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RESUME 
Les procédés par lots sont largement utilisés dans le secteur industriel notamment dans l’industrie 
agroalimentaire ou pharmaceutique. Dans ces procédés, les matières premières sont introduites dans un ordre 
spécifique et subissent une série de transformations donnant le produit final. La performance du procédé est 
mesurée par un ensemble de variables au fur et à mesure de son déroulement. Les données issues de tels 
procédés sont fortement auto-corrélées et sont en général contrôlées en utilisant des cartes de contrôle basées 
sur l'analyse des données fonctionnelles (CCPs). Dans cette communication nous étudions le cas particulier 
(et assez fréquent) de procédés par lots à temps variable que les CCPs ne permettent pas de contrôler 
directement. Nous proposons une nouvelle approche dans laquelle plutôt que d’aligner les lots ou d’utiliser 
des techniques de time warping, nous complétons les données en utilisant un modèle approprié de sorte que 
toute la variabilité temporelle est préservée. Ensuite, nous construisons des cartes de contrôles non 
paramétriques à partir des plans factoriels issus de l’application de la méthode STATIS aux données 
complétées. La méthode proposée est illustrée sur des données simulées. 
 
MOTS-CLES: procédés par lots à temps variable, contrôle de qualité multivarié, méthode Statis 
 
SUMMARY 
Batch processes are widely used in several industrial sectors, such as food and pharmaceutical 
manufacturing. In a typical batch, raw materials are loaded in the processing unit and submitted to a series of 
transformations, yielding the final product. Process performance is described by variables which are 
monitored as the batch progresses. Data arising from such processes are likely to display a strong correlation-
autocorrelation structure, and are usually monitored using control charts based on multiway principal 
components analysis (CCPs). In this paper we investigate the special (and rather frequent) case of batches 
with varying duration, which cannot be directly monitored using CCPs. We propose a new quality control 
strategy for monitoring such batches. In our proposition, batches are not aligned or time warped with respect 
to their trajectories, but are rather completed using a straightforward scheme. Thus all information on the 
variability in batch profiles along the time axis is preserved. The completed data set is reduced using the 
Statis method and monitoring of batch performance is accomplished directly on principal plane graphs, from 
which non-parametric control charts are derived. A simulated example ilustrates the proposed method. 
 
KEYWORDS: Unsynchronized batches, Multivariate quality control, Statis method. 
 

1. Introduction 

Multivariate control charts (CCs) are indicated for simultaneously monitoring quality 
characteristics in a process (or product). The most commonly used multivariate CC is the Hotelling (or 

) chart. Other multivariate CCs are reviewed by Lowry & Montgomery (1995) and Harris et al. 
(1999). Traditional CCs are based on the independence and multinormality assumptions which are not 
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always verifiable in practice. In addition, traditional multivariate CCs do not offer an efficient 
monitoring when the nominal behavior of variables is described by profiles. In those cases, variables 
may present a significant correlation and autocorrelation structure, and process monitoring is usually 
accomplished using multivariate charts based on multiway principal components analysis (MPCA). 
These charts are denoted here by CCPs.  

Applications of CCPs to batch processes assume firstly that all batches considered in the 
analysis have the same length and are aligned with respect to each process stage. When that is not 
verified, CCPs must be adapted to handle variable batch duration. However, propositions found in the 
literature for that matter are not always satisfactory, as discussed below. Secondly, process variables 
monitored through CCPs are supposed to be multinormaly distributed, which enables the use of a CC 
to monitor the reduced data set; when that is not the case, the use of non-parametric CCs should be 
considered. 
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In this paper we propose a new quality control strategy for monitoring batch processes with 
varying duration. In our proposition, batches are not aligned or time warped with respect to their 
trajectories, but are rather completed using a straightforward scheme. Thus all information on the 
variability in batch profiles along the time axis is preserved. The completed data set is reduced using the 
Statis method (Escoufier, 1987), extending the approach in Scepi (2002). Two summarized 
representations of the batches become available: one that allows verifying batch progression compliance 
to the expected trajectories of its monitored variables, and other that summarizes trajectories of variables 
in a batch in each time instant, and allows detecting significant departures from their expected behavior 
in the time axis. Monitoring of batch performance with respect to the two summarized representations 
above is accomplished directly on principal plane graphs, from which non-parametric CCs are derived. 
The proposed method is illustrated using a simulated data set from Rosa (2005). 

Our work extends the approach in Scepi (2002), where the use of the Statis method in 
multivariate quality control was initially proposed. However, at least two contributions separates our 
proposition from the one in Scepi (2002). The first concerns dealing with batches of variable duration, 
not discussed by the author. The second concerns the development of control charts and data completion 
strategies suitable for on line monitoring of batch processes. Scepi (2002)’s methods do not directly 
apply to on line monitoring of processes. 

2. Background 

The work here is closely related to the literature on quality control of batch processes. The 
application of CCPs to monitor batch processes of fixed length was initially proposed by Jackson & 
Mudhokar (1979), being further investigated by Nomikos & MacGregor (1995), Kourti & MacGregor 
(1996) and MacGregor (1997). Applications of CCPs in the monitoring of batch processes may be found 
in Kourti (2003), among others. In short, batch process monitoring using CCPs is carried out verifying the 
outputs of two CCs. The first is a -chart for the scores obtained projecting future batches on the q PCs 
retained in the reference distribution. Such distribution is obtained running an MPCA on  data coming 
from good batches that emerged from the process. The second is a  chart for the residuals from the 
reference model. The first CC monitors the behavior of known process variability sources; the second CC 
detects any atypical events that disturb the process variables correlation-autocorrelation structure. 
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 In the CCP monitoring scheme above batches are assumed to be synchronized and to have the 
same duration, i.e. all data vectors in the reference distribution as well as those arising from future 
batches have the same dimension. Otherwise, we have a situation where batches are not aligned in time, 
and the scheme above cannot be applied directly to the process data. Such special instance was first 
identified by Nomikos (1995), who suggested the use of an indexing variable, other than time, to 
monitor batch progression. Such variable should be measurable in the process, be monotonically 
increasing in time, and present the same initial and final values in all batches. In spite of being somewhat 



restrictive, the requirements above were satisfied in the applications reported by Kourti et al. (1996) and 
Neogi & Schlags (1998).  

Kassidas et al. (1998) proposed a different approach to the varying time batch problem, where 
batches were aligned using dynamic time warping (DTW) algorithms. Once aligned, batch data were 
treated using the CCP quality control strategy. However, DTW algorithms present some intrinsic 
limitations. Most notably, trajectories are aligned pairwise either (i) leading to an expanded common 
trajectory particular to each pair of trajectories (in the case of symmetric algorithms), or (ii) being aligned 
to match a reference trajectory common to all pairs of trajectories (in the case of asymmetric algorithms). 
In case (i) the resulting dataset will still be comprised of trajectories with different lengths; in case (ii) 
data points are allowed to be dismissed during the alignment of certain batches such that the length of 
pairs of trajectories coincide. The authors propose a compromise solution to overcome such limitations, 
where data points are averaged rather than dismissed during the alignment of trajectories. However, the 
greatest limitation in their approach seems to be related to the representation of batch variation along the 
time axis, which is altered when stages in the batch process are synchronized.  

Kaistha et al. (2004) proposed the use of an ad hoc time warping technique to align batches of 
different durations. In their approach batch progression is supposed to be divisible in stages. Landmark 
points in stages (such as beginning and end) are used as anchor points in a simplified interpolation 
procedure, leading to batches that are synchronized stagewise. Once aligned, batch data are treated using 
a slightly altered version of the CCP strategy.  

Finally, Rosa (2005) approached the varying time batch problem using a different analytical 
framework, where no dimensionality reduction techniques or procedures to align unequal batches are used. 
The author proposes the use of the Hausdorf distance as a measure of dissimilarity between a given batch 
and an average nominal batch. Such distance corresponds to the median of the minimum squared Euclidian 
distances between points in a given trajectory and all points in a reference trajectory. The reference 
distribution used for process monitoring is based on the Hausdorf distances. Despite its simplicity and the 
promising results obtained applying the method in simulated scenarios, there is no evidence that the 
Hausdorf distance captures the correlation-autocorrelation structure present in the original variables. In 
addition, the author did not propose diagnosis tools to use in combination with the CCs. 

3. Method 

Let N denote the total number of batches ( )Nb ,,1…=  used to form the reference sample, from 
which a reference distribution will be determined and used to monitor future batches. For batches that are 
highly unaligned (i.e., the largest batch length differs substantially from the smallest batch length), N 
should be large enough such that all batch durations are well represented in the reference sample. 

3.1 Completion of batches 

Let   denote a sequence of observations gathered from process 
variable i as the batch progresses in time. Let  and  be the minimum and maximum batch 
duration, respectively, in the reference sample. Let  denote a 

itX ( Ttpi ,,1;,,1 …… == )
minT maxT

is ( )1min ×T  vector containing the sample 
standard deviations associated with the i-th variable, with element  giving the standard deviation of 

 estimated from all batches. Adjust a time series model to the observations in  and use the model 
to forecast  from  to . 

its

itX is

its 1min+= Tt maxTt =

Let itx  be the sample average of variable i observed at time t, measured from all batches, for 
. Pair the values of minTt > itx  and  (forecasted values of ), for periods t = , and use 

the pair of parameters to generate (
itŝ its max1min ,...,TT +

)1minmax +−TT  normally distributed random variables. Complete the 



batches with duration smaller than  with realizations from the simulated random variables at each 
time instant.  

maxT

3.2 Quality control charts 

We propose applying the Statis method on the completed reference data base. Following the 
method’s nomenclature, each batch will correspond to a data table and each time period to an individual. 
There will be  tables of dimension N ( )pT ×max . Further, we propose the construction of two control 
charts using principal factor projections: the IS (InterStructure) and the COt (COmpromise) control 
charts. The IS CC (also used by Scepi, 2002) gives an overall assessment of the batches such that each 
batch (i.e., each table) is represented by a point in the chart. The COt CC gives an assessment of the 
individuals, which are the time periods, over all batches at time t. [The collection of COt CCs may also 
be joined in a unique CO CC, displaying the mean trajectories of the individuals.] The construction of 
these CCs and their use in quality control of future batches is detailed next. 

Let  denote a matrix with process data from the b-th batch in the reference sample (columns in 
 correspond to sequences ). The N matrices  are organized in a three-dimensional array 

bX

bX itX bX X  
from which an interstructure (IS) matrix is derived. The general element of IS is given by (Escoufier, 
1987): 

( ) ( ) ( )22
bbbbbb trtrtrRv ′′′ = WWWW  (1) 

with . Note that (i)  and bbbb XXW ′= b ′  are any pair of batches (such that ), and (ii) the 
data matrices are usually normed to remove scale effects in the original variables. 

bb ′≠

Diagonalizing the IS matrix and projecting the batches from the reference data set in the first 
factorial plan, it is possible to obtain a reference data cloud. The IS chart may be obtained after 
establishing a ( )α−1  control region in the resulting biplot. For that matter, we use the proposition in 
Zani et al. (1998), comprised of the following three steps. First, a robust centroid is determined in the 
factorial plan corresponding to the chart. Next, an inner region is defined in the plan such that 50% of the 
points in the graph fall within its boundaries. Such region is defined by a B-spline curve that smoothes 
the contours of a convex hull containing the points. Finally, the control region is established in the chart 
by defining a multiple of the distance l between the centroid and the boundary of the 50%-hull that 
corresponds to the desired probability of false alarm ( )α . For an 01.0=α , . Since the inner 
region spreads irregularly from the centroid, the control region will also be irregular in shape.  

68.1=l

To obtain the COt CCs, start by diagonalizing a compromise matrix CO, defined as the linear 
combination , where ∑b bbWβ bβ  is a function of the b-th element of the largest eigenvector obtained 
from diagonalizing the IS matrix. Projecting the compromised individuals (i.e., rows of CO) in the first 
factorial plan, we obtain a summarized representation of batch trajectory over all batches as time 
progresses. The COt CC is obtained by projecting the individuals observed at time t (gathered from the t-
th row of X ) in the first factorial plan obtained from diagonalizing CO. Once again, we apply convex 
hull peeling and B-spline smoothing on the resulting bivariate plot to obtain a chart with an empirical α  
confidence level determined by the peeling of points in the data cloud.    

Off-line process control of a future batch 1+= Nb  takes place initially by projecting  in 
the IS chart. In case the projection yields an out-of-control signal, the CO

1+NX
t CCs are used to identify in 

which time instant the batch departed from the reference behavior. On-line process control takes place 
while the batch progresses in time and Ttt ≤′= , where t′  denotes the most recent time at which 
variables were sampled from the process. Thus, only a fraction of the process data table is available. 



Since the idea is to verify the behavior of variables up to time t′ , their behavior in future time periods 
may be assumed to follow the average pattern. Missing data may be thus replaced in the table by the 
averages of process variables obtained from the sample of reference batches (other alternatives to 
complete the data table may also be considered). The new batch realized up to time t  may be monitored 
using the CO

′
t CCs. Note that there will be one COt CC for every time period up to , allowing precise 

identification of out-of-control states in the process. The new batch may also be monitored using the IS 
CC. However, due to the missing data in , the smaller the value of  

t′

1+NX t′  the higher the probability of 
false alarms in the CC.   

4. Example 

We exemplify the method proposed in section 3 using simulated data available in Rosa (2005). 
The reference data set is comprised of 39 batches of varying duration ( )100;90 maxmin == TT ; three 
process variables  are considered. All batches were completed to  using the 
scheme proposed in section 3. The average trajectories of variables X

( 321 ,, XXX ) 100=T
1 and X2 in the reference 

distribution are depicted in Figure 1 (bolded lines). An additional batch (b = 40) is also considered in the 
analysis. The batch, abnormally long, is considered as out-of-control by Rosa (2005), even though it 
reproduces the process variables’ basic profiles (trajectories of X1 and X2 in b = 40 are also given in 
Figure 1). Since our method was conceived to capture abnormal behaviors in the process time axis, we 
expect it to signalize b = 40 as an out-of-control batch. 

 
(a) 

 
(b) 

Figure 1. Average trajectories (bolded lines) of (a) X1, and (b) X2, and trajectories of batch b=40 

We analyzed the completed three-dimensional data matrix using Statis. We projected  the 
reference batches in the first factorial plan (which accounted for 86,5% of the total variance in X ) 
derived from diagonalizing IS and determined the 99% convex hull, obtaining the IS CC in Figure 2. 
Note that b = 8 is positioned outside the hull. In Rosa (2005)’s CCs, b = 8 is characterized as in-control 
although basically coinciding with the upper control limit of the charts. We chose to leave b = 8 as part 
of the reference data set. Projecting b = 40 in the IS CC yields the coordinates 

, positioned far in the left of the chart in Figure 2 (justifying the discontinuity 
in the representation of Factor 1’s axis). The IS CC clearly signalizes b = 40 as out-of-control, as we 
expected. Figure 2 also depicts the CO CC. For shortness, we do not present the CO

( ) ( 061.0,138.0, 21 −=ff )

t CCs.       

5. Conclusion 

In this paper we propose a quality control method to monitor batch processes of varying 
duration. In our method, batches are completed to the maximum duration time in the data base and 
reduced in dimensionality using the Statis method (Escoufier, 1987). Process monitoring is 
accomplished through the use of two CCs : in the IS CC, batch progression compliance to the expected 
trajectories of its monitored variables is verified ; in the COt CC, trajectories of variables in a batch in 
each time instant are summarized and significant departures from their expected behavior in the time 
axis are detected. A simulated example, where three variables are monitored in a batch process, 
illustrates the method.  



A natural extension of the work presented here would include the comparison of results obtained 
using the proposed method and other methods in the literature, most notably the dynamic time warping 
strategy suggested by Kassidas et al. (1998).  

Figure 2. IS CC (left) and CO CC in the numerical example 
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