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Abstract. The Self Organizing Map (SOM) proposed by Kohonen [7]

is a well known neural model which provides both quantization and clus-

tering of the observation space. In this paper, we adapt the Bernoulli

mixture approach, proposed by [6], to the model of binary topological

map [2] and show that using a probabilistic formalism gives rise to better

quantization process and classi�cation performances.

1 Introduction

The Self Organizing Map (SOM) proposed by Kohonen [7] is a well known neural

model which provides both quantization and clustering of the observation space.

The formalism of the dynamic clustering is a general framework which leads to

the batch version of SOM. In the paper [2], we have presented a new algorithm

(BinBatch) derived from the batch version of SOM which is dedicated to binary

data. A Bernoulli mixture approach already exist which allows to perform cluster

analysis on binary data using the maximum likelihood [6]. In this paper, we adapt

the Bernoulli mixture approach to the model of binary topological map and show

that using a probabilistic formalism gives rise to better quantization process and

classi�cation performances. The probabilistic formalism is adapted in order to

take into account the topological order of the binary map. The probabilistic

model of topological map (BinBatch-Pro) dedicated to binary data is tested on

simulated data, the performances presented in section 5 show the interest of the

present approach which provides homogeneous clusters.

2 General information about a binary data

Very often, a binary vector represents a coding of discrete features which have

a �nite, usually small, number of possible values. Let �d be a binary data space

and A = fz
i
; i = 1; : : : ; Ng a subset of observations, where each observation

z
i
= (z1

i
; z2

i
; :::; zd

i
) is a binary vector of �d. We introduce two di�erent similarity
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index: the Hamming distance H and the index of Tanimoto T . Their values will
provide di�erent ways to compare the binary vectors z1 and z2. The Hamming

distance measures the number of mismatch between z1 and z2:

H(z1; z2) =

dX

j=1

jzj1 � z
j

2j (1)

The Hamming distance allows to compute the central value of any subset of

binary observations, called the median center; the most important characteristic

of the median center is to be a binary vector which has the same interpretation

(same coding) as the observations [10]. The second similarity is the Tanimoto

index:

T (z1; z2) =
a

a+H(z1; z2)
(2)

where a is the number of coincident occurrence of 1 between the two vectors z1
and z2, a =

P
d

j=1 z
j

1z
j

2. The Tanimoto index represents the ratio of coincident

occurrence of one to the number of informative components of z1 and z2. Its

value stands for the compactness of a cluster: a large value indicates a compact

cluster mean while a small value represents a scattered one.

In the following we will use the Hamming distance during the auto organization

process provided by the BinBatch algorithm which is a topological map dedicated

to binary data. The Tanimoto index will be used during the validation phase

in order to appreciate the quality of the resulting quantization. We �rst present

the BinBatch algorithm which is the �rst step of the probabilistic algorithm.

3 BinBatch Quantization

The standard Binbatch algorithm [2] consists of a discrete set C of neurons called

the map. As for traditional topological maps [7], we use a map with a discrete

topology de�ned by an indirect graph; usually it is a regular grid in one or two

dimensions, we denote N
neuron

the number of neurons in C. For each pair of

neurons (c,r) on the map, the distance Æ(c; r) is de�ned as being the shortest

path between c and r on the graph.

In the following, in order to control the neighborhood order, we introduce a

Kernel positive function K ( lim
jxj!1

K(x) = 0) and its associated family K
T

parametrized by T : K
T
(Æ) = [1=T ]K(Æ=T ).

The standard BinBatch algorithm, assigns each neuron c to its referent vector

w
c
in �d. The set of parameters W = fw

c
; c 2 Cg, which fully determine the

BinBatch map, have to be estimated from A. This is done iteratively, minimizing

a cost function:

ET (W) =
X

zi2A

d(z
i
; �T (z

i
)) (3)

Where �T (z
i
) represents a particular neuron of C assigned to z

i
. In the following

we choose for d and �
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d(z; c) =
X

r2C

KT (Æ(r; c))H(z;W
r
) (4)

�T (z) = argmin
c2C

d(z; c) (5)

and we denote P
�
T = fP

c
; c 2 Cg the partition of A associated to the assignment

function �T ; each subset of observations assigned to a neuron c is de�ned as

P
c
= fz

i
; �T (z

i
) = cg.

As for the Batch version of Kohonen algorithm [1], the minimization can be done

using a dynamic cluster algorithm [3, 4] operating in two steps : an assignment

step which assigns each observation z
i
to one cell c using the assignment function

de�ned in (5), followed by an optimization step which computes for each cell c the
weighted median center wT

c
of the subset P

c
. The median center wT

c
or referent

of c is computed weighting each observation z
i
of A by K

T
(Æ(�T (z

i
); c)).

The minimization of E(W) is run by iteratively performing the two steps with

decreasing value of T until stabilization. At the end, wT

c
which share the same

code with the observations can be decoded in the same way, allowing a sym-

bolic interpretation of the topological map. The nature of the topological model

reached at the end of the algorithm, the quality of the clustering (or quantiza-

tion) and those of the topological order induced by the graph greatly depend

on the �rst value of T (Tmax), its �nal value (Tmin) and the number of times

(N
iter

) where the BinBatch algorithm is run.

4 Binary clustering and Bernoulli mixtures of

probabilities

4.1 Probabilistic Dynamic cluster

In this �rst approach, we no more consider the topological order. We assign to

each neuron c a probability function f
c
which admits as mean vector the referent

value w
c
. We will assume that each component of z is an independent Bernoulli

distribution with the same parameter "
c
, so:

f
c
(z;w

c
; "

c
) =
Y

j=1::d

"
jzj�wj

cj
c

(1� "
c
)1�jz

j�wj
cj (6)

And we assume that the data are generated by a mixture of such distributions:

f(z;W ; �) =
X

c2C

p
c
f
c
(z;w

c
; "

c
) (7)

where
P

c2C p
c
= 1 and � = f"

c
; c 2 Cg.

This modelization of Bernoulli distributions has been introduced by Govaert and

Celleux in [6], where di�erent variation of their formalism have been proposed.

As in ([6],[8]), we will maximize the classi�cation likehood criterion (CML) which
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assumes that the data set A is partitioned in N
neuron

clusters and that every

data z
i
2 P

c
is generated by the probability function f

c
.

The logarithm of the associated CML criterion can be written:

C(P ;W ; �) =
X

c2C

X

zi2Pc

ln["H(zi;wc)
c

(1� "
c
)d�H(zi;wc)] (8)

Hence

C(P ;W ; �) =
X

c2C

X

zi2Pc

[ln(
"
c

1� "
c

)H(z
i
; w

c
) + d ln(1� "

c
)] (9)

The relation (9) shows that maximizing C(P ;W ; �) with respect to � and W can

be performed separately. Determining the parameters of the models:W ; � and �
require to minimize �C(P ;W ; �) with respect to W , � and the partition P .

�C(P ;W ; �) =
X

c2C

X

zi2Pc

[ln(
1� "

c

"
c

)H(z
i
; w

c
)� d ln(1� "

c
)] (10)

In this context we can use also the dynamical clustering formalism [3]. The two

steps for the (t+1)th iteration is:

{ The assignment step. Assume that the referents vectors Wt and "t have
been computed at the tth iteration and are �xed. The relation (10) shows

that the optimal assignment function �t+1 is de�ned by:

�t+1(z
i
) = argmin

c2C
[(ln(

1� "t
c

"t
c

)H(z
i
; wt

c
)� d ln(1� "t

c
))] (11)

In this case, the new partition P t+1 is de�ned by :

P t+1
c

= fz
i
=�t+1(z

i
) = cg (12)

{ The minimization step. Assume that the assignment function �t+1 de-

�ned at the preceding step is �xed. The minimization of (10) with respect

to the parameters W and � gives :

w
t+1
c

the median center of P t+1
c

"t+1
c

=

P
zi2P

t+1
c

H(z
i
; wt+1

c
)

n
c
d

(13)

where n
c
is the number of observation z

i
assigned to neuron c.

If we initialize the procedure with the parameters (W0; "0 and �0) provided by

BinBatch and run the two steps iteratively until convergence; the algorithm gives

a new partition and a new set of parameters. At the end of learning phase the

BinBatch map has a probabilistic interpretation, each neuron being a Bernoulli

distribution.



Probabilistic Topological Map and Binary data 5

4.2 BinBatch-Pro Algorithm

In this section we introduce the BinBatch-Pro algorithm which provides the

probabilistic topological map. BinBatch-Pro adapts the preceding algorithm

(section 4.1) in order to take into account the topological order given by the

BinBatch map. This adaptation will concern mainly the assignment function

(11) which will be replaced by:

�t+1(z
i
) = arg min

c2V�t(zi)
(ln(

1� "t
c

"t
c

)H(z
i
; wt

c
)� d ln(1� "t

c
)) (14)

Where V
c
= fr; Æ(c; r) � 1g.

The minimization step remains the same as described in section 4.1. But an

observation z
i
which belongs to neuron c at the begining of the BinBatch-Pro

adaptation, can only be assigned with BinBatch-Pro to a neuron in the vicinity

V
c
of c. This modi�cation allows the algorithm to keep the topological order of

the map. So BinBatch-Pro algorithm is run taking as initial parametersW0, �0,
�0 provided by BinBatch. The new set of referent vectors given by BinBatch-Pro

presents an order similar to the BinBatch one.

In the following, we validate the quality of a quantization by computing the

mean Tanimoto index of each subset P
c
.

T
Pc

=

P
xixj2Pc;xi 6=xj

T (z
i
; z

j
)

1
2
n
c
(n

c
� 1)

(15)

If the value of T
Pc

is close to 1, the observation of P
c
are very similar, they

are the same if T
Pc

= 1 exactly. The map provided by BinBatch algorithm and

BinBatch-Pro, can be used in classi�cation task. This can be done by using the

majority vote rule and labelling each neuron c of the map. At the end of the

labelling process the set of neurons C
i
which have the same label l

i
corresponds to

di�erent density functions which approximate the probability density function

of class l
i
. A new pattern z can be classi�ed by computing the a posteriori

probability of each class l
i
:

p(l
i
=z) =

P
c2Ci

n
c
f
c
(z;w

c
; "

c
)

P
c2C n

c
f
c
(z;w

c
; "

c
)

(16)

Using these probabilities allows to perform Bayes classi�cation.

5 Experiments

In the following, we illustrate the behavior of BinBatch-Pro on two di�erent

examples. The �rst one is a toy problem where the observations have been gen-

erated according to a three component Bernoulli mixture with equal proportion,

(p
c
= 1

3
); this experiment shows the ability of BinBatch-Pro to increase the

classi�cation performances. The second experiment, taken from the literature

allows to compare di�erent algorithms and to show the quality of the clustering

according to the Tanimoto index.
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5.1 Simulated data

The learning data set is a sample of 1500 observations described by 12 binary

variables drawn from a three-component Bernoulli mixture with equal propor-

tion. The sample is drawn according to (7)

f(z) =

3X

i=1

1

3
f
i
(z;w

i
; "

i
)

with the wj

i
and "

i
given in table 1. So we simulated a classi�cation task, each

class made of 500 observations for the learning data set ; we simulated a test set

of 300 observations according to the same distributions as the learning set (100

for each class).

var component 1 2 3 4 5 6 7 8 9 10 11 12 �

1 0 0 0 0 1 1 1 1 1 1 1 1 0.4

2 0 0 0 0 1 1 1 1 0 0 0 0 0.3

3 1 1 1 1 0 0 0 0 1 1 1 1 0.2

Table 1. The parameters wj

i
of the samples

We train a 8�8 BinBatch map using the learning data set and apply BinBatch-

Pro at the end of the learning phase. We summarize the behavior of the two

algorithms using the number of misclassi�ed observations. Table (2) presents

the misclassi�cation error rate computed on the test set for the two methods,

BinBatch and BinBatch-Pro, using formula (16). We compute also the misclas-

si�cation rate of the Bayes classi�er which is equal to 26:33% on the test set.

in this case. Beside the increase in performances, BinBatch-Pro provides esti-

mations of the posteriori probabilities which can be used later on when dealing

with real application.

method misclassi�cation rate

BinBatch 30.67

BinBach-pro 29.00

Table 2. Misclassi�cation error rate

5.2 The pool experiment

The second example is taken from [5, 9]. In this example, each observation z
i

represents the answer of an individual to a pool. The pool uses 4 latent vari-

ables, each one made of 3 manifest variables. So one observation z consists of a
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12 binary vector which represents a given individual. A latent variable describes,

for example, the general interest in cultural activities during holidays; it is rep-

resented by 3 manifest variables representing the interest in museum, theater or

opera. The total data set is made of 6 classes of individuals sharing the same

interests, each one made of 1000 observations. For our experiment, we use as

training set A, 5000 individuals (or observations) taken at random. The test

set is made using the 1000 remaining observations. We train a two dimensional

10 � 10 map using the Binbatch algorithm. We denote C1 the BinBatch map

obtained at the end of the learning phase. Then BinBatch-Pro was applied to C1

giving rise to a second map C2. Figure 1 shows the two maps C1 and C2, each

neuron being labeled using the learning data set and using the majority vote.

For the two algorithms, the topological order allows a good visualization of the 6

(C1) (C2)

Fig. 1. (C1)Learning done with BinBatch algorithm. (C2)Learning done with

BinBatch-Pro. Each cell of the grid is a neuron of the map. The number presented

in each neuron gives the label of the neuron provided by the majority vote rule

di�erent classes, but clearly BinBatch-Pro allows to obtain a better clustering; in

C1 20 neurons are empty and only 2 in C2. We compute the mean Tanimoto in-

dex for each partition provided by BinBatch and BinBatch-Pro. Figure 2 shows

the comparisons cluster by cluster; it can be seen that most of the time the

mean Tanimoto index is greater for the neurons of C2 indicating more compact

clusters. Finally we compute the classi�cation performances, for BinBatch, we

�nd a misclassi�cation error rate of 18:32% and for BinBatch-Pro 18%. This is

an accordance with the performances reached in the benchmark proposed by [5],

where error rate of 18% reached by the di�erent algorithm (Hard Competetive

Learning, Neural Gas, SOM), the traditional k-means algorithm giving a 36%

error rate. In this case, the major advantage of BinBatch and BinBatch-Pro is

to provide a very precise quantization. The data space is divided in 92 clusters

allowing a symbolic interpretation of the referents, while each algorithm of the

comparison only deals with 6 clusters.
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Fig. 2. Mean tanimoto of each neuron on the two grids. The circle point presents the

variation of the index on BinBatch-Pro map. The sign `+` presents the value of the

index given by Binbatch map.

6 conclusion

In this paper we show that a probabilistic formalism adapted to binary topolog-

ical map allows to provide accurate quantization and classi�cation. The topo-

logical order of the map giving useful insight of the existing topological relation

ship between the clusters. The introduction of the probabilities on the topolog-

ical maps improve the quality of the representativity of the map.
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