
ActiveViews for ElectronicCommerce
�

S.Abiteboul
I.N.R.I.A, Rocquencourt,France

Serge.Abiteboul@inria.fr

B. Amann
Cedric/CNAM, Paris,France

amann@cnam.fr

S.Cluet
I.N.R.I.A, Rocquencourt,France

Sophie.Cluet@inria.fr

A. Eyal
U. Tel Aviv, Israel

eyal@math.tau.ac.il

L. Mignet
I.N.R.I.A, Rocquencourt,France

Laurent.Mignet@inria.fr

T. Milo
U. Tel Aviv, Israel

milo@math.tau.ac.il

March2, 2000

Abstract

Electroniccommerceis emerging asa major Web-supportedapplication. In
this paperwe arguethat databasetechnologycan,andshould,provide the back-
bonefor a wide rangeof suchapplications.More precisely, we presentherethe
ActiveViews system,which, relayingon anextensive useof databasefeaturesin-
cluding views, active rules(triggers),andenhancedmechanismsfor notification,
accesscontrolandlogging/tracingof usersactivities,providestheneededbasisfor
electroniccommerce.

Basedon the emerging XML standards(DOM, query languagesfor XML,
etc.),thesystemoffersa novel declarative view specificationlanguage,describing
the relevant dataandactivities of all actors(e.g. vendorsandclients)participat-
ing in electroniccommerceactivities . Then,actingasan applicationgenerator,
thesystemgeneratesanactual,possiblycustomized,Webapplicationthatallows
usersto performthegivensetof controlledactivities andto work interactively on
thespecifieddatain astandarddistributedenvironment.

Althoughcloselyrelatedto workflow managementsystems,amajordifference
hereis the importancewe give to data. While workflow systemsgive declarative
meansfor specifyingtheoperationsflow, thedatainvolved is typically described
in a very abstractmanner, often disconnectedfrom the descriptionof the flow
itself. In contrast,our approachpromotesthedata,acknowledgingits importance
for optimizationcoherenceandanalysisof applications.

TheActiveView systemis developedat INRIA ontopof Ardent’sXML repos-
itory andJava.

�
Work partially foundedby aFrenchIsraeligrant.

1

1 Intr oduction

Internethasrevolutionizedtheelectronicpublicationof data.We shouldexpectto see
moreandmoreInternetapplicationsallowing clientsto interacton thenetnotablyby
sharingdata. It is possibleto develop suchapplicationstodaybut this is at the cost
of intensesoftwaredevelopmentsby sophisticatedprogrammers.We believe that (i)
the needfor fastapplicationdeployment,(ii) the generalizationof suchapplications,
and (iii) the often-metrequirementof proving propertiesof theseapplications,will
requiretheuseof declarativespecificationsof applications.Thesituationis somewhat
similar to what lead in the 70’s to declarative query languages.Indeed,we believe
that declarative query languagesand databasesform an essentialcomponentof the
problem.Thispaperproposessucha specificationlanguage(theActiveView language)
anddiscusseshow it is supportedin theActiveView system.

To illustratetheissues,considerelectroniccommerce.(Ourexampleswill bebased
ona Webcatalog.)Electroniccommerceis emergingasamajorWeb-supportedappli-
cation.In anutshell,electroniccommercesupportsbusinesstransactionsbetweenmul-
tiple partiesvia thenetwork. Thisactivity hasmany aspects,includingsecurity, authen-
tication,electronicpayment,anddesigningbusinessmodels[YA96]. Electroniccom-
mercealsorequiresdatabasesupport,sinceit ofteninvolveshandlinglargeamountsof
data(e.g.productcatalogs,yellow pages,etc.) andmustprovide transactions,concur-
rency control, distribution andrecovery. It alsoinvolvesstronginteractionsbetween
participants(e.g.,customersandvendors)anda controlof thesequencingof activities
(i.e.,workflow management).All theseaspectswill beaddressedby activeviews.

Moregenerally, theapplicationsweareinterestedin involve: (i) sharingof dataand
(ii) somecooperativework by anumberof actorsconnectedvia thenetwork. Theseare
typicalfeaturesfoundalsofor instancein digital librariesor informationmanufacturing
systems.

We believe thatdatabasetechnologyprovidesthebackbonefor suchapplications.
Indeed,theActiveView systemcanbeseenasa databaseapplicationgenerator. The
systemenablesa declarative specificationof certain kindsof databaseapplications.
By declarative, we meanhere that there is little (or no program)to write and that
the descriptionof the applicationis in a high level language(or via a graphicaluser
interface). Thespecificationof an applicationincludesdefinitionsof the main actors
involvedin theapplication.For eachactor, wespecify:

1. thedataandoperationsavailableto this particularactor(aview mechanism)and
thesewith a sophisticateaccesscontrol;

2. theactivities this actormaybeengagedin andthedataandoperationsavailable
in each;

3. someactive rulesthat notablyspecify the sequencingof activities (a workflow
component)but alsotheeventsthis actorwantsto benotifiedof (a subscription
component)andthosethathaveto belogged(a tracingcomponent).

So, theActiveView languageallows to declaratively specifya numberof features
thatareoftenconsideredin isolation.A maincontributionof thispaperis to show how

2

thesevariousaspectsmaybecombinedin a simplecoherentframework. Activeviews
rely heavily on four key components:

1. XML : From a dataviewpoint, we selectedthe eXtendedMarkup Language
(XML) [W3Cb] asthemodelfor data.1 All datastored,exchangedor presented
to usersareXML.

2. Activerules: Ouractiverulesarerathersimplecomparedto whatmaybefound
in theliterature[WC95,PV97]. Thenovelty is in thewaythey areintegratedinto
a generalframework andthe way they areusedfor many purposes(workflow,
changecontrol,tracing).

3. Methodcalls andnotifications: Theeventsthatenableactive rulesaremethod
calls. Thesystemrely on somesubscriptionmechanismthatallows views to be
notifiedof certainevents.

4. View management: Views have beenquitestudiedin databases[FC85, Kel82].
We build hereon our experiencewith O� -Views [SAD94], a systemdeveloped
at INRIA. Theviews we areconsideringherearemuchsimpler. Thenovelty is
in thecombinationwith active features.

To seean example,supposea productis addedto the catalog. A notification is
issuedto all actorsthat are interestedin this event, i.e. a changein the catalog. For
instance,vendorsmaywantto alwaysseethemostrecentversionof thecatalog.Their
specificationshouldthus include an active rule to specify that, when suchan event
occurs,their view of the catalogshouldbe updated.Observe that both the detection
of the event andthe maintenancemay take advantageof incrementaltechniques.In
particular, if theupdateaffectsaportionof thecatalogaspecificvendoris notinterested
in, we shouldavoid updatingthe view. Furthermore,whena vendorview hasto be
updated,wewantto doit incrementallyto avoid re-sendinglargeportionsof thecatalog
on thenet.

A secondcontributionconsistsin thepresentationof asystemthatimplementsthese
concepts.A guidelinewasto follow thestandardsasmuchaspossible.An ActiveView
applicationis compiledinto arunningapplicationbasedonthefollowing environment:

� WeusetheO� XML repositorydevelopedbyArdentSoftware[Ard] anditsDOM
interfacefor storingandqueryingXML dataandmethods.

� We intendto usethestandardquerylanguagefor XML whenavailable. In the
meantime(andin theexamplesof thepresentpaper),we usea simplelanguage
inspiredby Lorel [AQM

�
97].

� Eachview is a multi-threadedJava programusingthe Java-DOM binding. We
alsousethenotificationmechanismprovidedby theO� system.2

1TheWebhassofar reliedprimarily onHTML thatemphasizesanhypertext documentapproach.XML,
althoughoriginally a documentmark-uplanguage,includesmorestructure. It is believed that XML will
soonbethestandardfor dataexchangeson theWeb.

2This mechanismexistsfor C++. Wehadto adaptit to theJava-O� binding.

3

� We intendto usefor WebinterfacesXML documentsandXML browsersinter-
actingwith theviews via Java remotemethodinvocation.Until XML browsers
offer thesupportwe need,we usedynamicHTML with embeddedJava applets.
Fromauserviewpoint,anapplicationpresentsasequenceof Webpagescontain-
ing (modifiable)dataandbuttons,in a standardmanner. Thepagesmayevolve
dynamically(e.g.,new promotionsmayappear).

� A runningapplicationcanbeautomaticallygeneratedfrom aview specification.
We offer flexible meansto customizesuchapplications.

We alreadyimplementeda first prototypethat wassupportingonly very partially
theActiveView features.Thefirst prototypeon top of O� wasbasedon ODMG data
andOQL. Wewereleadto XML mostlybecausea lot of datarelevantfor Webapplica-
tionsdo not have theregularstructureof ODMG andbecauseof the(future)existence
of many standardtools for XML suchassophisticatededitorsandbrowsers. In this
paper, wedescribethesystemthatwearecurrentlyimplementing.Wemainly focuson
thefunctionalitiesit provides.

The paperis organizedasfollows. Section2 introducesactive view applications.
Usinganexample,it illustratestheneedsfor thevariousfunctionalitiesof our system,
presentsthe datamodel and query languageon which we rely and the architecture
of a runningapplication.In Section3, we show how thedatapartof theapplicationis
specifiedbeforeconsideringactivefeaturesin Section4. Section5 discussesthedefault
applicationgeneratedby thesystemanddifferentwaysto customizeit. A moredetailed
descriptionof theuserinterfaceto ActiveView is beyondthescopeof thepresentpaper.

2 General framework

In thissection,we introduceactiveviews. Webriefly givesomeminimumbackground
on XML. Finally, wepresentthearchitectureof thesystem.

2.1 Activeviews

An ActiveView applicationallows differentusersto work interactively on the same
datain order to performa particularsetof controlledactivities. Beforegetting into
details,let us illustratetheneedto supportsuchapplicationsby consideringanexam-
ple. An electroniccommerceapplication,say, avirtual store,typically involvesseveral
typesof actors, e.g,customersandvendors. It alsoinvolvesa significantamountof
data, e.g. theproductscatalog(typically searchedby customers)or theproductspro-
motioninformation(typically viewedby customersandupdatedby vendors).Observe
thateachof the actorsmayview differentpartsof thedata(e.g. a customercanonly
seehis/herown ordersandthepromotionsrelevant to his/hercategory, while vendors
may view all the ordersandpromotions),eachmay performdifferentactionson the
data,andhave differentaccessrights (e.g. promotionscanbeupdatedonly by certain
vendors).Also, the requirementsfor freshnessof datamay differ, e.g. whenpromo-
tionsareupdated,we maywant to immediatelyrefreshthecustomersscreenwith the
new data,but whena catalogitem is updatedwe maynot want to disturba customer

4

viewing the(old versionof the)catalog;i.e.,only when/if thecustomeractuallyissues
anorderfor anupdateditemshouldhebeinformedof thechange.

Eachactortypically performsseveralactivities. E.g. a customermaybesearching
thecatalog,orderingproducts,changinga passedorder. Observe thatin eachof these
activities, we may expectto show a differentWeb pageto the actorthat possiblyin-
cludesonly partof thedataandactionsavailableto thatgivenactor. Observealsothat
actionsperformedby an actor in a particularactivity may initiate otheractions. For
instance,whena customerordersa product,we maywantto updatethestock.Finally,
notethat it maybe interestingto log someof theactorsoperations,providing a trace
for lateranalysisor to settlepossibledisputes.

As mentionedin theapplication,althoughweareprimarily motivatedby electronic
commerceapplications,theActiveView systemappliesin generalto awide(andgrow-
ing) rangeof Webapplications.Themainemphasisis ondeclarativespecificationand
automaticgenerationof the application(by compilation)ratherthanproducinglarge
amountsof applicationspecificcode. We will first focus on the declarative specifi-
cation. We will seein Section5 variousways to customizethe applicationthat is
automaticallygenerated.

As mentionedin the introduction,anActiveView specificationis a declarative de-
scription of an application. It specifies,for eachkind of actor participatingin the
application: (i) the availabledataandoperations,(ii) the variousactivities, and(iii)
someactive rules. Thus,thegeneralspecificationof anapplicationhasthe following
form:

ActiveView application applicationname

ActiveView actor-kind� in application applicationname
view dataspecification
methodsdefinition
activities specification
active rules...

ActiveView actor-kind� in application applicationname...

Sucha specificationis compiledby theActiveView systeminto someactualappli-
cationthat allows the differentusersto performthe givensetof controlledactivities,
working interactively on thespecifieddata.An ActiveView applicationmayof course
usean existing applicationof the repositoryandin somewayscanalsobe seenasa
meansto export to theWebanexisting databaseapplicationin a controlledmanner.

We will detail in the following sectionsthe syntaxandsemanticsof the various
partsof a view specification. In the remainingof this section,we briefly introduce
theXML datamodelandquerylanguageon which thesystemreliesandthengive an
overview of thearchitectureof anActiveView application.

2.2 Data Model and Query Language

XML [W3Ce] is emerging as the new standardfor dataexchangeon the Web. Its
simplicity, thefeaturesandtoolsthatit supportsor will soonsupport(suchasdynamic
features,query language,sophisticatededitors,browsers,etc.) makes it particularly

5

<catalog>
<name> the catalog </name>
<dept> <name> Books </name>
 <item myid="b1"> <name> Leagues under the sea, J. Verne </name>
 <price> 4.75 </price>

 <suppliers supps="s1 s2" />
 <seealso otheritems="b2 b3"> Books by the same author </seealso>
 </item>
 <item myid="b2"> <name> Around the world in 80 Days, J. Verne </name>
 ...
 </item>
....
</dept>
....
</catalogue>

Figure1: TheCatalog

attractive to both end-usersandprogrammers.The databaseindustryhasrecognized
thepotentialof thisnew formatandmany vendorsarenow extendingtheir technology
soastoproposeXML repositories(e.g.,ArdentSoftware[Ard], Poet[Poe], ODI [Obj]).
Giventhatandthefactthatourgoalis to supportInternetapplicationssuchaselectronic
commerce,we chosethis emerging technologyas the basisfor our work. We next
briefly introduce(i) XML, (ii) theDocumentObjectModel(DOM is anAPI to develop
XML applications)and(iii) theXML querylanguagethatwill beusedthroughoutthis
paperfor defining active views. For lack of space,the presentationis ratherbrief.
Full definition of XML, DOM, and the query languageconstructscan be found in
[W3Cb, W3Ca,AQM

�
97, AMR

�
98].

XML Mostreadersareprobablyfamiliarwith HTML (Hypertext MarkupLanguage),
the languagecurrentlyusedto describeWeb pages.An HTML documentconsistsof
text interspersedwith tag fields suchas � I 	 ... � /I 	 to describethe layout
of thepage,the inclusionof pictures,hyperlinks,formsetc. An XML documentalso
featurestags. However, unlike HTML, thesetagsdo not provide instructionson how
thedocumentis to bedisplayed3 but ratherinformationon thelogical structureof the
document. To understandthis, considerFigure 1 which shows the XML document
correspondingto thecatalogof someelectroniccommerceapplication.The � item 	
� /item 	 tagsareusedto delimit theinformationcorrespondingto onecatalogitem,
eachitem consistingof a sequenceof taggedfieldssuchasname, price, etc. Note
that itemscanbegivenanidentifier (e.g.,myid=‘‘b1’’) which canbeusedto ref-
erencethemwithin the document(e.g.,in elementseealso) or in someotherdoc-
uments. As a matterof fact, in our example,eachitem referencesa list of supplier
elements(seefield suppliers) that are definedin someother documentsof our
repository.

An XML documentcanbetyped.This is achievedby meansof a DocumentType
Definition (DTD). Figure2 shows a possibleDTD for Document1. Note that each
taggedfield correspondsto oneelementdescriptionin theDTD. Also notethedefini-
tion of thethreeattributesfor theitem, suppliers andseealso elements,resp.

3This maybespecifiedin astyle-sheet.

6

<!DOCTYPE catalogDTD [
<!ELEMENT catalog (name, department+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT department (name, item+) >
<!ELEMENT item (name, price, picture, description, seealso, suppliers)
<!ATTLIST item itemid ID #REQUIRED>
....
<!ELEMENT suppliers EMPTY>
<!ATTLIST suppliers supps IDREFS #REQUIRED>
<!ELEMENT seealso (#PCDATA)
<!ATTLIST seealso otheritems IDREFS #REQUIRED>
....
]>

Figure2: TheCatalogDTD

The catalogue

4.75

catalog

name

item

dept

name

itemid: b1 pricename ... suppliers

supps: s1 s2

Books

dept

Leagues ...

Figure3: TheDom Representationof theCatalog

Theseattributesareusedto representreferencesamongelements.More precisely, ID
is usedto give identifiersto elementsandIDREFS to referencesuchidentifiers.

Typing is not a mandatoryfeaturein XML, i.e. onecanhave documents,or docu-
mentparts,without anassociatedDTD. However, sincemostoptimizationtechniques
rely on typing, it is realisticto assumethatlargeXML applicationswill comewith ap-
propriateDTDs. In thesequel,wewill denoteelementtypedefinitionsusingtheElem
suffix. For instance,catalogElem will denotethe type definition associatedwith
thecatalogelementof theDTD givenin Figure2. Also, we assumethat (usingXML
Namespacemechanismif needed)namesof elementtypesareuniquein ourcontext.

DOM DOM (DocumentObjectModel) providesanAPI to developapplicationsus-
ing XML data. It givesa uniform way to view andaccessXML documents.It is a
standardandfor instance,ArdentSoftwareandPoetrepositoriesuseDOM interfaces.
In DOM, anXML repositoryis abstractlydescribedasa graph,whoseinternalnodes
representdataelementsandwhoseleaves representtext or attributes. As expected,
theparent-childrelationshiptypically representsthe component-ofrelationship.This
is illustratedby Figure3 which shows a partial DOM representationof our catalog.
Rectanglesandovalsrepresent,respectively, elementandattributenodes.

TheDOM standardbasicallyconsistsof a collectionof classesandmethods,pro-

7

viding genericaccessandupdateinterfacefor thedifferentkindsof nodesin thegraph.
For instance,thegetElementsByTagName method,whenappliedon an element
node,returnsall the sub-elements(children)of the nodehaving the given tag name.
In the sequel,we assumethat the interfaceof eachelementtype cansupporta setof
methodsdefinedwithin theXML repository.4 This featureis essentialfor mostappli-
cations,e.g.,to defineamethodonDept elementthatwill allow to updatethepriceof
all its itemsaccordingto somechangeof VAT.

Query Language So far, XML doesnot provide a standardquerylanguage.How-
ever, thereis a major standardizationeffort in that direction[DFF

�
, W3Cc,W3Cd].

Our goalhereis not to proposea new languageor to competeagainstthe up coming
standard.Indeed,theActiveView systemwill usethis standardassoonasit becomes
available. In themeantime,we rely on theLorel language[AQM

�
97] to queryDOM

graphs.
For example,thefollowing querysearchesfor Item elementswhoseprice is less

than50 within thecatalogdocumentof Figure3.

select i
fr om i in Catalog.
 .Item
where i.Price � 50

Notethatwe usethe“ � ” symbolto denotepathsof arbitrarylength.
Theabovequeryconstructsanew DOM nodewhosechildrenaretheselectedItem

elements.But whatdataexactly, besidesthenodescorrespondingto theselecteditems,
is considereda part of the user’s view? Doesit includeall the DOM graphrootedat
thesenodes?And whataboutreferencednodes?(e.g. shouldthesuppliersreferenced
by theselecteditemsbeincludedor not?)

As observed in [AMR
�

98], it is usefulin a distributedenvironmentto provide in
thequerylanguagemeansfor specifyingtheexactscopeof aqueryresult.Furthermore,
aswe shall seelater, this will alsoturn to be usefulfor specifyingappropriateaccess
rights for theretrieveddata.We follow herethesyntaxof [AMR

�
98] andadda with

clauseto queries. This extra clausedescribes,usingpathexpressions,the subgraph
reachablefrom the selectedelementsto be includedin the view. For example,when
addedto theabove query, theclausewith i.name, i.price specifiesthatonly thename
andprice elementsof eachselecteditemshouldbeviewed.In general,awith clause
maycontaincomplex pathexpressionsandintroducenew variables.We will seesome
examplesof that in the sequel.Observe that the with clauseis a nonstandardsyntax
we areusing. We believe that an XML query languagewill supportsucha feature,
possiblyasa separateclauseashereor embeddedin theselectclauseof thequery.

2.3 Ar chitecture of an application

TheActiveView systemusestheO� XML repositorythatprovidesall theusualdatabase
featuressuchas persistency, versioning,concurrency control, etc. It is basedon a

4Notein particularthatthis featurewill besupportedby thecomingreleaseof theArdentSoftwareXML
repository.

8

 XML
Repository

Repository
 server

(DOM) Interface
(HTML with
 Java applets)

 Interface
(HTML with
 Java applets)

AV application

Active View
Application
 Manager
(Java DOM)

Authentication

Active Rules
 Manager

 Tracing
Manager

Active View
(Java DOM)

Active View
(Java DOM)

.

.

.

Notification
RMI

Figure4: Architectureof anapplication

client/server architecture. An active view application(suchas the one that will be
specifiedin the next sections)consistsof several independentclientscommunicating
betweenthemandwith the repositoryserver throughnotifications. Clientsarepro-
grammedin Java,andcommunicatewith theserverusingtheDOM interface.Figure4
showsthevariouscomponentsof oneapplication(obviously, severalsuchapplications
mayrun simultaneouslyon thesameserver). As canbenoted,therearetwo kindsof
clients: theactiveview applicationmanager, which is uniqueperapplication,andthe
activeview clients. Theselatter receive/sendremotemethodinvocationsfrom/to the
end-usersinterfaces.

The active view application manager consistsof a setof modulesmanaging:(i)
connectionandauthentication,(ii) tracing,and(iii) activerules.More precisely:

1. The connection/authenticationmoduleis in charge of authenticatingusersand
giving themthemeansto create5 or quit a view (via thenetwork).

2. Thetracingmodulekeepsa log of specifiedevents.Theseeventsaregenerated
by theapplicationor by someviews.

3. Theactive rule modulemanagesa programmer-specifiedsetof rules. (We will
seetheirrolein theapplicationlateron). Theserulesarefiredaccordingto events
andmayhave impacton the repositoryandon someor all of the active views.
They form theessentialcomponentsto specifya businessmodel.

5An active view is startedfrom theWebusingaparticularURL.

9

Theselasttwo modulesrely heavily onastreamof notificationsmanagedby therepos-
itory server thatenablestheinteractionbetweenviewsat run time. Thesenotifications
aregeneratedaccordingto the views specification. Two kinds of eventscanbe no-
tified: (i) eventsgeneratedby the repositoryserver after the creation/deletion/update
of objectsand(ii) userdefinedeventsgeneratedby the clients. The O� notifications
mechanismonwhichwerely hasbeenpartiallydevelopedby theVersoteamatINRIA.

An activeview is basicallyanobjectof ourapplication.In thecurrentversionof the
system,it is implementedin Java. The objectbelongsto a (subclassof a) particular
classcalledActiveView, which is anabstractionof theclassweusein theactualimple-
mentation.This classcontainscertaininstancevariables(whoserole will beexplained
later), including in particularthe owner instancevariablethat is usedfor storing in-
formationon the userinitiating the view. The classalsohassomemethodssuchas
transaction/commit/abortto handlea transactionmode,or init/quit/sleep/resume.An
active view is generallyrelatedto an actualWeb window openedby a userof the
system. Someviews independentof any interfacemay also be introduced,e.g., for
bookkeeping.An activeview hasaccessto therepositoryaswell asto somelocaldata
(theinstancevariablesof theview object). It reactsto usercommandsandmaybere-
freshedaccordingto notificationssentby theserveror theview manager. Themethods
availableon a view dependon theusersaccessrightsandmayallow him/herto read,
load,write, etc.partor thewholethedatait sees.

Users interfaces are currently being implementedas dynamicHTML documents
with embeddedJava applets.Our goal is to switchto XML assoonasXML browser
supportsthe neededdynamicfeatures. Thereis oneHTML documentper userand
activity of that user. The appletsarebuilt on top of an API generatedby the system
accordingto the specification.Although the systemgeneratesdefault interfaces,the
applicationprogrammermay redefine/customizethem using the generatedAPI that
capturesthesemanticsof theapplication.

In principle,theserver, clientsandinterfacesmayrunondifferentmachines.Typi-
cally, theinterfaceis actuallyona remotesystem.Theview datais obtainedby check-
in/check-out,so repositorychangesarenot in generalimmediatelypropagatedto the
view althoughthey canbe propagated,if specifiedby the programmer. On the other
hand,theview andtheinterfaceseethesamedata.

3 Data and methodspecification

As statedin the previoussection,an active view applicationinvolvesseveral sortsof
actors,eachwith adifferentview of thesystem.Thespecificationof eachkind of view
consistsof four partsthatdefinerespectively (i) data,(ii) methods,(iii) activities and
(iv) active rules.In this section,we illustratehow thevieweddataandthemethodsare
specifiedanddiscussrelatedissues.Theactivities andactive ruleswill beconsidered
in thenext section.

10

3.1 Data specification

An active view has local instancevariablesand derived onesdefinedusing XML-
queries.Whenspecifyingderiveddata,onealsospecifiestheaccessmodes(e.g.,read).
We illustratethis hereusinga very simpleexamplein which we considerthe interac-
tion of threekindsof users:asetof CustomersandVendorsandasingleDispatcher. A
customermaybrowsethecatalog,passor modify anorder. Thedispatcheris in charge
of assigningvendorsto customers.At any time, thereis only oneactive dispatcher.
Whensomeonetries to enterthe systemasa dispatcher, the personis simply turned
down if a dispatcheris alreadyin chargeor if thepersonhasnot theproperqualifica-
tion to bedispatcher. A vendoris mainly in chargeof somecustomersandmayinteract
with them,e.g.,by offering themnew promotions.

Considerfirst thecustomerview. A simplemodeof importingdatato theview is
read. This is whatis achievedfor thecatalogasfollows:

let catalog: CatalogElem
be RepCatalog
with catalog.

mode readall

Thisessentiallyimportstherootelementof theXML repositorynamedRepCatalog (in
our examples,therepositoryentrypointsareprefixedby Rep), and,asspecifiedin the
with statement,all thedatain theRepCatalog document.That is, theentireDOM tree
rootedat RepCatalog is imported. Themodeclausespecifiesthatwe canreadall we
imported.This laststatementis in factnotneededsincethedefaulton importeddatais
readfor everything.

The possiblemodesbesidereadarewrite, append, and remove. An exampleof
appendin theVendoractiveview is asfollows:

let promos:(PromoElem)*
be RepPromos
with promos.

mode appendpromos

Thisallows thevendorsto seethesetof promotions(implicit read)andto appendnew
promotionsto it. Removal of promotionsfrom within the view is disallowed. The
expression(PromoElem)*indicatesthat theview documentconsistsof a sequenceof
promotionelements6. To seea slightly morecomplex example,supposevendorsare
alsoallowedto updatetheend-dateof promotions.This is specifiedasfollows:

let promos:(PromoElem)*
be RepPromos
with promos.end-dateX, promos.

mode write X, appendpromos

The querybinds to promotionsend-dates. The expressionwrite X indicatesthat
thesecanbemodifiedby vendors.

6In somecasesit is possibleto derive thetypeof anXML query[MS99]. Wewill ignorethis issuehere.

11

Sofar, wehavedefinedonly derivedvariables.Local instancevariablesaredefined
in thesameway, exceptthatthey arenotassociatedwith aqueryspecifyingtheirvalue.
Let usillustratethis with thevariablecaddyin thecustomerview.

local caddy: (ItemElem)*
mode append, remove

As illustratedabove, thewith clauseis usedto specifywhich datacanbereached
(i.e.,viewed)from theobjectsboundto somequeryvariables.Specifyingthis for each
andeveryvariablemaybetedious,especiallywhenthesameelementtypeis reachable
from differentvariablesandwe want the samescopeandaccessmodesin all cases.
Oneway to simplify the specificationis to specify thingsat the elementtype level,
i.e.. definefor a givenelementtype,thedatathatcanbeseenor modifiedwhensuch
elementsareaccessed.

To seean example, rememberthat the catalogcontainsreferencesto suppliers.
Thefollowing instruction,whenaddedto thecustomerview, specifiesthatwhenevera
supplierelementis includedin theview, its nameandfull descriptionarealsoincluded,
in readmode(default), and its evaluationsare includedin an appendmode(i.e., a
customermayaddhis/herown evaluationof thesupplier):

element SupplierElem
with self.name,self.description.
 , self.evaluationsE
mode appendE

3.2 Mor eon readand write

Weconsidernext two issuesrelatedto read/write.Thefirst hasto dowith thematerial-
izationof derivedinstancevariables.Thesecondis relatedto writesandtransactions.

An issueis whethertheviews thatwe areusingarematerializedor not (loadedin
theclient interface).In general,we leave it to thesystemto decidewhethera derived
instancevariableof theview is fully computedatinitializationtime,partiallycomputed
only (e.g.,two levelsof thetreeof thequeryresultarematerialized),or computed(fully
or partly)only whentherearespecificrequestsfor datait contains.

The currentdefault in the systemis that instancevariablesarefully loadedat the
initialization of the view. Also, whenwe readan instancevariable,we readall ele-
mentsspecifiedby thewith clausethatarecontainedin thesamedocument.Elements
accessibleby referencesto otherdocumentsareloadedonly uponrequest.A similar
philosophyis followed when readingan elementbasedon an elementspecification.
Observe however that certainapplicationsmay have somespecificdifferentrequire-
ments:

1. Consideranapplicationthatallowstheuserto checkoutareportto work on it at
home,disconnectedfrom therepository. Thenthesystemshouldloadtheentire
report.Supposethereportincludesbibliographiccitationsthatarereferencesto
someotherbibliographydocument.Thesystemshouldalsoloadthemimmedi-
atelysincetheconnectionmaynot exist anymorewhentheusermayrequestto
seeoneof thesecitations.

12

2. On theotherhand,considera stockmarket application.We do not wantto load
in advanceall trading ratessincesuchinformationbecomesrapidly stale. In
thiscaseit is betterwait until auserexplicitly requestsaparticulartradingvalue
beforeloadingit.

To overrule the default, one can usetwo specifickinds of readmodes,namelyde-
ferredreador immediateread. Thefirst instructsthesystemto loadelementsonly on
demand,while the later indicatesthat elementsshouldbe loadedimmediatelywhen
encountered.Thekeyword readcanbereplacedby oneof thesemorespecificmodes
anywherein a view specification.For instance,onemayaddthekeyword deferred to
thereadmodein theCustomerspecificationof catalog. Theelementscontainedin the
catalogwill thennot be loadedat the initialization of theview but only uponexplicit
requestfrom thecustomer.

Oncesomedatais materializedandloadedinto theclient’s interface,theusercan
view it or modify it, accordingto thespecifiedaccessmodes.Observe that theseup-
datesarenot propagatedto thedatabaseuntil explicitly requestedby theuser(i.e. by
anexplicit call to thewrite methodthatis partof theview interface).We will consider
theproblemof updatepropagationin moredetailslateron. For now we only want to
highlight theissueof transactions.

By default, a view is not in a transactionmode. Using basemethodsof the class
ActiveView, a view canstarta transactionandterminatesit with an abortor commit.
Readsareallowed outsidetransactions;so by default all readsrequestedby a view
aredirty, i.e., no locks are installed. For updates,all updatesfrom a methodcall in
the repositoryissuedby a view arerequiredto be within a transaction.If an update
is requestedasa consequenceof somemethodcall andthe view is not in transaction
mode,an error is raised. The only exceptionis whenthe userissuesan explicit call
to the write methodmentionedabove. In this case,if the view is not alreadyin a
transaction,a new transactionis automaticallystartedthat lastsfor thedurationof the
write.

3.3 Methods

The active view specificationalsoincludesdefinition of the methodsavailableto the
userin the given context. For example,assumethat the dispatcher(moreprecisely,
theuserwho is runningadispatcherview) is alwaysawareof theconnectedcustomers
in needof a vendorandof the active vendors. To supportthis, the dispatcherview
may containinstancevariableswhosevaluesare computedfrom the repositoryand
describethe relevant customerand vendorsets. The dispatcheralso hasa method,
namelyassign, thatallows to performassignments,i.e., assigna customerto vendor.
In theview specification,this methodis definedasfollows:

method assign(v:Vendor, c: Customer) is v � attend(c)

Notethat theimplementationof thatmethodis specifiedin theview. But it essen-
tially consistsin calling somemethodknown by the repository. Therefore,the view
specificationdoesnot containrealcode(besidesXML queries)andis independentof

13

any particularprogramminglanguage.Themethodsin theXML repositorymaybein
Javaor C++ or in any languagesupportedby DOM andtheparticularrepository.

Whenactivatedby the applicationdispatcher, the above methodwill senda mes-
sageto onespecificvendor. Thismessagewill entailtheexecutionof somecodewithin
theactive view correspondingto thevendor(seeFigure4) and,potentially, thevendor
interfacewill bemodified.Another, sometimesmoreinterestingwayto modify aclient
interface,is to have it run its own code,independentlyfrom the repositoryserver or
clients. In orderto do, theActiveView systemallows thedeclarationof remotemeth-
ods. For instance,onecanspecifythefollowing remotemethodin theVendorview:

remotemethod new customer(c: Customer)

and changethe ����������� methodto also invoke ����� ��� ��!#"�$%��& . Note that the code
of the methodis not specified. In the default application,it correspondsto a simple
message with the nameof the methodas title and the parametersof the methodas
content.Thusin thedefaultapplication,thevendorwho is assignedto anew customer
will receiveamessagetitled “new customer”with anobjectCustomerin it. Thevisible
portionof this objectwill have to bedefinedwith anelementstatementin theVendor
specification.Now, aswill beexplainedin Section5, this default applicationis in fact
built on top of anAPI, generatedby theapplicationcompiler. A programmerdesiring
to customizethe interfacehasthemeansto redefinethemethodnew customersothat
its own codeis executedwhenthis call is receivedby theinterface.

3.4 AccessRights

It shouldbestressedthataccessrightshave to bemuchmoresophisticatedin thekind
of Web applicationswe aretargeting,e.g.,electroniccommerceapplications,thanin
moststandardrepositoryapplications. We thereforeprovide the meansto attachan
accesspredicateto any instancevariableor methodof a view. This predicatemayuse,
for instance,theactualcontentof theview dataandtheuseridentification.

In general,accessrightsdeterminethemodesof instancevariables(e.g.,read/write),
anddetermineif methodsareactive or not. For instance,a customermay be disal-
lowedto submitordersif its approvedcredit is negativeor if he/sheis in thegroupof
blacklistedclients.This canbeimplementedby addinganaccesscontrolclauseto the
specificationof themethodsubmitorder:

method submitorder() is self.owner� passorder(neworder)
if (owner� approved credit() ' = 0 and !(“blacklisted” in owner� group))

In the if clause,weallow arbitraryXML queriesreturninga boolean.

Remark : Accessright maybequiteexpensive to check.In many cases,theaccess
rights will dependonly on the parametersof the initialization procedureof the view.
Theaccessrightsmaythenbeevaluatedonceandfor all duringtheinitializationof the
view. This optimizationmay result in enormousgainsin performance.But observe
that it maybedifficult to detectthat it is indeedthecasethatsomerightsdependonly
on immutablevaluesof the view. So, to indicateto the compiler that accesswrites

14

have to becomputedat initialization only, onecanusetheclausestatic if insteadof if
to specifytheaccessrights. (

To concludethis section,weconsidertheissueof updatepropagation.

3.5 Updatepropagation

In onedirection,whena derived attribute is modified in the view anda write is re-
quested,we have to propagatethechangefrom theview to therepository. In theother
direction,whenthe repositorychangesanda read is requestedfor somederived at-
tribute whosevaluewasalreadypreviously computedfor the view, we have to prop-
agatethe changesfrom the repositoryto the view. The detectionof changeswill be
consideredin Section4.

Let usconsiderfirst theview updateproblem.Wetouchhereupononecritical issue
in databases.Most workson view updateshave focusedon updatingviewsdefinedby
complex relationalqueriesinvolving joins and projections,e.g., [BS81]. This is a
quitecomplex problemthat we avoid hereby an extensive useof objectsandsimply
disallowing updatesto viewsdefinedby too complex queries.

We maintaina correspondencebetweentherepositoryandthe modifiableportion
of theview. In thebestcases,anatomicvaluein theview (sayastring)correspondsto
anatomicvaluein therepositoryandthemodificationof thevaluein theview is eas-
ily propagatedto the repository. In othercases,a view valuedoesnot have any exact
correspondencein therepository(e.g.,it is definedasa selectionon somecollection).
We canstill accepttheupdateandpropagateit to therepositoryin somesimpleunam-
biguouscases.In many cases,we simply disallow theupdatethroughtheview unless
theapplicationprogrammerprovidesa methodfor it – andin thatcase,thesystemis
not responsiblefor correctlypropagatingtheupdate.

We mentionnext two importantcaseswheretheupdateis propagated,moreon the
subjectcanbefoundin [ACM98]:

1. Strict correspondencebetweentwo collections: this is the casewheneachele-
mentin the repositorycollectionhasa correspondingelementin theview, e.g.,
a setof objectsandthe samesetof objectswith a different interfacespecified
by theview. Updatesto elementsarepropagatedwhenpossible,i.e., whenthe
propagationis definedat the elementlevel. If an elementis removedfrom the
collection,we remove it from thecorrespondingrepositorycollection. If oneis
inserted,weconstructa correspondingelement(eventuallywith adefault value)
if possible.

2. Partial correspondencebetweencollections:this mayhappenif theview is ob-
tainedby filtering only someelementsin a repositorycollection(andpossibly
restructuringthem). This is a casequite frequentin practicethat raisesa num-
berof issues.Themaindifficulty is uponinsertionof anelement(in theview)
to verify that the view elementthat hasbeeninsertedwhenpropagatedto the
repositoryactuallyresultsin anobjectthatpassesthefiltering test. If this is not
thecase,theupdateis simply rejected.

15

To illustratethepreviousdiscussion,we considera definitionof Customerwherea
customermaymodify his ordersby updatinganinstancevariablemyorders definedin
theview:

let myorders:(MyOrderElem)*
be select O

fr om O in RepOrders
where O.buyer= owner

with O.*
mode write all exceptO.buyer

A customermay now updatethe result of a filtering of the entiresetof orders,Re-
pOrders. The systemmaintainsa correspondencebetweenthe elementsof myorders
andthoseof RepOrders, so thatanupdateto suchelementscanbe propagatedto the
repository. Theremoval of suchanelementwould resultin removing thecorrespond-
ing elementfrom RepOrders. Theadditionof a new elementwould resultin addinga
new orderto RepOrder. Observe that the customercannotmodify the identity of the
buyerwho issueda passedorderbecauseof exceptO.buyer. However, asit is defined
here,thecustomermayin principleaddanew orderasif it wasissuedby anothercus-
tomerby simply putting the descriptionof anothercustomerin the buyer field. This
couldbeanticipatedusingactiverulesto bedefinedfurther.

Let us now considerthe repositoryupdatepropagation problem. An issueis the
re-computationof someview valueswhenthedatabasechanges.Supposethata user
hasloadedin aview thecatalogandasksto re-readthiscatalogatsomelatertime. The
sequenceof updatesbetweenthe two readsis not available. Onemayconsiderusing
therepositoryversioningmechanism.It would suffice to computethe) betweenthe
versiontheuserhasandthecurrentversion.Clearly, sendinga) insteadof theentire
valuemayresultin largesaving in communication.Versionsarenot consideredin the
ActiveView systemfor themoment.We will seefurtherhow, in somecases,we may
havethelist of updatesandconsiderdirectly theincrementalmaintenanceof theview.

4 Active features

Theprevioussectionconsideredthestaticpartof theview definition.Wenow illustrate
how aview canbemadeactive. Notethatwetouchhereasubjectin closerelationwith
workflow management.Themaindifferencebetweenour approachandworkflows is
theimportancewe give to dataspecification.

Workflow systemsgivedeclarativemeansfor specifyingtheoperationsflow, but the
datainvolvedis typically describedin averyabstractmanner, oftendisconnectedfrom
the descriptionof the flow itself. This makesthe analysisof the connectionbetween
variouspiecesof information,their sources,andmutualeffect of operationson them,
very hard. A goodexampleis the newly adoptedstandard,UML [OMG97], which
includesstate-chartsandactivity diagramsfor businessprocessmodelingbut where
dataobjects,whosevalueareusedor determinedby the action,aremodeledonly as
parametersof somemessages.

Most workflow modelsavailable today lack a semanticdefinition other than the
operationaldefinition implied by the tools [KR96]. Themeta-modelproposedby the

16

Workflow ManagementCoalition[sta95] connectsinputandoutputdatato activity, but
doesn’t provide implementationdetails.Dueto lack of concreteguidelines,workflow
managementsystemaspromotedby industry, usesa process-centricapproach.Those
modelsareextendedby customizedfeaturesfor modelingandexecutingapplications,
but do not haveadequatesupportto satisfythemodelingandcorrectnessrequirements
of advancedapplications[AAA

�
96]. Someof the deficienciesinclude lack of sup-

port to keeptrack of datadependenciesfor distributedworkflow, lack of supportto
controlconcurrentaccessesto objectsmanagedby non-transactionalactivities, insuffi-
cientsupportfor recoveryetc.

In our system,activities arespecifiedin two steps.First, for eachkind of actors
(i.e., eachview), the programmerdeclaresa setof activities alongwith the dataand
methodsthatcanbeusedin thoseactivities. Then,asetof rulesspecifiesthesemantics
of theview. Typically, rulesspecifyhow to reactto certainevents.Two particularkinds
of rulesareof particularimportance:(i) notificationrulesthatallow to benotifiedthat
certaineventstookplace,and(ii) tracingrulesthatallow to keepalog of someselected
events.

Wenext considerthedeclarationof activities,thegeneralrules,thenthenotification
andtracingrules.

4.1 Declaring Activities

Froman end-userviewpoint, eachactivity correspondsto a hypertext documentwith
somedataandbuttons.For instance,theactivity search definedwithin acustomerview
will show thecatalog,somepromotions,a collectionof selecteditems(i.e., a caddy)
andsomebuttonsallowing theuserto searchthecatalog,addsomeitemsto thecaddy,
order(i.e.,changeactivity) or quit theapplication.This is specifiedasfollows:

activity search includes
catalog,promotions,caddy
search(),goto order(),add to caddy(),quit()

A defaultstylesheetis attachedto eachactivity. Moregenerally, anactivity declaration
hasthefollowing form:

activity � activity-name' includes
� variable-name' * � method-name' * * all

where � variable-name	 (resp. � method-name) denotevariables(resp. methods)
specifiedwithin theview wheretheactivity is beingdefined.Thekeywordall maybe
usedto specifythatall variablesandmethodsof theview arevisible.

It shouldbe notedthat althougha given activity seesonly a specificpart of the
view statedin its definition, all the ActiveView datais maintained(at leastvirtually)
by thesystem.This allows differentnonconsecutive activities to sharedata,andis in
particularusefulwhena userresumessomeactivity afterhaving gonetemporarilyto
anotherone.

17

4.2 Rules

Weconsiderhereverystandardactiverules.Rulesarespecifiedinsideaview. If global
rulesneedto beconsideredin anapplication,onecanclearlyaddaparticularview that
doesit in thestyleof theDispatcher of our exampleapplication.This providessome
modularwayof specifyingactive rules.

Thespecificationof a view maythereforecontainsomeactive rules.Therulesare
processedby a rule manager. Rulesareexpressionsof theform:

on � event' if � condition' do � action'

Thecomponentsof anactive rule aredefinedasfollows:

� the eventsare (remote)methodscalls (e.g., switch of activity), operationson
instancevariablesor objects(i.e., write/read/append/remove) anddetectionof
changes;

� theconditionsareXML queriesreturninga boolean;and

� the actionsare(remote)methodscalls, operationson instancevariablesor ob-
jects,notificationsor traces.

We illustrateactive ruleswith somesimpleexamples.Thediscussionson variable
changes,notificationsandtracesarepostponedto thefollowing sections.

Supposethatwhena new orderis issued,we wantto modify thestockof thestore.
This maybe achievedby a method,sayupdate-stock. The following rule in the Dis-
patcherview maybeused:

on submit order(owner,neworder)
do neworder� update-stock()

(An absentif clauseis assumedto bealwaystrue.)
Next, let us considerremotemethodcalls. For instance,supposethat a remote

methodmissivehasbeendefinedin theCustomerview andthatwewantto sendapar-
ticularwelcome-backmessageto goodcustomerswhenthenstarttheirsearch activity.
Thiscanbeachievedby definingthefollowing rule:

on goto(owner, activity)
if activity = Customer::searchand “goodcustomer”in owner� group
do owner� missive(“Welcomeback.We appreciateyour business.”)

Observethatthebindingsof activityandownerin thetriggeringeventis usedby the if
clause.

4.3 Notifications and changemonitoring

Notificationsarebasedon remotemethodcalls that canbe sentto the interfaceof a
view to notify thatcertainevents(asspecifiedin theprevioussection)have occurred.
An importantkind of eventsare (potential)changesof an instancevariable. In the
applicationdefault interface,thedetectionof a changefor an instancevariable(or an

18

object)resultsin changingthe backgroundcolor for the displayof the variable. The
notification of other eventsresultsin a messagebeing displayedto the userwith a
“notification” icon. Thesemessagesresembletheremotemethodcallswe alreadydis-
cussed.Indeed,notificationmaybecustomizedin thesamemannerasremotemethod
calls.

To seeanexample,supposevendorsneedto benotifiedof submissionsof important
ordersby customersthey arein chargeof. This is achievedby thefollowing rule in the
Vendorview:

on submit order(owner,neworder)
if neworder.amount' 10000and owner in MyCustomers
do notify-me

In this statement,the keyword notify-mespecifiesthat the particularevent must be
notifiedto thisview. In somesense,theview is issuingasubscriptionto certainevents.
Observethatonly theviews thatexplicitly subscribearenotified.

Now, let usconsiderderivedinstancevariablemonitoring. It is easyto detectthat
a repositoryobjecthaschanged.If aninstancevariableis definedby a complex query,
thesituationis moreintricate. To seeanexample,considerthe instancevariablepro-
mosin the Customerview. In orderto have the customerbe notified of a changein
its promos, the following rule must be included(changed promosindicatesthat the
variablepromoshaschanged):

on changedpromos do notify-me

Thevariablepromosmaychangeif a new promotionthatappliesto theparticularcus-
tomeris appendedor deleted.It mayalsochangeif oneexistingpromotionis modified.
Theview thereforemaintainsthe list of objectswhosechangemayaffect thederived
data.(In thiscase,thecollectionobjectandeachelementin thecollection.)Whensuch
apossiblechangehasbeendetected,two casesoccur:

1. Thederiveddatacannotbemaintainedincrementally. In this casea notification
is issued.Clearly, this mayresultin false“alarms”.

2. The derived datacanbe maintainedincrementally. An incrementalevaluation
of the changesis performedin the style of [AMR

�
98] to seewhetheractually

changesoccurred.No falsealarmmayoccur.

Notification arejust warnings. Datacanbe updatedby the userby clicking on a
readbuttonor, automatically, by a customizeduser-interface(Section5). Evenwhen
anincrementalevaluationhasbeenusedandthenew valueis known by thesystem,it
is sentto the client only whenrequested.It is possibleto includein the view a rule
to actuallyforcechangesto besentto theclient wheneverdetected.For instance,one
couldusetherule:

on changedpromos do promos� read()

In thisparticularcase,thederivedinstancevariableis simpleenoughto bemaintainable
incrementally. In case(2), sucha statementmay be costly sinceeachdetectionof
possiblechangewill trigger the full re-computationof the instancevariableand its
shippingto theclient.

19

Remark Theneedto “monitor” instancevariablesor to “refresh”themwhenchanges
occuris encounteredin many applications.We thereforeprovide syntacticshort-cuts
to specify suchfeatureswithout having to explicitly write the correspondingrules.
Insteadof using let � variable	 in theview specification,onemayuselet monitored
� variable	 or let fresh � variable	 . Thisresultsin generatingtheappropriaterulesto
notify changesandeventually(in thecaseof fresh) triggerautomaticallya readwhen
achangeis detected.

4.4 Traces

Typically, databasesystemsprovide logsthatare(i) low leveland(ii) difficult or impos-
sibleto access.Yet, tracingtherun of a businesstransactionis essentialfor electronic
commerceapplications.This may be requiredfor legal reasons,to be ableto handle
eventualdisputesbetweenthe participants,or to analyzebuying patterns.In Active-
View, eventsandrulesareat thecoreof thetracermodule.We explain this next.

In aview specification,in thesamemannerwerequestto notify theview of certain
events,we can requestto trace them, i.e., notify the tracer. For instance,we may
requestto traceall ordersubmissions:

on submit order(owner,neworder) do trace

If sucha statementis included,thetracerwill benotifiedof thenew ordersandrecord
themin therepository. Thetraceralsorecordstheparametersandthetimeof theevent.
Thelog canthenbeviewedasapartialhistoryof theactivity of theapplicationandcan
bequeried.For instance,thefollowingqueryreturnstheordersof aparticularcustomer
in 1998:

select O
fr om O in Trace.submitorder
where O.neworder.buyer.name= ”J. Doe” and O.date= 98

In thisquery, Traceis anentry-pointto theXML repositorythatallowsto accesstraces.

5 Default interface and customization

Comparedto traditionaldatabaseapplications,electroniccommerceand,moregener-
ally, Web applicationsareevolving very rapidly accordingto new commercialneeds.
For this reason,theActiveView systemnot only supportsthedeclarative definitionof
viewsandactivities on theserverside,but alsoa fastexploitationon theend-userside
by generatingdefaultuser interfaces. In this section,we briefly discussthe default
interface,thenvariousmeansof customizingtheapplicationandits interface.

5.1 Default User-Interface

Whenauserstartsa new activeview clientby following a URL link, e.g.

http://www.activestore.com/customer,

20

adefaultHTML pageis displayedandasksfor identificationinformationbeforepropos-
ing all possibleactivities thatcanbeexecutedby theregistereduser. For example,all
unregisteredclientsmaybeableto browsethecatalog(activity search), but only regis-
tereduserscanalsobuy theselectedproducts(activity pay).

Activitiesform thebasicinterfacemetaphorsperceivedby anend-users(e.g.client)
interactingwith the ActiveView system. Eachactivity is representedby a distinct
HTML pagewhich displaysall accessiblevariablesandmethodsin form of simple
applets/buttons. (As previously mentioned,we intend to move soon to XML and
stylesheets.)Applets are necessaryto implementactive featuresfor calling meth-
odsandmodifying/monitoringvariablesby communicatingwith the systemvia Java
RMI calls (seearchitecturein Figure4). Essentially, eachvariablecorrespondsto an
appletediting the variablevalueandproviding specificbuttonsfor all accessmodes
(read/write/append/remove) definedin theview.

The editing of view variableis an interestingissue. The ActiveView systemis
basedon theXML documentmodelandsomeXML querylanguagefor representing
andqueryingdata.ThisalsomeansthatvariablevaluesareXML fragmentsthatshould
bedynamicallymergedinto a comprehensiveanduniform XML document.Whereas
this issueis outsidethe scopeof this paper, we believe that future XML browsers
will proposesomescript languagefor modifying documentsdynamicallybasedon
the DOM standard.Observe that a similar mechanismis alreadyexisting for HTML
browsersin form of theJavaScriptlanguage.

View methodsarecalledby simplebutton clicks. For example,in order to add
a productto the caddy, the usercalls a methodadd to caddy which addsa selected
productto thecaddy. Observethatthisassumestobeabletoselectaproduct,e.g.,in the
catalog,andprovideit asargumentto add to caddy. As mentionedin Section3, remote
methods,e.g.new customer(c :Customer) for vendors,have to be implementedby
theuserinterface.As alreadymentioned,in thedefaultuserinterface,remotemethods
simply displaytheparametersin thescreenof thecorrespondingvendor.

5.2 Application Customization

As definedsofaranActiveView applicationincludespracticallynocodebesidesXML
queries.Althoughwedidnotinsistonthat,it is clearthatit maycall repositorymethods
thatareimplementedin conventional(DOM compatible)programminglanguagessuch
asC++ or Java. Suchcodemaybepartof databaseapplicationsomewhatindependent
of theview applicationitself. View applicationscanalsobecustomizedin variousways
at thecostof writing someview specificcode.For instance,onemaywantto redefine
theauthenticationprocedureor theHTML pagelayout. (It is alsoobviousthatseveral
customizationtasks(e.g.replacedefault authenticationprocedures)areavailableonly
to thesystemadministrator(s).)Customizationis briefly considerednext.

Customizing view components EachWeb client interfaceis communicatingwith
an active view which is an instanceof a subclassof classActiveView. For instance,
Customeris a particularsubclassof ActiveView. Instancesof this classprovide the
necessaryfunctionalitiesfor logginginto thesystem(init, owner, start date),choosing

21

amongavailableactivities andcontrolling the view status(quit, transaction,commit,
abort,sleep,resume,timeout,seeSection3 for details).Theclassfeaturesalsoinstance
variables(i) the kind of the view (e.g.vendor, client), (ii) the owner, (iii) the dateof
creation,(iv) the currentstatus(running,asleep),(v) the currentactivity, and(vi) the
list of otheravailableactivities.

Customizationessentiallyis possibleby creatingsubclassesandoverloadingexist-
ing methodcodes.For example,the init methodis executedwhena new userlogsinto
thesystem(createsa new view instance).It executesa privateauthenticationmethod
thatverifies(by passwordor moresophisticatedthird-partyauthenticationservices)the
identityof theuserandfills in thevalueof owner. Bothmethodsinit andauthentication
aredefinedin theclassActiveView andmayberedefinedin a subclass,e.g.,Customer,
by the administrator, for example,to changethe accessright rule (Section3), autho-
rizationmechanismor addadditionalpreprocessing.

To seeanotherexample,considertimeout. Sinceactive view applicationsrun over
thenetwork thereis no meansto control the livelinessof a network client. Therefore,
view objectscomeequippedwith a simpletimeoutmethodthatmayforcea view into
sleepmodeif theview hasbeeninactive for too long. (The“too long” is specifiedby
default.) Theapplicationprogrammermaydecideto redefinethis methodin a partic-
ular subclassof ActiveView andindeedmayalsomake it take into considerationsome
valuesof the view or specificresourceparameters(transmitrate,client architecture,
...).

Customizing the interface Onemay customizethe interfaceat several levels: pre-
sentation,methodredefinitionor total rewriting of theinterface.

Userschooseamongvariousactivities which correspond(by default) to different
HTML and,in thefuture,XML pages.At thelowestlevel, it is obviouslyvery easyto
modify thepresentationof anXML pageby simply changingthestylesheet.Notethat
by doingso,onemayhidecertainfunctionalitiesof theparticularactivity.

Eachinterfaceis attachedto aparticularactivity thatspecifiesthedataand(remote)
methodsavailable.Eachsuchinterfaceis implementedby anappletthatcommunicates
with a remoteobjectthatcorrespondsto thatparticularActivity. For instance,we may
have an Activity:Customerclass. It is possibleto redefinethe codeof somemethods
of the class. For instance,by default, remotemethodsdisplay their argumentson a
new screen.Onemay decideto modify this behavior. For instance,whena vendor
receivesthenotificationthatanew customeris assignedto him/her, onemayalsowant
to automaticallysave in a local file thedataaboutthisparticularcustomer.

Finally, onemay want to completelyredefinethe interfaceto someactivity, e.g.,
Activity:Customer. TheAPI to theActiveView systemfor this activity remainsfixed.
It is however possibleto developa Java applet(or application)that interactswith the
ActiveView systemvia this particularAPI.

Acknowledgments We thank Victor Vianu, Brad Fordhamand YelenaYeshafor
works with oneof the authors[AVFY98] that somewhat initiated the presentwork.
Thefirst prototypeof thesystemwasimplementedby SachaArnoud,MohamedBani,
RhiadDhaouandFredericHubert.BrendanHills is thankedfor hiswork onthenew in-

22

terfaceto ActiveView. We thankGuyFerran,SophieGamerman,Jean-ClaudeMamou
(from ArdentSoftware)andArnaudSahuguetfor discussionson this work. Finally,
membersof the VersoandRodingroupsat INRIA providedvaluablecomments,and
in particular, SihemAmer-Yahia,JérômeSiméonandAnne-MarieVercoustre.

References

[AAA
�

96] G. Alonso,D. Agrawal, A. El Abbadi,Mohan.U. Kamath,R. Guenthoer,
andC. Mohan. Advancedtransactionmodelsin workflow contexts. In
Proc. Int. Conferenceon Data Engineering, 1996.

[ACM98] S.Abiteboul,S.Cluet,andT. Milo. A logicalview of structuredfiles. The
VLDBJournal, 7(2),May 1998.

[AMR
�

98] S. Abiteboul, J. McHugh,M. Rys,V. Vassalos,andJ. L. Wiener. Incre-
mentalmaintenancefor materializedviews over semistructureddata. In
Int. Conf. on veryLargeDataBases(VLDB), New-York, August1998.

[AQM
�

97] S.Abiteboul,D. Quass,J.McHugh,J.Widom,andJ.L. Wiener. Thelorel
querylanguagefor semistructureddata. InternationalJournal on Digital
Libraries, 1(1),April 1997.

[Ard] ArdentSoftware. ”http://www.ardentsoftware.fr” .

[AVFY98] S.Abiteboul,V. Vianu,B. Fordham,andY. Yesha.Relationaltransducers
for electroniccommerce.In ACM PODS, 1998.

[BS81] F. BancilhonandN. Spyratos.Updatesemanticsof relationalviews.ACM
Transactionson DatabaseSystems, 6(4):557–575,1981.

[DFF
�

] A. Deutsch,M. Fernandez,D. Florescu,A. Levy, andD. Suciu. Xml-ql:
A querylanguagefor xml. http://www.w3.org/TR/NOTE-xml-ql/.

[FC85] A. L. FurtadoandM. A. Casanova. Updatingrelationalviews. In W. Kim,
D.S.Reiner, andD.S.Batory, editors,QueryProcessingin DatabaseSys-
tems. Springer-Verlag,New York, 1985.

[Kel82] A. M. Keller. Updatesto relationaldatabasesthroughviews involving
joins. In PeterScheuermann,editor, Improving DatabaseUsability and
Responsiveness. AcademicPress,New York, 1982.

[KR96] M. U. KamathandK. Ramamritham.Bridging the gapbetweentrans-
actionmanagementandworkflow management.In In NSFWorkshopon
WorkflowandProcessAutomationin InformationSystems,Athens,Geor-
gia, 1996.

[MS99] T. Milo andD. Suciu. Typeinferencefor querieson semistructureddata.
In to appearin ACM PODS, 1999.

23

[Obj] Objectstore.http://www.odi.com.

[OMG97] OMG. Uml notation guide, version 1.1, 1 september1997, 1997.
www.omg.org/techprocess/meetings/schedule/Technology Adoptions.htm.

[Poe] Poet.”http://www.poet.com”.

[PV97] P. Picouetand V.Vianu. Semanticsand expressivenessissuesin active
databases.J. of ComputerandSystemSciences, 1997. to appear.

[SAD94] C. Souza,S. Abiteboul, andC. Delobel. Virtual schemasandbases.In
Proc.EDBT, Cambridge, 1994.

[sta95] WfMC standarts.The workflow referencemodel,version1.1, wfmc-tc-
1003,19-jan-95,1995.http://www.aiim.org/wfmc/mainframe.htm.

[W3Ca] W3C. Documentobjectmodel(dom). http://www.w3.org/DOM.

[W3Cb] W3C. Extensible markup language (xml) 1.0.
http://www.w3.org/TR/REC-xml.

[W3Cc] W3C. Extensible stylesheet language (xsl).
http://www.w3.org/Style/XSL/.

[W3Cd] W3C. Thew3cquerylanguagesworkshop,dec1998,boston,massachus-
sets.http://www.w3.org/TandS/QL/QL98/cfp.html.

[W3Ce] W3C. Thewordwidewebconsortium.http://www.w3.org/.

[WC95] J. Widom andS. Ceri. ActiveDatabaseSystems:Triggers andRulesfor
AdvancedDatabaseProcessing. Morgan-Kaufmann,SanFrancisco,Cal-
ifornia, 1995.

[YA96] YelenaYeshaandNabil Adam. Electroniccommerce:An overview. In
Nabil Adam and YelenaYesha,editors,Electronic Commerce. Lecture
Notesin ComputerScience,Springer-Verlag,1996.

24

