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2 CNAM, Mathématiques CEDRIC

292 rue Saint Martin, 75141 Paris Cedex 03, France
e-mail : ali.gannoun@cnam.fr
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Abstract: We consider a semiparametric regression model such that
the dependent variable y is linked to some indices x′βk through an un-
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estimation process. In this paper, we suggest to use versions of SIR
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trate the sample behaviour of the fuzzy inverse regression estimators
and compare them with the SIR ones on simulation study.
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1. Introduction

The general goal of the regression of y on x is to infer about the
conditional distribution of y|x as far as possible with the avalaible
data. In statistical literature, a lot of parametric and nonparametric
regression approaches have been developed and studied. Dimension
reduction in semiparametric regression is an important key theme
in this area of statistics. The goal is to reduce the dimension of



the covariate x without of loss information on the regression of
the response y on x. We assume throughout the paper that the
predictor x is a p-dimensional (p ≥ 2) random variable and the
response variable y is a scalar. It is also assumed that the data
{(yi, xi), i = 1, . . . , n} are independant and identically distributed
observations of (y, x) with finite moments.

In dimension reduction context, let B denote a fixed p × K∗

matrix (with K∗ ≤ p) such that

y ⊥ x|B′x. (1)

This statement means that y and x are independent given any value
for the random vector B′x. In other words, it is equivalent to say
that the distribution of y|x is the same as that of y|B′x for all values
of x in its sample space. A straightforward consequence is that the
p-dimensional covariate x can be replaced by the K-dimensional
predictor B′x without loss of regression information, thus the goal
of dimension reduction is achieved since K∗ < p. Note that (1)
is trivially true when B = Ip. Moreover, as it is mentionned in
Li (1991) or Cook (1994), the statement (1) can be viewed as a
statement about S(B) the linear subspace of R

p spanned by the
columns of B: y ⊥ x|PS(B)x, where PS(B) denotes the projection
operator for S(B). This subspace S(B) is called dimension reduc-
tion subspace for the regression of y on x. The knowledge of the
smallest dimension reduction subspace will be useful for parsimo-
niously characterizing the distribution of y|x. This subspace is the
central dimension reduction subspace. In the following, the central
subspace is such that y ⊥ x|B′x, where the columns of the p × K
matrix B form a basis of the subspace. From a regression model
point of view, on can mention that the model assumed by Li (1991)
is the following

y = f(B′x, ε), (2)

where f is the unknown link function, ε is the random error term
independent of x.

In this paper, we will consider inverse regression methods in
order to estimate a basis of S(B). Many numerical methods have
been introduced. Let us mention three of them which are relatively
simple and easy to implement: sliced inverse regression, SIR (see for
instance Li, 1991, or Saracco, 2001), principal Hessian directions,



pHd (see Li, 1992, or Cook, 1998), and sliced average variance es-
timation, SAVE (see Cook and Weisberg, 1991, or Cook and Lee,
1999). All these methods require a linearity condition: the condi-
tional expectation of E[x|B′x] is linear in B′x. In addition, methods
based on second moments also require the constant variance con-
dition that means that the conditional covariance matrix V(x|B′x)
is constant. One can observe that both the linearity condition and
the constant variance condition do not involve the response vari-
able y, they are only applied to the distribution of the covariate
x. Moreover, when the distribution of x is a p-dimensional normal
distribution, these two conditions are satisfied. When x is ellip-
tically distributed, the linearity condition holds. Finally, one can
also mention that Hall and Li (1993) show that the linearity con-
dition will hold to a reasonable approximation in many problems
since p is large. In addition, Cook and Nachtsheim (1994) proposed
to use predictor transformations and predictor weighting in order
to induce these conditions.

In the following, we only focus on the SIRα approach which is
based on the property of the first and second moment of the inverse
distribution of x given y. We replace the slicing step used in the
estimation process by a fuzzy partition step. The paper is organized
as follows. In Section 2, we give a brief overview on the SIRα

method. We describe the fuzzy partition method in Section 3. The
inverse regression approach based on fuzzy partition is proposed in
Section 4. Numerical results based on simulations are exhibited in
Section 5 in order to study the efficiency of the fuzzy approach.
Finally, concluding remarks are given in Section 6.

2. Brief review of SIRα method

In SIR terminology, the linear subspace S(B) is called the effec-
tive dimension reduction (e.d.r.) space, and any directions is this
subspace are called e.d.r. directions.

Inverse regression step. The basic principle of SIR methods
(SIR-I, SIR-II or SIRα) is to reverse the role of y and x, that is,
instead of regressing the univariate variable y on the multivariate
variable x, the covariable x is regressed on the response variable y.

The SIR-I estimates based on the first moment E(x|y) have
been studied extensively (see for instance Duan and Li (1991), Li
(1991), Carroll and Li (1992), Hsing and Carroll (1992), Zhu and Ng
(1995), Kötter (1996), Saracco (1997), Aragon and Saracco (1997)).



But this approach is “blind” for symmetric dependencies (see Cook
and Weisberg (1991) or Kötter (2000)). Then, SIR-II estimates
based on the inverse conditional second moment V(x|y) have been
suggested (see for instance Li (1991), Cook and Weisberg (1991)
or Kötter (2000)). Hence these two approaches concentrate on the
use of the inverse conditional moments E(x|y) or V(x|y) to find the
e.d.r. space.

The idea of the SIRα method is to conjugate the information
from SIR-I and SIR-II in order to increase the chance of discovering
all the e.d.r. directions. If an e.d.r. direction can only be marginally
detected by SIR-I or SIR-II, a suitable combination of these two
methods may sharpen the result.

Let us now recall the geometric properties of the model 2. Let
T denote a monotonic transformation of y. Let α ∈ [0, 1]. Let
µ = E(x) and Σ = V(x). In order to conjugate information from
the SIR-I and SIR-II approaches, Li (1991) consider the eigen-
decomposition of Σ−1Mα where Mα = (1 − α)MIΣ

−1MI + αMII .
The matrices MI and MII are respectively the matrices used in the
usual SIR-I and SIR-II approaches. They are defined as follows:
MI = V(E(x|T (y))) and MII = E (Q(y)Σ−1Q(y)′) with Q(y) =
V(x|T (y)) − E(V(x|T (y))) It can be shown that, under the linear-
ity condition and the constant variance condition, the eigenvectors
associated with the largest K eigenvalues of Σ−1Mα are some e.d.r.
directions. Let us remark that, when α = 0 (resp. α = 1), SIRα is
equivalent to SIR-I (resp. SIR-II).

Slicing step. Li (1991) proposed a transformation T , called a
slicing, which categorizes the response y into a new response with
H > K levels. The support of y is partitioned into H non-overlap-
ping slices s1, . . . , sh, . . . , sH . With such transformation T , the ma-
trices of interest are now written as MI =

∑H

h=1 ph(mh−µ)(mh−µ)′

and MII =
∑H

h=1 ph

(
Vh − V

)
Σ−1

(
Vh − V

)
, where ph = P (y ∈

sh), mh = E(x|y ∈ sh), Vh = V(x|y ∈ sh) and V =
∑H

h=1 phVh.

Estimation process. It is straightforward to estimate the ma-
trices Σ, MI , MII and Mα by substituting empirical versions of the
moments for their theoretical counterparts, and therefore to obtain
the estimation of the e.d.r. directions. Each estimated e.d.r. di-
rection converges to an e.d.r. direction at rate

√
n, see for instance

Li (1991) or Saracco (2001). Asymptotic normality of the SIRα



estimates has been studied by Gannoun and Saracco (2003a).
From a practical point of view, the choice of the slicing is dis-

cussed in Li (1991), Kötter (2000) and Saracco (2001). Since the
SIR theory makes no assumption about the slicing strategy, the
user must choose the number H of slices and a slicing strategy. In
practice, there are naturally two possibilities: to fix the width of
the slices or to fix the number of observations per slice (this second
option is often preferred, and from the sample point of view, the
slices are such that the number of observations in each slice is as
close to each other as possible). Note that H must be greater than
K in order to avoid artificial reduction of dimension. Li (1991) no-
ticed that the choice of the slicing is less crucial than the choice of
a bandwidth as in kernel-based methods.

One can mention that, in order to avoid the choice of a slicing,
kernel-based estimate of SIR-I has been investigated, see Zhu and
Fang (1996) or Aragon and Saracco (1997). However, these meth-
ods are hard to implement with regard to basic Slicing one and are
computationally slow. Moreover, Bura (1997) and Bura and Cook
(2001) proposed a parametric version of SIR-I. Note that determin-
ing the number K (of indices) is considered by Li (1991), Schott
(1994), Ferré (1998) or Bai and He (2004), for the SIR-I method.

Moreover, the practical choice of the parameter α has been dis-
cussed in the literature. A test approach which does not require
the estimation of the link function has been proposed by Saracco
(2001). Two cross-validation criteria have been also developed by
Gannoun and Saracco (2003b). Note that these criteria require a
kernel smoothing estimation of the link function.

The aim of this paper is to replace the slicing step by a fuzzy
partition step. Let us first introduce the notion of fuzzy partition.

3. Brief presentation of fuzzy partition

In this section, we give an overview of probabilistic fuzzy partition
in H clusters. Let T = {t1, . . . , tn} be a set of n elements. In hard
(or crisp) partition methods, each element of the data set is assigned
to exactly one cluster. For instance, an element lying between two
clusters must be assigned to one of them. In fuzzy partition, each
observation is given fractional membership in multiple clusters.

More precisely, a fuzzy partition of T into H clusters is a H-
tuple (u(h))h=1,...,H of functions from T to [0, 1], each function de-

scribes a fuzzy cluster. The numerical value of u(h)(ti) = u
(h)
i rep-



resents the membership degree of elements ti ∈ T in cluster h.

This value u
(h)
i can be interpreted as the probability that element

ti belongs to the cluster h if for each ti ∈ T the condition

H∑

h=1

u
(h)
i = 1

is satisfied. For each observation i and each cluster h, the term u
(h)
i

indicates how strongly element ti belongs to cluster h. Probabilis-
tic partitions have been studied by many authors, see for instance
Bezdek (1981) and Dumitrescu and Pop (1995, 1998) among others.

Let MnH denote the set of real n × H matrices. We suppose
that H ≥ 2. A probabilistic fuzzy H-partition space associated
with T can be defined as:

PH =
{

U =
[
u

(h)
i

]
∈ MnH : u

(h)
i ∈ [0, 1],

∑H

h=1 u
(h)
i = 1 for all i,

∑n

i=1 u
(h)
i > 0 for all h

}
.

One can note that a hard H-partition space associated with T (as
a slicing) is defined as

P̃H =
{
U =

[
u

(h)
i

]
∈ MnH : u

(h)
i ∈ {0, 1},

∑H

h=1 u
(h)
i = 1 for all i,

∑n

i=1 u
(h)
i > 0 for all h

}
,

that is the values u
(h)
i can only be equal to zero or one. It is obvious

that P̃H ⊂ PH .
Let us denote the distance of an element ti to a cluster h deter-

mined by the prototype ξ(h) (generally a vector of the same dimen-
sion as the data vectors ti to be interpreted as the cluster centers)
by d(ti, ξ

(h)). In order to obtain a fuzzy H-partition, Bezdek (1981)
proposed to minimize the objective function

n∑

i=1

H∑

h=1

(
u

(h)
i

)m

d2(ti, ξ
(h))

subject to the constraints

∀1 ≤ i ≤ n,
H∑

h=1

u
(h)
i = 1 and ∀1 ≤ h ≤ H,

n∑

i=1

u
(h)
i > 0, (3)



where the parameter m is chosen in advance (hard partition as
m → 1, totally fuzzy as m → ∞; the value 2 for m is the most fre-
quently used one). The objective function is minimized iteratively:

in every iteration step, minimization with respect to u
(h)
i and ξ(h) is

done seperately. When the distance function is the euclidean one,

the prototype is ξ(h) =
∑n

i=1(u
[h)
i )mti/

∑n

i=1(u
[h)
i )m. Struyf et al.

(1997) proposed to consider the memberships u
(h)
i defined through

the minimization of the objective function

H∑

h=1

∑n

i=1

∑n

j=1(u
(h)
i )2(u

(h)
j )2d(ti, tj)

2
∑n

i=1(u
(h)
i )2

. (4)

The minimization is carried out numerically by means of an iter-
ative algorithm taking into account the above conditions (3) that
the memberships need to obey. Note that to have an idea of how
fuzzy the resulting clustering is, a coefficient (called Dunn’s parti-

tion coefficient) can be computed: CH =
∑n

i=1

∑H

h=1
(u

(h)
i

)2

n
. This

coefficient CH always lies in [ 1
H

, 1]. It attains its extreme values
in the following situations: CH = n

n
= 1 for a hard partition (all

u
(h)
i = 0 or 1), CH = nH 1

nH2 = 1
H

for an entirely fuzzy partition

(all u
(h)
i = 1

H
). In the simulation study, we will use the Struyf et

al.’s approach in order to produce the probabilistic fuzzy partition
needed in the estimation process. To conclude on fuzzy partition,
one can mention that these clustering methods were designed to be
robust.

4. Inverse regression based on fuzzy partition

Consider a sample {(xi, yi), i = 1, . . . , n}. Let x̄ and Σ̂ be the
sample mean and the sample variance matrix of the xi’s. Let α be
a fixed value in [0, 1].

Step 1. Apply a probabilistic fuzzy H-partition on the data set

{y1, . . . , yn}. Let {u(h)
i , i = 1, . . . , n and h = 1, . . . , H} denote the

corresponding membership.

Step 2. For each h, compute the following quantities:

- the “size” of the cluster h: η̃(h) =
∑n

i=1 u
(h)
i , one can note that∑H

h=1 η̃(h) = n;

- the “weight” of the cluster h: p̃(h) = η̃(h)

n
, one can note that∑H

h=1 p̃(h) = 1;



- the “center” of the cluster h: m̃(h) = 1
η̃(h)

∑n

i=1 u
(h)
i xi =

∑n

i=1 p̃
(h)
i xi

where p̃
(h)
i =

u
(h)
i

η̃(h) ;

- the “variance matrix” of the cluster h: Ṽ (h) =
∑n

i=1 p̃
(h)
i (xi −

m̃(h))((xi − m̃(h))′.

Step 3. Compute the matrix M̃α = (1 − α)M̃IΣ̂
−1M̃I + αM̃II ,

where M̃I =
∑H

h=1 p̃(h)(m̃(h)−x̄)(m̃(h)−x̄)′, M̃II =
∑H

h=1 p̃(h)(Ṽ (h)−
Ṽ )Σ̂−1(Ṽ (h) − Ṽ )′ and Ṽ =

∑H

h=1 p̃(h)Ṽ (h).

Step 4. Compute the eigen decomposition of the matrix Σ̂−1M̃α.
Let b̃k, k = 1, . . . , K be the eigenvectors associated with the largest
eigenvalues. The linear subspace Ẽ = S(B̃) is the estimated e.d.r.

space, where B̃ =
[
b̃1, . . . , b̃K

]
.

Remark. If we consider the following “hard” rule: ∀i = 1, . . . , n,

u
∗(h)
i = 1 if h = argmaxl u

(l)
i and 0 otherwise, we come again on the

original SIRα approach with a specific construction of slices.

5. Simulation studies

In this section, simulation studies are carried out to provide evi-
dence for the efficiency of the fuzzy approach in pratice. We first
introduce the efficiency measure used as the criterion that measures
the distance between the estimated e.d.r. space and the true e.d.r.
space. Then we describe the simulated models and the estimation
methods. Finally, we comment on the results of the performed sim-
ulation studies. All computational work was carried out in Splus.

5.1 Efficiency measure

In order to measure the distance between the estimated e.d.r. space
Ẽ, spanned by the column of B̃, and the true e.d.r. space E,
spanned by the column of B, we introduce the Σ-orthogonal projec-
tors on Ẽ and E: PẼ = B̃(B̃′ΣB̃)−1B̃′Σ and PE = B(B′ΣB)−1B′Σ.
An efficiency measure for the estimates is defined as:

m(Ẽ, E) =
Tr(PẼPE)

K
,

where K is the dimension of the linear subspaces E and Ẽ. This
measure takes values in the interval [0, 1]. Note that

(i) if Ẽ = E, then m(Ẽ, E) = 1;
(ii) if Ẽ and E are Σ-orthogonal, then m(Ẽ, E) = 0;



(iii) the closer the measure is to one, the better is the estimation.
One can also note that, for K = 1, this measure corresponds to the
squared cosine of the angle between b̃1 and β1.

5.2 Models and estimation methods for simulation

We consider a single index regression model

(m1): y = (x′β1)
2 exp(x′β1/N) + ε, (5)

and a two indices regression model

(m2): y = (x′β1)
2 + (x′β2)

2 + ε. (6)

In these two models, the variable x and the error term ε are inde-
pendent and respectively follow the normal distributions Np(0p, Ip)
and N (0, 1), where 0p is the p-dimensional null vector and Ip is
the p × p identity matrix. In performing the simulation, we fix
β1 = (1, 1,−1,−1, 0′p−4)

′ and β2 = (1,−1, 0′p−4,−1, 1)′. The dimen-
sion p will be set at 5 or 10.

We select models (5) and (6) based on the following consider-
ations. In model (5), the parameter N has clearly an influence on
the form of the dependence betwen the index x′β and the response
variable y. When N is small (for instance N = 1), the exponential
term is preponderant: then model (5) favors methods based the
first inverse conditional moments as SIR-I or SIRα for small values
of α, because the regression function is strictly increasing. When
N is large (for instance N = 100), the influence of the exponential
term disappears and the squared polynomial part is preponderant
in model (5): hence, the model favors here methods based the sec-
ond inverse conditional moments as SIR-II or SIRα for large values
of α (α > 0.5), because the regression model presents a symmetric
dependence. Between these two extreme cases (for instance when
N = 5), the exponential and polynomial parts carry information on
the e.d.r. direction: the one can expect that the inverse regression
methods which conjugate information on the first two inverse condi-
tional moments (as SIRα) provide good estimation. In performing
the simulation with this model (5), we consider three situations:
N = 1, N = 5 and N = 100. Since model (6) clearly presents a
symmetric dependence, it favors methods using informations from
the inverse conditional variance. It allows us to see the performance
of our approaches for a multiple indices model.

Acronyms for the estimation methods used in the simulation
studies are given in Table 1.



SIR-I Sliced Inverse Regression based on the matrix M̂I

SIR-II Sliced Inverse Regression based on the matrix M̂II

SIRa Sliced Inverse Regression based on the matrix M̂α

FIR-I Fuzzy Inverse Regression based on the matrix M̃I

FIR-II Fuzzy Inverse Regression based on the matrix M̃II

FIRa Fuzzy Inverse Regression based on the matrix M̃α

Table 1: Acronyms for the different estimation methods

In order to check the impact of the number H of slices or clus-
ters, for the sliced or fuzzy inverse regression methods, several val-
ues for H are considered: H = 2, 3, 4, 5, 10 or 20. We generate
samples of n observations (with n = 50, 100, 300 or 500) from
models (5) or (6). The slices are built such that the numbers of
observations in slices never differ by more than one (these numbers
are equal to [n/H ] or [n/H ] + 1 where [a] denotes the integer part
of a). The H clusters are obtained with the “fanny” function of
Splus using euclidean distances and the objective function (4).

We conduct two simulation studies: the first one focuses on
model (5) and the second one concerns models (6). For each study,
we generate 100 Monte Carlo samples with the specific values of n
and p precised above. For each simulated sample, we estimate the
e.d.r. space with the fuzzified methods (FIR-I, FIR-II, FIRα) and
the sliced ones (SIR-I, SIR-II, SIRα) for the different values of the
parameter H . Then, for each estimated e.d.r. space, we evaluate
the corresponding efficiency measure to evaluate the quality of the
estimation. Note that, in all simulation studies, the value of α is
set at 0.5; the FIRα method corresponds to a fuzzified version of
sliced average variance estimation (SAVE) method of Cook (2000).
A discussion about the choice of an optimal α is given in Section 6.

5.3 Results of simulation studies

Results of the first simulation study. We only report the re-
sults obtained with the FIRα and SIRα methods for illustration
since the SIR-I, SIR-II, FIR-I or FIR-II methods can not struc-
turally recover the e.d.r. space when the regression model is sym-
metric dependent or not. Figure 1 shows boxplots of the effenciency
measures calculated with the FIRα estimates from a total of 100
samples generated from model (5) for several values of N , with
n = 100 or 300, p = 5 or 10 and H = 2, 4, 5, 10 and 20. One can



observe that:

• When the model (5) does not present a symmetric dependence
(N = 1), the fuzzy approach works well with reasonable values of
H (4, 5 and 10) with respect to K = 1. Even if the FIRα is not the
most adequate method for this model (recall that this kind of model
favors FIR-I or SIR-I approaches), one can however be satisfied by
the numerical performance of this method since the number of fuzzy
clusters is reasonable. Except for one specific situation (p = 10 and
H = 2) which is the less favourable one, the FIRα method seems
to perform uniformly better than the SIRα one.
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Figure 1: Model (m1): Boxplots of the efficiency measures for var-
ious values of N , n and p.

• When N = 5 (model (5) is “partially” symmetric dependent),



FIRα and SIRα methods work well since H is not too large. One
can observe the significant improvement obtained with FIRαversion
in all the situations.

• With the symmetric dependent case (with N = 100), the results
are very similar to the previous ones. Note that the sensitivity to
the parameter H is very low, this is particularly true for large values
of n.

Results of the second simulation study. We does not report
here the results obtained with the FIR-I and SIR-I methods since
these two methods are known to be unable to recover the e.d.r.
space when the regression model is symmetric dependent. Figure 2
shows scatterplots of the effenciency measures calculated with the
FIR-II estimates versus those calculated with the FIRα estimates,
for samples generated from model (6) with n = 50, 100 or 300,
and p = 5 or 10. We clearly observe that these methods give very
similar results in terms of this efficiency measure. This is not really
surprising since we have already mentioned that model (6) favors
the methods using information from the inverse covariance curve.
Therefore, we only report the results obtained with the FIR-II and
SIR-II methods for illustration in Figure 3.
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Figure 2: Model (m2): plots of the efficiency measures of the FIR-II
estimates versus the FIRα estimates for various values of n and p.

The boxplots of Figure 3 report the distribution of the efficiency



measure of the FIR-II and SIR-II estimates of a total of 100 Monte
Carlo from samples generated from the two indices models (6) with
different sample sizes (n = 50, 100, 300) and different dimensions
of the covariable x (p = 5 or 10). Since in this simulation study,
we know that K = 2, we systematically consider the two first e.d.r.
directions [̃b1, b̃2] as estimates of a basis of the true e.d.r. space.
No choice of the optimal dimension has been implemented at this
stage. This point will be discussed in Section 6.
Now we can compare the efficiency of the fuzzy and sliced ap-
proaches, FIR-II and SIR-II, and check the impact of the number
H of fuzzy clusters or slices for several values of n and p.

• As expected, the two methods perform better as the sample size
increases. When n ≥ 300, the true e.d.r. space is always retrieved
by the methods for all values of H . One can notice that SIR-II
appears to be more sensitive to high value of this parameter H
than FIR-II. We do not report here the results for n = 500.

• For reasonable sample sizes (n = 50 or 100), the methods have
more difficulties to find the true e.d.r. space; this is particulary true
when the dimension of the covariable x become larger (p = 10). One
can however observe that the FIR-II method works uniformly better
than the SIR-II approach. One can also mention that the parameter
H seems to have an influence on the quality of the estimates; in
particular small values for H seems to be preferable to large values
for small sample sizes.

6. Concluding remarks

In this paper, we propose to use a fuzzified version of sliced inverse
regression methods. From a practical point of view, we illustrate
on simulation the smaple performance of this approach: the FIR
methods appears to perfom better than the original SIR methods
for most of H (number of fuzzy clusters or slices). Some important
issues remain to be discussed.

• The first one concerns the practical number H of fuzzy clusters.
For the original SIR methods, to the best of our knowledge, the
choice of an “optimal” number H of slices remains unsolved. Here,
from a theoretical point of view, the asymptotic convergence of the
FIR estimates has been obtained for any H > K where K is the
number of indices in the regression model. One can observe on
simulation that the methods seems to be not very sensitive to H
since the sample size n is relatively large (n ≥ 300). For “small”
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Figure 3: Model (m2): Boxplots of the efficiency measures for var-
ious values of N , n and p.

sample sizes (n ≤ 100), we suggest that the parameter H must be
chosen nor too large nor too small: for instance, in our simulation
studies (with K = 1 or 2), H = 5 seems to be a good practical
choice. Note that, from a computational point of view, the smaller
the number H is, the faster is the estimation calculation.

A natural way to smooth the influence of the arbitrary fixed
number H of fuzzy clusters could be to combine the results from
several fuzzy partitions. Then one can expect a “robust” version of
the different estimated matrices and of their estimated eigenvectors.
This is idea has already been used in the slicing approach, the main
idea of Pooled Slicing methods introduced by Aragon and Saracco
(1997) and Saracco (2001). In our context, one could also consider



D different fuzzy partitions with different numbers of clusters. We
will have to choose minimum and maximal bounds for H such that
Hmax − Hmin = D. Then, we could consider the following pooled
variance-covariance matrices for the pooled version of FIR-I and
FIR-II methods: M̃P

I = 1
D

∑D

d=1 M̃d
I and M̃P

II = 1
D

∑D

d=1 M̃d
II where

M̃d
I (resp. M̃d

II) is the matrix M̃I (resp. M̃II) of FIR-I (resp. FIR-
II) defined for a fuzzy partitions in d clusters, d = 1, . . . , D. For
the FIRα approach, one can combine these two matrices and we
consider the matrix M̃P

α = (1 − α)(M̃P
I )2 + αM̃P

II . One can proved
that the first K eigenvectors of M̃P

I (resp. M̃P
II , M̃P

α ) are e.d.r.
directions. It could be possible to consider another alternative for
the pooled version of FIRα: for each d = 1, . . . , D, let us define

M̃d
α = (1 − α)

(
Md

I

)2
+ αMd

II and use the pooled matrix M̃P
α =

1
D

∑D

d=1 M̃d
α.

• The second important issue to discuss concerns the number K
of indices. In practice, the user has to choose the parameter. One
practical manner to determine the dimension of the e.d.r. space
can be to look at the screeplot of the eigenvalues of the matrix
of interest and to retain the number of eigenvalues significantly
greater than the others. To illustrate this empirical approach, we
give in Figure (4) two examples of screeplot. For the first one,we
generate n = 100 observations from model (5) with K = 1. For
the second, a n = 100 sample has been generated from model (6)
with K = 2. We clearly observe that the selected dimensions with
this empirical criterion are respectively one and two. Note that
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Figure 4: FIRα eigenvalues screeplots for samples generated from
model (m1) or model (m2) with n = 300, p = 10, α = 0.5, H = 5
(and N = 5 for (m1)).

hypothesis testing procedures or bootstrap procedures could also



be developped in order to determine the dimension K. This point
is at the moment a challenging issue.

• Another important issue is about the choice of the parameter α
for the FIRα method. In the simulation, the parameter is set at
0.5, in order to have a fuzzified version of sliced average variance
estimation (SAVE) which takes into account information from the
first two inverse conditional moments. In practice, for instance
one can be interested in getting an “optimal” value for α in view
of prediction of the dependent variable y. It is also possible to use
cross validation (CV) criterion in order to select α, see Gannoun and
Saracco (2003b). To be more precise, the procedure is to leave out
the ith observation, i = 1, . . . , n, and to predict the corresponding
observed value from the remaining subsample of size n−1. The idea
is then to choose the parameter α that yields the best prediction.

One can note that a “global” approach may be to define a pre-
dictive CV criterion to estimate at the same time the parameter α,
the dimension K and the number of fuzzy clusters H . The price to
pay will be the high computational cost. This point is still under
investigation.

• When the dependent variable y is multivariate (see for instance
Aragon (1997), Hsing (199) Li et al. (2003), Saracco (2005), or Li-
quet and Saracco (2007) for a presentation of some inverse regres-
sion methods in this multidimensional context), that is y ∈ R

q, the
fuzzy partitions step still works. Therefore, all the results presented
in the paper for FIRα remain respectively true and operational.

To conclude, we presented in this paper an extension of the well-
known dimension-reduction method SIRα to fuzzified version FIRα

which gives interesting results in simulations. Some issues men-
tioned above remain challenging issue and we leave both of them
as future work.
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