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Abstract. In the present paper we describe a complete methodology to cluster

and classify data using Probabilistic Self-Organizing Map (PRSOM). The PRSOM

map gives an accurate estimation of the density probabity function of the data,
an adapted hierarchical clustering allows to take into account an extra knowledge

given by an expert. We present two actual applications of the method taken in the

domain of geophysics.

1 Introduction

The Self-OrganizingMap (SOM) as introduced byKohonen (Kohonen (1984)),

has been widely used for visualizing and clustering high-dimensional patterns.

In that aspect, SOM is close to non linear projection methods such as Multi-

Dimensional Scaling (MDS). Combined with cluster analysis as proposed in

Bock (1997), MDS allows to obtain an optimal �t between a classi�cation and

its representation in a low-dimensional euclidian space. Visualization, as pro-

posed in SOM methods uses a deformable discrete lattice to translate data

similarities into spatial relationships. A large variety of related algorithms

have been derived from the �rst SOM model (Oja and Kaski (1999)) which

di�er from one another but share the same idea to introduce a topological

order between the di�erent clusters. In the following we introduce a SOM

algorithm, the Probabilistic Self Organizing Map (PRSOM) (Anouar et al.

(1997)) which uses a probabilistic formalism. This algorithm approximates

the density distribution of the data with a mixture of normal distribution. At

the end of the learning phase, the probability density of the data estimated

by the PRSOM map can be widely used to provide an accurate classi�er.

The �rst section of the paper is devoted to the PRSOM model, the second

and the third sections show how to transform the probabilistic map using

extra knowledge in order to obtain an accurate classi�er. The e�ciency of

the approach is illustrated in two actual geophysical problems (the lithologic
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facies reconstruction and the classi�cation of Top Of the Atmosphere (TOA)

spectra of satellite ocean color measurements).

2 Probabilistic Self-Organizing Map (PRSOM)

As the standard Self Organizing Map (SOM) (Kohonen (1984)), PRSOM

consists of a discrete set (C) of formal neurons. Its map has a discrete topol-

ogy de�ned by an undirect graph; usually it is a regular grid in one or two

dimensions. For each pair of neurons (c,r) on the map, the distance �(c; r) is
de�ned as being the shortest path between c and r on the graph. For each

neuron c, this discrete distance allows to de�ne a neighborhood of order d:

V
c
(d) = fr 2 C=�(c; r) � dg. In the following, we introduce a Kernel positive

function K ( lim
jxj!1

K(x) = 0) and its associated family K
T
parametrized by

T :

K
T
(d) = [1=T ]K(d=T ) (1)

The parameter T allows to control the neighborhood size.

Let D be the data space (D � Rn) and A = fz
i
; i = 1; : : : ; Ng the

training data set (A � D). As the standard SOM algorithm, PRSOM de�nes

a mapping from (C) to D where a neuron c is associated to its referent vector

W
c
in D. At the end of the learning algorithm two neighbour neurons on the

map have close referent vectors in the euclidian space (Rn).

In contrast to SOM, PRSOM is a probabilistic model which associates to

each neuron c a spherical Gaussian density function f
c
. This density func-

tion is de�ned by its mean (referent vector) which is a n-dimensional vector,

W
c
= (w1

c
; w

2
c
; : : : ; w

n

c
) and its covariance matrix which is the diagonal ma-

trix de�ned by�
c
= �

2
c
I. We denote byW = fW

c
; c 2 Cg and � = f�

c
; c 2 Cg

the two sets of parameters de�ning the PRSOM model.

PRSOM allows us to approximate the density distribution of the data

using a mixture of normal densities. In this probabilistic formalism, the clas-

sical map C is duplicated into two similar maps C1 and C2 provided with the

same topology as C. It is assumed that the model is a folded Markov chain

(Luttrel (1994)), so for every input data z 2 D and every pair of neurons

(c1; c2) 2 C1 � C2 :

p(c2=z; c1) = p(c2=c1) and p(z=c1; c2) = p(z=c1) (2)

It is thus possible to compute the probability of any pattern z

p(z) =
X

c2

p(c2)pc2(z); where (3)

p
c2
(z) = p(z=c2) =

X

c1

p(c1=c2)p(z=c1) (4)
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The probability density p
c2
(z) is completely de�ned from the network, giving

the conditional probability p(c1=c2) on the map and the conditional prob-

ability p(z=c1) on the data. As we mentioned before, p(z=c1) is a normal

distribution: p(z=c1) = f
c1
(z;W

c1
; �

c1
). If we assume that:

p(c1=c2) = [1=T
c2
]K

T
(�(c1; c2)); where T

c2
=
X

r

K
T
(�(c2; r)); (5)

The a posteriori density (??) can be expressed with respect to the normal

distributions of the neurons:

p
c2
(z) = [1=T

c2
]
X

r2C1

K(�(c2; r))fr(z;Wr
; �

r
) (6)

Equation (??) shows that the data density p(z) is a mixture of local mix-

tures of normal densities f
c1
(z;W

c1
; �

c1
) whose mean vector and standard

deviation are the parameters of the PRSOM model and have to be estimated

from the learning data set A using the learning algorithm of PRSOM. The

learning algorithm of PRSOM maximizes the likelihood of the learning set

A. It is a dynamic cluster method (Diday and Simon (1976)) operating in

two steps which are run iteratively until convergence :

� The assignment step assigns each observation z to one cell c2 using the

assignment function � (relation ??). This step gives rise to a partition of

the data space D, each observation z
i
being assigned to the most likely

cell according to the density p
c2

:

�(z) = argmax
c2

p
c2
(z) (7)

� The minimization step assumes that the observations of the learning

set A are independent and maximizes the conditional likelihood of the

training data set A with respect to the parameters (W, �) and under the

hypothesis that each z
i
is generated by the p

�(zi) distribution.

p(z1; z2; : : : ; zN=W; �; �) =
NY

i=1

p
�(zi)(zi) (8)

The minimization step minimizes the conditional log-likelihood function

E(W; �=�) according to W; � and �

E(W; �=�) =
NX

i=1

�Ln[
X

r2C

K(�(�(z
i
); r))f

r
(z

i
;W

r
; �

r
)] (9)

The parametersW and � are updated by setting the derivatives ofE(Wk

; �
k

=�
k)

to zero (�k,Wk and �
k denote the parameters at iteration k). To solve this

equation we use, as in Duda (1973), an iterative approximation which as-

sumes that, for the kth iteration, the initial estimates of the parameters are
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su�ciently close to the true values. This leads to the following formulas:

W
k

r
=

NX

i=1

z
i
K(�(r; �k�1(z

i
))
f
r
(z

i
;W

k�1
r

; �
k�1
r

)

P
�
k�1(zi)(zi)

NX

i=1

K(�(r; �k�1(z
i
))
f
r
(z

i
;W

k�1
r

; �
k�1
r

)

P
�
k�1(zi)(zi)

(10)

(�k
r
)2 =

NX

i=1

kW k�1
r

� z
i
k2K(�(r; �k�1(z

i
))
f
r
(z

i
;W

k�1
r

; �
k�1
r

)

P
�
k�1(zi)(zi)

n

NX

i=1

K(�(r; �k�1(z
i
))
f
r
(z

i
;W

k�1
r

; �
k�1
r

)

P
�
k�1(zi)(zi)

(11)

PRSOM learning algorithm

Initialization phase: k=0 the initial parameters W0 are set using the

SOM algorithm. �0 is de�ned according to equation (??) and �0 is com-

puted according to (??). The maximum number of iterations (N
iter

) is

chosen.

Iterative step k Wk�1 and �k�1 are known

� Minimization step : update of the new parameters Wk and �
k ac-

cording to Eq.?? and ??.

� Assignment step : Update of the new assignment function �k associ-

ated to Wk and �
k according to Eq. ??

Repeat the iteration step until k > N
iter

.

As in the Kohonen algorithm, PRSOM makes use of a neighborhood sytem

of which the size, controlled by T, decreases as learning proceeds. At the end

of the learning phase, the map provides the topological order; the partition

associated with the map is de�ned by the latest assignment function �
Niter

as de�ned in (??) and is based on probability considerations. Therefore the

partitions provided by PRSOM are di�erent from those provided by SOM

which use euclidian distance. The estimation of the density function gives an

extra information which will be of interest later for classi�cation purpose. At

the end of the learning phase, D is divided in M subsets : each neuron c of

the map represents a particular subset P
c
=
�
z=�

Niter(z) = c
	
.
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3 PRSOM-Classi�er

The map provided by PRSOM (as the one provided by SOM) can be used

in classi�cation tasks, combining supervised and unsupervised learning. This

can be done by labelling each neuron c of the map using labels. If the data

are distributed in S classes, denoted by L = fl
i
; i = 1; : : : ; Sg, each pattern

z is assigned to a neuron c = �(z) of the map and takes the label l
c
of the

neuron c. So the labelled map can be used as a �hard� classi�er. The problem

is thus to distribute the labels amoung the neurons of the map according

to some expert knowledge or to some contiguity characteristics which have

to be de�ned. If there are a large amount of labelled data, they allow us to

determine a consistent classi�er. Each neuron of the map C being labelled

using the majority vote rule. If we have a limited number of labelled patterns,

the majority vote does not provide a label to each neuron and does not ensure

a valid labelling. The problem is thus to propagate the valid labels in order

to obtain a coherent labelled map and a consistent classi�er.

At the end of the labelling process the set of neurons C
i
which have the

same label l
i
correspond to di�erent density functions which approximate the

probability density function of classe l
i
.

As PRSOM is a probabilistic model, a new pattern z can be classi�ed

with PRSOM computing the a posteriori probality of each class l
i
:

p(l
i
=z) =

X

c22Ci

n
c2
p
c2
(z)

X

c22C

n
c2
p
c2
(z)

(12)

where n
c2
represents the number of patterns in the subset P

c2
. In this formula

we estimate p(c2) (equation ??) by
nc2

N

.

The knowledge of the S a-posteriori probabilities allows us to de�ne a

�soft� classi�er: for a given pattern z, it is possible to propose di�erent classes

with their related probabilities. These a-posteriori probabilities vary with the

labelling of the map, their consistency depending on the accuracy of that

map, it is related not only to the amount of expert knowledge but also to

the ordering of the topological map. Some methodology has to be de�ned

in order to improve this �rst classi�er when a small amount of knowledge is

available. In the following section we present the approach we use for the two

applications, presented in section (??).

4 HC-PRSOM : Hierarchical Clustering of PRSOM

To propagate the labels of the PRSOM map when necessary, two cases have

to be considered according to the number of neurons labelled at the precedent

stage (see section ??):
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� If this number is zero, which means that we don't have any expert knowl-

edge, a clustering of the neurons allows to propose classes which can be

labelled by an expert according to external criteria.

� When the number is less than M , an adapted clustering allows to spread

the knowledge of the labelled neurons on the remaining ones.

At this point, we choose the widely used hierarchical clustering (HC), to

cluster the neurons of the map (see Murtagh in (Thiria et al. (1997))). HC

algorithm can be summarized as follows :

1. Assign each pattern to a unique cluster.

2. Find the two closest clusters according to some dissimilarity and agglom-

erate them to form a new cluster

3. Return to step (2) until all patterns fall into one cluster.

Various algorithms can be constructed depending on the dissimilarityused

in step (2). As shown in equation (??), the partition provided by PRSOM is

computed according to the di�erent variances of the di�erent subsets. So the

use of the Ward index which minimizes the decrease of inter class variance,

takes advantage of the qualities of the partition provided by PRSOM : HC

used on PRSOM (HC-PRSOM) with the Ward index provides clusters which

take into account an accurate estimate of the variances.

If we are in the �rst case where there is no labelled data, HC-PRSOM

provides a classi�cation whose labels have to be chosen by an expert. This

can be done afterwards by a careful examination of the S subclasses of the

partition.

If the knowledge is scarce (few neurons have been labelled), HC can be

adapted in order to propagate the label of the neurons. In that case, the three

steps of HC are modi�ed as follows, giving rise to an extended HC-PRSOM

("HC-PRSOM) classi�cation :

1. Assign each neuron to a unique cluster.

2. Find the two closest clusters according to the Ward index.
� If they have the same label, they give rise to a cluster with the same

label.

� If just one cluster has a label, the agglomerate cluster and all its

neurons take this label.

� If none of the two clusters are labelled, no label is added.

� If the two clusters have distinct labels, each one keeps its own label,

the clustering does not behave and the algorithm looks for the next

two closest clusters.
3. Return to step (2) until all the neurons have received a label.

At the end of "HC-PRSOM, a partition of S sets of neurons representing the

S di�erent classes is provided.

In the next section, in order to illustrate PRSOM behaviour, we present

two real applications taken in the �eld of geophysics.
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(a) (b)

Fig. 1. This �gure shows the Sammon projection, in a two dimensional space, of
the referent vectors with the topological order induced by the map. (a) Shows

the partially labelled map after introducing the expert knowledge, (b) shows the

labelled map after propagating the expert knowledge.

5 Application

5.1 Lithologic facies reconstruction

In order to investigate the subsoilís composition, the geologists take down

sensors for measuring physical properties of the rocks into drilling hole. We

call logs, the result of these measures (for more details on loggin tools, see

(Rabaute (1999)). In the present application, we consider �ve logs (RHOB,

GR, PEF, NPHI, and DT) taken from two di�erent holes : A1 and A2,
drilled in the sea �oor; RHOB is the rock density, Gr measures the natural

radioactivity, PEF is the photoelectric log, NPHI is the neutron porosity and

DT is an acoustic measure. So each data z used for the classi�cation task is

a �ve-dimensional vector made of the �ve measures taken from one point in

the drilling hole.

In the following, we use of the full set of 1717 measurements we have in

order to train the di�erent algorithms : card(A)=1717. The set A has been

used to train a 7� 13 = 91 neuron map using �rst SOM, then PRSOM. The

�rst map provided by SOM is improved by PRSOM, which enables us to

estimate the mixture of normal densities . At this point of the method, D is

partitioned into 91 classes which correspond to the 7� 13 neurons.

Geologists chose to drill this part of the sea-�oor, because they have a

good knowledge about the nature of the subsoil in this place, and they suspect

they may �nd some oil�elds. They want to put together the logís observations

into the 12 geologic classes existing in the drilling holes A1 and A2. Moreover,

some cores have been extracted in several parts of the holes, so the geologists

certainly know which kind of rocks exists for some given depth. We introduce

this expert knowledge into the topologic map, thanks to the majority vote.

We obtain a map which is partially labelled as shown on �gure ??(a). Then

we cluster the 91 neurons into 12 classes, by using the new "HC-PRSOM

classi�cation propagating the labels all over the map. At this stage, we have
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(a) (b)

Fig. 2. This �gure shows the reconstructed lithologic facies obtained for the drilling

hole A2 at each depth of the hole, each geologic class is represented by a dedicated

grey level. (a) Represents when using as label the one �hard classi�cation� provided
by the assignement functio �. (b) Represents the a-posteriori probabilities computed

using formula ?? (�soft� classi�cation), each depth is represented using two or three

di�erent labels according to the a-posteriori probability. In this case the x-axis
represents the probability, facies with probability less than 0.15 are not represented.

a wholly labelled map, shown on �gure ??(b). We can see in �gure ??(b) that

the topology of the map re�ects the similarity between the di�erent geological

classes. The coal, class number 1, is very di�erent from the other rocks. It

stands at one extremity of the map. The top of the map is taken up by the

classes 10, 11 and 12 which are all coarse and medium-grained sandstones.

The classes 2, 3 and 4 are di�erent shales, which are all to be found in the

bottom right-hand corner. In the middle of the map, we �nd the paleosols,

class number 5. The paleosols consist of shales which have been enriched

with a diversity of components, so they are proximate to every other class.

The micaceaous sandstones are separated into two groups, one part near

the coarse grained sandstone, and one part near the micaceous silts, class

number 6. Micaceous sandstones can be slipped into two di�erent classes.

The geologist has pointed out that micaceous silts (class number 6) and very

�ne grained sand (class number 8) can very close properties : they are next
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to each other on the map. Reporting the class number of each neuron to the

observations which are associated to this neuron allows us to decompose a

lithologic facies in 12 classes. Figure ??(a) shows the facies obtained from the

drilling hole A2.

Thanks to the PRSOM algorithm, each neuron has a normal density func-

tion, so we can introduce probability criterium in the classi�cation (formula

??). These a-posteriori probabilities are computed using the map labelled

using "HC-PRSOM. It is worth noticing that the di�erent classes are very

dependent on the majority vote. We thus have determined the probability

that an observation belongs to each of the 12 classes. Plotting the probabili-
ties and the classi�cation re�ects the reality of the drilling holes better. The

�gure ??(b) shows the selection of the classe of best probability for each ob-

servation, in the well A2. For each point of the holl, we only draw the classes

for which the rocks belongs to with a probability above 15%. That is why we

do not cover the 100% of probability all along the well.

5.2 Satellite ocean color classi�cation

Satellite ocean color sensors which are now operational or under prepara-

tion, measure ocean re�ectance, allowing us to a quantitative assessment of

geophysical parameters (e.g., chlorophyll concentration).

The major problem for ocean color remote sensing processing is that in-

teractions of the solar light with aerosols in the atmosphere and water con-

stituents are responsible for the observed spectrum of Top Of the Atmosphere

(TOA) re�ectances for a cloud-free pixel. The critical issue is thus to remove

the aerosol contribution to the measured signals in order to retrieve the ac-

tual spectrum of marine re�ectance which is directly related to the water

constituent content. Ocean color is determined by the interactions of the so-

lar light with substances or particles present in the water, and provides useful

indications on the composition of water.

In case of cloud or earth pixels, there is no information on ocean color,

so the �rst step is to remove them. In the following we used PRSOM and

HC-PRSOM in order to clean the set of TOA re�ectances.

Data We used SeaWiFS data product. The SeaWiFS1 on board the SeaStar

satellite is a color-sensitive optical sensor used to observe color variations in

of the ocean. It contains 8 spectral bands in the visible and near-infrared

wavelengths 2. SeaWiFS ocean color data is available in several di�erent

types. We used level 1 GAC data : it consists of raw radiances measured at

the top of the atmosphere.

1 SeaWiFS Project Home Page http://seawifs.gsfc.nasa.gov/SEAWIFS.html
2 412nm, 443nm, 490nm, 510nm, 555nm, 670nm, 765nm and 865nm
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We applied PRSOM algorithm to the image shown in �gure ??(a). It

represents the Baltic sea, which is rich in turbid case-2 water, and the West

Mediterranean sea. The image (194680 pixels) was taken on February 1998.

Experimental results In the �rst step we are interested in separating wa-

ter pixels from land and clouds pixels, and in the second step to separate

di�erent area of water on a selected number of classes, each class being rep-

resented by its mean apparent optical properties.

In order to separate water pixels from land and cloud pixels, we used only

the spectral bands 670nm, 765nm, and 865nm, in which the signal coming

from the ocean is nul or negligible. We trained a two-dimensional map of

size 10� 10 with PRSOM. Then we used HC to cluster the referent vectors

of the PRSOM map and cut the dendrogram in order to obtain 2 clusters.

The two subsets represented by each cluster are shown in �gure ??(b). The

white region corresponds to the land or clouds pixels, and the black one rep-

resents the water pixels. We compared our results to those proposed by the

SeaWiFS algorithm. Table ?? displays the distribution of the pixels between

the two classes water and land or clouds according to the classi�cation pro-

posed by SeaWiFS algorithm and that obtained when using the combination

of PRSOM and HC (HC-PRSOM). It may be noticed that 96:28% pixels are

classi�ed in the same way by SeaWiFS algorithm and HC-PRSOM. Further-

more, all the pixels which are classi�ed as land or clouds by SeaWiFS are

classi�ed in the same way by HC-PRSOM, 3:72% pixels are classi�ed water

by HC-PRSOM and land or clouds by SeaWiFS. This di�erence can be ex-

plained as follows : SeaWiFS separates water from land and clouds (light or

thich) while HC-PRSOM separates water from land and thick clouds only.

SeaWiFS results

land or Clouds visible water

HC-PRSOM land or Clouds 149791 0

results visible water 7235 37654

Table 1. Distribution of the pixels between the two classes land or clouds, and

water

To separate di�erent areas of water on a selected number of classes, we ap-

plied HC-PRSOM only to the water pixel (the black region in �gure ??(b))

using in this case the 8 spectral bands. As before, we used HC-PRSOM on a

two-dimensional map of size 10�10. The three regions obtained when we cut

the dendrogram in order to obtain 3 clusters are shown in �gure ??(c). Ac-

cording to the ocean expert, light grey region corresponds to the water in the

Baltic sea, which contains a high level of yellow substances. The grey region

corresponds to clear water, usually present in the Mediterranean sea, and the
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(a) (b) (c)

Fig. 3. (a) : the studied region. (b) : the two classes obtained when using HC-

PRSOM to separate water pixels from land and clouds pixels. (c) : the regions
obtained when separating water pixels in three classes. In (b) the black region

corresponds to water pixels and the white one corresponds to land or clouds pixels.

In (c), the light grey region corresponds to the water in the Baltic sea, while the
grey region correponds to clear water, and the black region corresponds to a thin

cloud cover over the sea.

black region corresponds to a thin cloud cover over the sea. The three classes

obtained present a signi�cant coherence with geophysical knowledge of the

ocean expert. Notice that HC allows to obtain up to 100 classes (since we

used a topological map of size 10X10), the other classes actually being under
interpretation. We are exploring whether we can re�ne the classi�cation in

water type and �nd other, previously unidenti�ed classes.

6 Conclusion

In the present paper, we have described a complete methodology to cluster

and classify data using Probabilistic Self-Organizing Map. The PRSOM al-

gorithm gives an accurate estimation of the density probabity function of the

data, an adapted hierarchical clustering allows us to take into account an
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extra knowledge given by an expert. The two actual applications, presented

here, show that the approach is e�cient. In both cases, using or not an extra

knowledge expertise, provide classes which present strong spatial patterns in

good agreement with the reality. A lot of improvements can be done for better

taking into account the probabilitic aspect of the PRSOM algorithm. These

improvements can be introduced at the labeling as well as at the hierachical

clustering stage.
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