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Abstract

Neural Networks are relevant statistical methods to extract information from data

when physical phenomena are very complicated and cannot be described in terms

of theoretical analysis. Scatterometers are active microwave radar which accurately

measure the power of the backscatter signal versus incident signal in order to calcu-

late the normalized radar cross section (�0) of the ocean surface. We use Multilayer

Perceptrons in order to determine the Geophysical Model Function and to estimate

the variability of the signal of ERS-1, ERS-2 and NSCAT scatterometers.

1 INTRODUCTION

NSCAT is a dual swath, Ku-band, scatterometer which was designed by NASA

and constructed under its supervision. The goal was to determine the wind

vector over the ocean at global scale with an optimum space and time cover-

age. NSCAT uses 6 antennas, three for each swath which gave a very large and

unique data set that allows us to determine the wind vector at the global scale.

The two mid antennas operate in a dual polarized mode (vertical and hori-

zontal mode) while the four others operate in a vertical polarized mode only.

Most of the algorithms which have been proposed to compute the wind from

scatterometer measurements are based on the inversion of the Geophysical

Model Function (GMF). The GMF is the transfert function of the scatterom-

eter, it gives the scatterometer signal (�0) as a function of the wind vector

and the incidence angle (which is the angle between the radar beam and the

vertical at the illuminated cell). The determination of an accurate GMF and
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of the error bars are then of a fundamental interest, this is done in the present

paper by using Multilayer Perceptrons. This paper is articulated as follows. In

section 2 we brie�y introduce the geophysical problem and the data we use.

Section 3 presents the NSCAT GMF and section 4 introduces the error bar

estimation using Multilayer Perceptrons (MLPs).

2 THE GEOPHYSICAL PROBLEM

Scatterometers are activemicrowave radar which accurately measure the power

of the backscatter signal versus incident signal in order to calculate the nor-

malized radar cross section (�0) of the ocean surface. At �rst order the �0
depends on the sea roughness which is related to the wind speed v, the inci-

dence angle � (which is the angle between the radar beam and the vertical at

the illuminated cell) and the azimuth angle � (which is the horizontal angle

between the wind and the antenna beam of the radar). The empirical approach

widely used is to reproduce the statistical distribution of �0 measured by the

scatterometer from the distribution of wind vectors. The methodology is based

on collocations between NSCAT �0 and wind measurements. The accuracy of

the GMF is then related to the number of such collocations and the quality

of the collocated data set. Since the GMF is depending on many parameters

such as the incidence angle, the wind speed and the wind azimuth, an accu-

rate GMF estimation requires a large amount of data. Usually one uses winds

obtained from numerical weather prediction models (NWP). Neural network

(NN) GMFs have been derived for decoding the signals of ERS-1 and ERS-2

satellite which are European C-band scatterometers. Their performances have

been compared with the usual GMFs used by the European Spatial Agency

(ESA) [Sto�elen, A. and Anderson D. 97] and IFREMER, demonstrating the

power of the approach [Mejia et al. 98]. As there are two di�erent polariza-

tions, two separate GMFs have been proposed: the NN-GMF-V and NN-GMF-

H for NSCAT, the results are detailed in [Mejia et al. 98]. In the following we

present the results for the vertical polarization. Both functions give similar re-

sults. The above models are made under the assumption that each observation

�
0i contains noise ei such that:

�0i = �true

0i
+ ei (1)

where �true

0i
is the expected value of the signal with respect to the wind vector

and ei is a noise whose variance depends on the wind vector and the incidence

angle. This noise takes into account the global variability which includes the

geophysical and the instrumental noise. If we use linear measurements, we can

assume that ei is Gaussian noise with zero mean. If we denote V ar (ei j ~vi; �i)
the variance of ei, where ~vi is the wind vector, the problem is to estimate both
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�true

0i
and the variance of the noise.

3 THE NSCAT GEOPHYSICAL TRANSFER FUNCTIONS

Under Gaussian assumptions on the output distribution, MLPs can estimate

empirical transfer functions by minimizing the log-likelihood cost function. In

order to limit the strong nonlinearity due to the large dynamical range of the

�0 values, we decided to code them in dB (logarithmic scale), which forbids the

use of the Gaussian assumption. For these reasons we estimate �true

0i
by using

the classical quadratic error cost function. The quadratic error cost function

computes the mean of the measured �0 given the wind vector and the incidence

angle, the accuracy of the estimation depends on the size and the distribution

of the learning data set. The overall data set used consists of 10 millions of

collocations representing the four �0 and their related incidence angle. From

this data set we randomly extracted 265000 collocated data where we tried to

equally represent all speeds and directions at each incidence angle in order to

get a statistically representative data set without bias. As the scatterometer

response is a continuous function with respect to �, � and v, the computed

NN-GMF can be modeled by a MLP [Bishop 95] with two hidden layers whose

inputs are the above variables and its single output is a linear neuron giving

the estimation of the required �0 measurement. In order to test the accuracy of

the NN-GMF we apply statistical tests. For each incidence angle, the ECMWF

wind vectors collocated with the observed �0 are partitioned in 37� 7 bins of

azimuth angle of 10o and wind speed of 3ms�1 each. The wind speed ranges

between 3 and 24ms�1. We obtain for each bin a sample of linear observed �0.

According to (1) this sample is normally distributed. For each bin we compute

the �0 corresponding to the wind vector at the center of the bin by using the

NN-GMF. Let us denote by s this value with linear scale. We perform on each

bin a Student's t-test and verify the hypothesis that s represents an estimate

of the mean sample with a probability of 95%. The t-test shows that this

hypothesis is rejected in a very limited number of bins. Owing to the results,

we can conclude that the NN-GMFs estimate the mean value of the �0 with a

probability of 95% in most cases.

4 DETERMINATION OF THE SIGNAL ERROR BARS

In section 3 we show that, for a given wind vector and incidence angle, NN-

GMF gives a good estimation of the mean of the observed �0. The problem

is now to estimate the variance of the observation. As this variance depends

on the wind vector, the incidence angle and the �0 itself we use the NN-GMF
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network to estimate the �
0
before the computation of the variance.We use now

the likelihood formalism and estimate the required variance by using a second

independent neural network (NN-VAR) (denoted V ar (ei j ~vi; �i) hereafter) We

minimize the log-likelihood cost function

L =
1

2

X
i

(
(�true

0i
� �0i)

2

V ar (ei j ~vi; �i)
+ ln (V ar (ei j ~vi; �i) :2�)

)
(2)

As seen in the preceding paragraph �true

0i
�NN-GMF(~vi; �i) and we replace

�true

0i
by the output of the NN-GMF in formula (2). In this case, the minimiza-

tion of equation (2) is taken with respect to V ar(ei j ~vi; �i;NN-GMF(~vi; �i))

and NN-GMF(~v; �) is kept �xed. NN-VAR is an MLP with 2 hidden layers,

it uses the same inputs as NN-GMF and because the variance of the noise

depends on the magnitude of the �
0
, we add an extra input which uses NN-

GMF (~v; �) . Figure 1 shows the NN-GMF (white curve) with respect to the

azimuth angle at two di�erent wind speeds against the data for the incidence

angle of 36o. In the same �gure we plot the interval which represents two com-

puted NN-VAR standard deviation. Clearly the computed interval spreads the

variability of the �0 signal. Figure 2 gives for one incidence angle the ratio be-

tween the computed NN-VAR standard deviation and the empirical standard

deviation with respect to wind speed and azimuth angle, the value of this ratio

indicates that the variance is well approximated.
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Fig. 1. NN-GMF (white curve) with respect to the azimuth angle at two di�erent

wind speeds against the data for the incidence angle of 36o

The choice of two independent NN, to estimate the mean and the variance

of the input noise, is motivated by the fact that the noise � depends on the

measure �0 itself. We have tried to estimate the �true

0
and the variance of the

noise by a unique NN with inputs (~v; �) and two outputs cells. The two NN

presented before give better results then the unique one.
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Fig. 2. Ratio between the computed NN-VAR standard deviation and the empirical

standard deviation with respect to wind speed and azimuth angle for the incidence

angle of 39:8o

5 CONCLUSION

Neural Networks are relevant statistical methods for extracting information

from data when physical phenomena are very complicated and cannot be

described in terms of theoretical analysis. NNs provide empirical statistical

models estimated from observations in the form of continuous functions. This

paper shows the ability of MLP to model transfer function using the maximum

likelihood formalism which allows us to estimate error bars.
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