems. Here, we present a novel
approach where that collaborative virtual proto-
typing environment (the virtual prototyping
application that integrates DBSM) is used to
instruct engineers to build aeronautical systems.
Experimented engineers (instructors) teach novice
engineers to build aeronautical systems in inter-
active design session. The novice engineers learn
at the same time how to use the collaborative vir-
tual prototyping environment and how to build
aeronautical systems. First, we describe how an
instructor gives cooperative lessons. Second, we
present how learners cooperate to realize a virtu-
al prototype for a design exercise.

Collaborative teaching
The instructor comes to the meeting with a

prepared ventilation system to teach the scaling
of the different pipes. Through the DBSM, each
learner gets a copy of the ventilation system
scene. Afterwards, the instructor starts a chat
object to explain the case study. The application

uses the DBSM to transmit an update for the chat
object. In fact, the instructor can create different
chat objects to distinguish the explanations. A
receiver uses the refresh request to regularly ask
for a list of the chat objects.

The instructor uses the collaborative virtual
prototyping environment to instruct the learners
in using the environment and to give lessons on
aeronautical design. The instructor uses the gener-
ic interface to design a virtual mockup. Because
his work drives the distant interfaces of the learn-
ing group, the distant participants observe the
instructor’s work.

The instructor can use a shared viewpoint to
navigate the students within the scene. Shared
pointers let the instructor designate specific scene
elements. A shared viewpoint is a classical object
whose attributes update the distant viewpoints. A
learner can take control of a shared viewpoint or
pointer. For this purpose, the application draws a
tree of the objects and the user selects the desired
object. Before updating the selected object, the
system transfers ownership so that the requesting
learner has the most current object. Thus, the
requester can see the latest position of the current
owner before getting control.

The application uses the DBSM to catch the
user interactions and transmit them to the distant
peers. The instructor adds some text describing
the interaction. The application automatically
creates a new object including the text, a step
number, and the user interaction. When receiv-
ing the corresponding event, a peer processes it
as a local interaction and creates the object to dis-

7

July–Sep
tem

b
er 2001

We present a novel approach

where that collaborative

virtual prototyping

environment (the virtual

prototyping application that

integrates DBSM) is used to

instruct engineers to build

aeronautical systems.

play the text and step number. A receiver period-
ically uses a refresh request to ask the emitter to
send the list of the tutoring objects. Thus, a faulty
peer can request missing tutoring objects. The
texts appear in order of their step numbers. A
learner can replay locally the interactions
through the step numbers. Therefore, the refresh
service can recover a loss.

Finally, the instructor modifies in real time the
pipes to achieve the required debit and pressure
for the ventilation system. Thus, he shows direct-
ly within the 3D scene how he solves a specific
problem. The instructor uses his expertise to teach
a difficult case and the shared scene mediates the
knowledge transmission.

Our system can use videoconferencing tools

like Microsoft NetMeeting instead of chat objects.
Thus, the participants could communicate with
external tools while sharing the virtual scene.

Mutual learning
The participants also learn from each other by

observing distant interactions and by collaborat-
ing on a task. For example, if an instructor pro-
poses a design exercise for a ventilation
subsystem, learners can collaborate to build the
ventilation subsystem. By observing the distant
modifications, a designer can learn how to do the
requested subsystem.

Moreover, any designer can help another par-
ticipant by directly modifying distant objects. This
guarantees a consistent progression of the work.
The participant requesting ownership will recov-
er the latest state of the corresponding object.
Thus, a participant won’t have to redo the same
work because of conflicting actions. The DSBM
avoids these problems because it serializes the
conflicts.

Figure 2 shows three learners sharing a 3D
scene. Because they’re in the same room, they
don’t need to use a chat facility or a videoconfer-
encing tool. In Figure 3, the instructor advises the
learners using the scene displayed with a video
projector. In a distant configuration, the instruc-
tor uses the chat facility, shared viewpoints,
shared pointers, and annotations to give advice.

Because our solution also supports distributed
tutoring, several instructors can collaborate with
a group of learners in a shared scene.

Homework review
At the end of a lesson, learners typically move

their work to their isolated workspace. That way
they can do homework and improve a subset of
the global shared scene while they’re offline.

At a later meeting, the different learners can
share their homework and merge them into a
global scene. Each learner can also introduce dif-
ferent proposals into the meeting. Thus, the par-
ticipants study different alternatives.

The system processes real-time modification so
learners collaborate to find the best solution.
Typically, a peer uses the refresh service to resyn-
chronize the copies with fresh states. Afterwards,
learners can propose direct improvements to the
solution by creating, deleting, or modifying
objects. The DBSM guarantees that the learners
recover a consistent state for the involved object
before processing their interactions—that is, a
work progression guarantee.

8

IE
EE

 M
ul

ti
M

ed
ia

Figure 2. Mutual learning. Learners collaborate to mutually
design a ventilation subsystem.

Figure 3. Collocated teaching. Collocated teaching lets the
instructor give oral explanations using a video projector.

Implementation issues
The DBSM uses the Adaptive Communication

Environment (ACE),4 so it runs on both Unix and
Windows. DBSM is a C++ library. An object appli-
cation inherits from the DBSM classes.

The DBSM takes 6.75 seconds to merge a
shared scene of 1,500 objects between two partic-
ipants with 750 objects at each side on a Sun
UltraSparc 10. This time includes the transmission
time and the processing time.

The average size of an update message is 150
bytes for simple objects like a cube, sphere, or
cylinder. Thus, the transmission time is 120 µs on
a 10-Mbps network and 35 ms on a 33.6-Kbps
line. The latency between a local interaction and
the update of a distant copy is 16 ms at 10 Mbps
and 100 ms in a wide area network at 33.6 Kbps.

Conclusion
The DBSM enables collaborative training and

mutual learning in a consistent, up-to-date shared
virtual environment.

Currently, we are working on a new and free
implementation to replace DBSM and better sup-
port various applications, such as collaborative
virtual prototyping, distributed games, and dis-
tributed simulation. An important lesson we
learned is that integrating the cooperation services
into an existing application must be easy. The new
solution will use design patterns to improve reuse
and ease integration. Moreover, we are studying
integration of off-the-shelf simulators (such as
hydraulic or electrical simulators). Thus, designers
could collaborate to quickly set up a distributed
simulation within the shared virtual scene. We
started that latter work within the European
Information Society Technology/Advanced Infor-
mation Technology, Virtual Early Prototyping
Open Platform—the IST/AIT-VEPOP project. MM

Acknowledgment
The figure images are courtesy of European

Aeronautic Defense Space Company, Research
Center (EADS_CCR).

References
1. C. Toinard, G. Florin, and C. Carrez, “A Formal

Method to Prove Ordering Properties of Multicast
Systems,” ACM Operating Systems Review, vol. 33,
no. 4, 1999, pp. 75-89,
http://cedric.cnam.fr/~toinard/Recherche.

2. A. Sgambato, Distributed Building Site Metaphor,
enginering thesis, Nat’l Conservatory of Industrial

Arts and Crafts (CNAM), 1999.
3. F. Costantini et al., “An Internet Based Architecture

Satisfying the Distributed Building Site Metaphor,”
Proc. Multimedia Computing Track (IRMA 2000), Idea
Group Publishing, Hershey, Pa., 2000, pp. 151-155,
http://cedric.cnam.fr/AfficheArticle.php?id=250.

4. D.F. Box, D. Schmidt, and T. Suda, “ADAPTIVE: An
Obkect-Oriented Framework for Flexible and
Adaptive Communication Protocols,” Proc. Fourth
Conf. High-Performance Networking, Intl’ Federation
for Information Processing, 1992, pp. 367-382.

Fabien Costantini is a PhD stu-
dent in computer science at the
Center for Study and Research in
Information Technology at the
National Conservatory of Industri-
al Arts and Crafts (CNAM-

CEDRIC), Paris, France. Before that he worked with a
European company manufacturing aeronautical sys-
tems, where he participated in the conception and
development of a large collaborative virtual prototyping
tool using the distributed building site metaphor. His
research focuses on a general distribution framework
that relies on DBSM principles as well as new architec-
tural design patterns for implementing highly reusable
and portable object-oriented software solutions.

Christian Toinard is an associate
professor in computer Sciences at
National Engineering Scholl in
Electronic, Computer Science, and
Radio Communications of Bor-
deaux (ENSEIRB), France. His

research activities are at the CNAM-CEDRIC. He is also
a technical leader in the European Information Society
Technology/Advanced Information Technology, Virtu-
al Early Prototyping Open Platform (IST/AIT-VEPOP)
project funded by the European Commission. He has
published several articles on cooperative virtual proto-
typing of aeronautical systems and object-oriented dis-
tributed systems.

Readers may contact Toinard at the Centre for Study
and Research in Information Technology (CEDRIC), 292
rue Saint-Martin 75141 Paris Cedex 03 France, email
toinard@cnam.fr, http://cedric.cnam.fr/~toinard.

For further information on this or any other computing

topic, please visit our Digital Library at http://computer.

org/publications/dlib.

9

July–Sep
tem

b
er 2001

