
Universit́e Pierre et Marie Curie - Paris 6

Document de Synth̀ese

présenté pour obtenir

L’H ABILITATION À DIRIGER DES RECHERCHES

Mention Informatique

par

Dan VODISLAV

T ITRE

Int égration, partage et diffusion de donńees
sur le Web

(Data integration, sharing and distribution on the Web)

Soutenue le 29 octobre 2007

JURY

Rapporteurs : Peter BUNEMAN University of Edinburgh, Royaume Uni
Georges GARDARIN Université de Versailles Saint-Quentin-en-Yvelines
Jacques LE MAITRE Université du Sud Toulon-Var

Examinateurs : Anne DOUCET Université Pierre et Marie Curie, Paris 6
Marie-Christine ROUSSET Université de Grenoble
Michel SCHOLL Conservatoire National des Arts et Métiers,Paris

Remerciements

Je voudrais remercier tous ceux qui m’ont aidé, de près ou de loin, à franchir cette étape si impor-
tante.

Michel, qui m’a accueilli dans Vertigo et auprès duquel j’ai appris tant de choses. Merci Michel
pour ton amitié, pour tes encouragements, pour la générosité et la chaleur avec laquelle tu sais partager
ton expérience.

Peter Buneman, Georges GardarinetJacques Le Maitre, qui ont accepté le travail ardu de rappor-
teur.

Anne Doucetet Marie-Christine Rousset, qui ont accepté de faire partie du jury, ainsi quePierre
Sens, qui a suivi ma candidature à l’Université Paris 6.

Tous mes collègues de l’équipeVertigo, avec lesquels j’ai partagé tant de bons moments au long
des années: Bernd, Philippe, Vassilis, David, Valérie, Michel C, Nicolas, ainsi que Irini, Cédric,
Julien, Imen, Nouha, Radu, Sébastien, François et les autres. J’ai eu la chance de faire partie de cette
équipe formidable où il fait bon travailler. Merci aussi `a mes nouveaux collègues de la grande et sage
famille Wisdom, avec qui j’ai pu lancer de nouveaux projets très prometteurs.

Serge, qui m’a accueilli dans Gemo et m’a donné la possibilité detravailler sur des sujets passion-
nants avec lui et les autres membres de son équipe:Ioana, Gabriel, Nicoletaet les autres.

Sophie, avec qui j’ai travaillé durant les belles années de l’aventure Xyleme et dont j’ai appris
énormément de choses. Merci à toute l’équipeXylemepour l’opportunité qui m’a été offerte de
partager cette expérience de recherche unique avec des gens formidables: Guy, Jean-Pierre, Grégory,
Mihai, Fred, Bruno, Markos, Laurent, Patrick, David, Hugo,Ramon, Gérald, Amir, François, Joëlle
et plein d’autres, trop nombreux pour pouvoir les citer tous.

Pierangelo, Imen, Raduet François, mes doctorants, qui ont subi avec bonne humeur mes débuts
dans l’encadrement de thèses.

Mes collègues du laboratoire CEDRIC et du département d’informatique du CNAM, qui m’ont
aidé à découvrir les subtilités, les délices et les affres du métier d’enseignant-chercheur.

Mes étudiants, qui ont subi stoı̈quement mes premiers pas dans l’enseignement et auxquels je dois
en très grande partie le plaisir d’enseigner.

Mes parents, auxquels je dois tant, ma belle-mère préférée pour ses encouragements et son aide.

Et surtoutBogdana, Elisa et Alexandra, qui sont mon point d’équilibre, sur lequel on peut tout
construire.

Contents

1 Introduction 5
1.1 Multimedia user interfaces 6
1.2 Data management on the web 7

1.2.1 Web-scale integration of XML data 8
1.2.2 Views for heterogeneous XML data 9
1.2.3 Peer-to-peer architectures for data sharing 10
1.2.4 Summary of publications 11

2 Web-scale integration of XML data 13
2.1 Context: data integration on the web 13
2.2 The Xyleme data integration model 14

2.2.1 The Xyleme system .14
2.2.2 The data integration model 15

2.3 Query rewriting in Xyleme 17
2.4 Automatic generation of mappings 20
2.5 XML-ization of unstructured documents 21

3 Views for heterogeneous XML data 23
3.1 Context: views, query rewriting and rapid application development 23
3.2 The XyView model .. 24

3.2.1 Motivation and goals .. . 24
3.2.2 The data model . 26
3.2.3 Query rewriting .. 30
3.2.4 The XyView system . 32

3.3 The OpenXView model .. . 33
3.3.1 Motivation and goals .. . 33
3.3.2 The OpenXView data model .. 34
3.3.3 Query answering and query rewriting 36

4 P2P architectures for data sharing 41
4.1 Context: P2P data management and content distribution systems 41
4.2 The EDOS content distribution system 42

4.2.1 System overview .42
4.2.2 Software architecture 45

4.3 Improvements to the ActiveXML platform 47

3

4 CONTENTS

5 Conclusions and future work 49
5.1 Conclusions .. . 49
5.2 Future work .. 50

Chapter 1

Introduction

This report presents my research activity since the end of myPhD thesis, in January 1997. During this
period, I have been an Assistant Professor at the Conservatoire National des Arts et Métiers (CNAM),
in Paris, member of the CEDRIC Laboratory in Computer Science. I also held a joint position of
scientific adviser in the Xyleme S.A. company (2000-2006), then a position of associate member of
the Gemo group at INRIA Futurs (since 2005).

My research activity is divided intotwo distinct periods, addressingtwo different research fields:
multimedia user interfacesanddata management on the web. A salient point in my research activity
is the thematic reconversionI operated between these two domains in 1999.

Multimedia user interfaces. My work in this research field covers my PhD (December 1993 - Jan-
uary 1997) and the succeeding period until 1999. After my PhDthesis, entitled ”Visual pro-
gramming for animation in user interfaces”, I continued my work on the modeling of structured
multimedia interfaces, as an Assistant Professor at CNAM and member of the Multimedia team
of the CEDRIC laboratory.

Data management on the web.In September 1999, I started mythematic reconversionby joining
the Vertigo database team of the CEDRIC laboratory. The occasion was the startup of the
Xyleme project at INRIA, whose goal was the creation of a distributed, very large scale repos-
itory, able to store all the XML documents on the web and to provide services for acquisition,
indexing, querying, change management, semantic integration, etc. Initiated by the Verso group
at INRIA, the project included database teams from CNAM - CEDRIC (Vertigo), from Paris Sud
- LRI (IASI) and from the Mannheim University.

Since 1999, my research activity in the field ofdata management on the web, has been organized
around three main axes:

1. Web-scale integration of XML data

2. Views for heterogeneous XML data

3. Peer-to-peer architectures for data sharing

This introduction presents a global overview of all the themes and sub-themes of my research
activity, while the next chapters focus on the period after my thematic reconversion, encompassing
the most significant research contributions. The last chapter presents the conclusions and future work
for my research activity.

5

6 CHAPTER 1. INTRODUCTION

1.1 Multimedia user interfaces

My PhD thesis [Vod97a] was addressing the problem of using animation for illustrating interaction in
graphical user interfaces. The main challenge of this work was to define a model for animated user
interfaces and to simplify the specification, the programming of interactive animations.

The result wasHandMove, a general model for animated user interface components, that allows
visual programming. The main idea of the model is to represent animation throughabstract tra-
jectoriesdescribing continuous evolution and throughspotson these trajectories, describing sudden
changes. Animation can be based on various types of stimuli:timer ticks, input device signals, ap-
plication events. Sudden changes are triggered by events, generated by predicates on the animated
objects, by the external application or by explicit event generation.

The spatial metaphor used by HandMove is appropriate for visual programming and provides an
intuitive method for specifying animation by drawing. The HandMove tool provides a visual editor
for both graphical objects and animated behavior and a run-time visualizer of the resulting behavior.
HandMove allows describing animated scenes, that can be ”encapsulated” as interactive and animated
user interface components, then used at the same level as buttons, text fields and menus in user inter-
faces. This work has been realized in collaboration with NSL, a French software editor specialized in
X/Motif user interface tools and the HandMove tool has been integrated with XFaceMaker, the NSL’s
graphical user interface builder.

After my PhD thesis, I continued for some time to work on formalizing the HandMove visual
model and on improving the HandMove tools - the results of this work have been presented in
[Vod97b].

My research activity during this period was directed towardthe modeling of multimedia user
interfaces as structured objects. In the same line as the HandMove model, this work aims at describing
in a declarativemanner both graphical objects and behavior asstructured entities.

The main result is the definition of a general model for interactive animations (IAN) in multime-
dia documents, presented in [VV00]. The model naturally integrates usual multimedia elements (text,
image, video, sound) with motion and graphical changes of geometric objects, but also with user and
inter-object interaction. Animation is defined in a declarative and structured manner, through a sce-
nario composed of event-condition-action rules. The purpose is to enable botheasy authoringthrough
declarative techniques anddatabase managementof animations as structured objects. Database man-
agement of IANs allows building libraries of parametrized animations and retrieving them on the
basis of specific criteria: scenario elements, animation events, object properties, etc. We proposed an
extension of the OQL language [Cat97] for object-oriented databases, adapted to querying collections
of IANs.

Another research direction in this field was the study of3D interactive scenes, described by using
the VRML language [vrm97], that already provides a declarative model, as a tree of transformation
nodes. However, VRML does not provide the appropriate abstraction level for interaction and anima-
tion, that mostly rely on external scripts to be programmed.In [CTV00], we proposed an extension of
VRML that introduces new, higher level transformation nodes for interaction, for animation and for
event routing between objects.

A last point addressed in this topic, was theintegration of database applications through the user
interface. We considered the problem of building applications over data describing the same objects,
but coming from different sources and having major differences in their nature and their processing
tools. The application was the integration of XML data describing monuments with geographical
information about their location, in the context of a collaboration with the French Department of

1.2. DATA MANAGEMENT ON THE WEB 7

Culture. This work represents the subject of the CNAM engineer thesis of Julio Fernandes (1998) and
has been presented in [AVFC98].

1.2 Data management on the web

My research in the field of data management on the web deals, ata general level, with the problem of
exploiting very large amounts of data distributed over a large number of sources on the web - sources
with possibly heterogeneous structures, with various degrees of autonomy and various processing
capabilities.

A central theme in my research is the problem ofdata integration, that aims at providing a unified,
transparent access to data stored in heterogeneous and autonomous sources. The access is based on
an homogeneous, global schema and on mappings between this global schema and the data sources,
defining anintegration view. This problem has been extensively studied in the literature, addressing
issues such as data integration architectures and models, query rewriting, mapping generation, source
capabilities, quality of data, etc. My research on this topic has focused on the integration ofhetero-
geneous XML data, atvery large scale or medium scaleand onproviding simple and intuitive access
to the integrated data, in order to make it accessible to novice users and to offer support for rapid
application development.

The other main theme I addressed is that ofdistributed architectures for data sharing on the
web, focusing notably on peer-to-peer (P2P) systems for content distribution, sharing, updating and
querying in web communities.

In this context, my research work has followed three main directions:

1. First, I addressed the problem ofXML data integration at the scale of the web. This work
has been realized in relation with theXyleme project, that aimed at creating a distributed XML
repository able to store all the XML documents on the web and to provide semantic integration
of data, among other services. The challenge was to define scalable techniques for data integra-
tion at the web scale, concerning query rewriting, methods for automatic view generation, view
distribution over the sources, etc.

2. Next, I considered the problem of buildingsimple views over heterogeneous XML data, in
order to make the access to such data as simple as querying a table through a query form. The
challenge is to find a good compromise between expressive power and simplicity of querying
and of maintaining the view when new sources are added.

3. Finally, I addressed the problem of using peer-to-peer (P2P) architectures for buildingscalable
systems for content management on the web. The challenge is to design efficient and robust
P2P systems, where peers cooperate and share resources (processor, disk space, bandwidth,
etc.) in order to provide scalable global functionalities,such as indexing and querying content
metadata, content distribution, notification on changes, etc.

An important characteristic of my research activity is thatit is strongly related to system im-
plementation. In the Xyleme project, then later as a scientific adviser forthe Xyleme company, I
coordinated and participated to the implementation of several modules of the Xyleme software: the
Xyleme Viewssemantic integration module, theMapGenmapping generation tool, theXyViewmodule
for application views, theXMLizer tool for extracting XML structure from plain text documents, etc.
In my collaboration with the Gemo team at INRIA, I coordinated and participated to the implemen-
tation of theEDOSP2P platform for Linux packages distribution and to severalimprovements in the
ActiveXMLplatform.

8 CHAPTER 1. INTRODUCTION

The next sections give a brief description of my activity in each of the three research axis.

1.2.1 Web-scale integration of XML data

My work in this axis corresponds to the period between 1999 and 2003, as a participant to the Xyleme
project (1999-2000), then as a scientific adviser for the Xyleme S.A. start-up company, created in
September 2000.

The Xyleme project, initiated by Serge Abiteboul and SophieCluet (Verso group at INRIA) and
François Bancilhon (ex-CEO of O2 Technology) in September1999, was organized as an open net-
work of researchers, including the Verso group at INRIA, theVertigo team from CNAM, the IASI
group from LRI and the database group from the Mannheim University. As explained above, the goal
of the project was the creation of a kind of ”Google XML”, i.e.a distributed repository, able to store
all the XML documents on the web and to provide services for acquisition, indexing, querying, change
management, semantic integration, etc.

During this period, I have been in charge (with Marie-Christine Rousset from LRI) of the semantic
integration module in the Xyleme project (1999-2000), I supervised (with Sophie Cluet) the PhD
thesis of Pierangelo Veltri (1999-2002), the Master thesisof Jean-Pierre Sirot (2000) and the engineer
thesis (Polytechnical Institute of Bucharest) of Anne-Marie Dumitrache (2003).

The difficulty of realizing data integration in Xyleme comesfrom the scale: for any type of
content, a huge amount of XML documents, with many differentXML structures, is available on
the web. We proposed a view mechanism adapted to web-scale data integration, that provides a
homogeneous XML schema to access the repository and that guarantees scalability by distributing the
view definition, query rewriting and execution over the repository machines and by using a scalable
query rewriting algorithm. This model has been published asa VLDB Journal paper [ACM+02], a
book chapter [CCT+05], two conference papers [CVV01, ACV+01], and has been the subject of the
PhD thesis of Pierangelo Veltri [Vel02] and of a patent submission. I also coordinated (with Sophie
Cluet) and participated to the implementation of this view mechanism as a software module (Xyleme
Views) in Xyleme.

One of the major problems in web-scale data integration is the creation of the view and its main-
tenance over the time. We defined methods forautomatic generation of view mappings, essential
for building views at this scale. We proposed a set of algorithms for generating node-to-node map-
pings between tree structures, based on linguistic similarity of tag names and on the structural context
of nodes. This method has been published as a DKE journal paper [DRR+03], a conference paper
[RSV01] and has been the subject of the Master thesis of Jean-Pierre Sirot. I coordinated the imple-
mentation of theMapGentool in Xyleme, for semi-automatic generation and maintenance of view
mappings.

The integration of the view mechanism with query processingin the Xyleme system raised some
interesting issues. We choose a transparent integration ofviews in the query processing mechanism,
allowing to handle views as ordinary XML document structures. The difference appears in the gen-
erated execution plan, that includes view-specific operators. This query processing model has been
presented in several conference papers ([ACV+00], and partially in [CVV01] and [ACV+01]). We
also added a grouping operator to the Xyleme query language,very useful for query rewriting on
views. This point has represented the subject of the engineer thesis of Ana-Maria Dumitrache, that I
supervised.

I also considered during this period the problem ofproducing XML documents from unstructured
content. XML-ization tools are essential in XML management systemsby enabling the use of the
huge quantities of unstructured data, unexploitable with traditional databases. I supervised the design

1.2. DATA MANAGEMENT ON THE WEB 9

and implementation of theXMLizer tool (2003) in Xyleme, able to learn recurrent patterns in plain
text files and to extract XML structures from these patterns.The XMLizer has received a grant for
innovative projects from ANVAR.

A detailed description of my work in this research axis is presented in Chapter 2.

1.2.2 Views for heterogeneous XML data

My research in this axis corresponds to the period between 2003 and 2007 and corresponds to the
subject of the PhD thesis of Imen Sebei. This work can be divided in two parts: the first one, in
collaboration with Xyleme, focused on views over an XML repository (theXyViewmodel), while the
second one, within the framework of theACI SemWeb, addressed views overopen systems, composed
of autonomous sources with unpredictable behavior (theOpenXViewmodel). The XyView model was
also included in the platform designed in the context of theWebContentproject.

TheACI SemWebproject [sem04] (2004-2007), gathered database teams fromPRISM Versailles,
LIP6 Paris, LSIS Toulon, LIRIS Lyon, LINA Nantes and CEDRIC Paris, and aimed at designing
methods and tools for querying the Semantic Web in XQuery. InSemWeb, I have been in charge of
the P2P research axis in this project, and (with Elisabeth Metais) of the CEDRIC part. TheRNTL
WebContentproject [web06] (2006-2009) aims at building an advanced platform for enriching and
exploiting web documents and gathers teams from INRIA, CEA,EADS, Thales, LIP6, PRISM Ver-
sailles, Exalead, Xyleme, etc. I was in charge for Xyleme in this project and I managed the integration
of the Xyleme software in the WebContent platform (2006).

In this axis, I supervised, in addition to the PhD thesis of Imen Sebei (2003-2007), the Master
thesis of François Boisson (2006).

This topic reconsiders the problem of large scale data integration in a different context. The goal
is to make the access to heterogeneous XML data as simple as possible, through universal relation-
like views, in order to simplify queries for novice users andto provide support for rapid application
development. The difference with web-scale views in Xylemeis that we address application-oriented
views, at a lower scale, where a better expressive power can be considered, e.g. by including joins
and transformation functions in the view definition.

The XyViewmodel allows rapid application development on top of heterogeneous, schema-free
XML data stored in an XML repository. A XyView view is structured at three levels: (i) thephysical
level, providing tree structures extracted from documents, (ii)the logical level, providing homoge-
neous tree structures over unions of physical views, and (iii) the user level, providing a flat structure
(table) over joins of logical views. This view structure, that separates unions from joins, and the use
of one-to-one mappings between levels instead of queries, make XyView views easier to create and
to maintain than query-based views. Also, query rewriting is more flexible and allows e.g. discarding
useless duplicates in answers in a natural way.

This work has represented the subject of the first part of ImenSebei’s PhD thesis and of two
conference papers, [VCCS05] and [VCCS06]. I supervised andparticipated to the implementation
of the XyView model asa software module in Xyleme, that provides: an API for view management
and query translation, a tool for graphical editing of viewsand a tool for automatic generation of web
form applications on top of XyView views.

TheOpenXViewmodel is adapted toopen systems, where data sources are autonomous, variable
in number and with unpredictable changes, e.g. P2P systems.XyView is not appropriate in this
context, because the three-level view structure may be forced to change too often, e.g. when new
sources are published. OpenXView provides a mixed ontology/tree integration schema (concepts
having tree-structured attributes), more flexible than XyView, with implicit joins based on concept

10 CHAPTER 1. INTRODUCTION

key attributes. OpenXView dynamically determines for eachquery the set of sources concerned by
the query, and the joins and unions between them, unlike XyView and other integration view systems,
where most of these elements are predetermined. In order to limit the number of possible query
rewritings, we proposed equivalence and containment criteria for rewritings based on minimal covers
for query elements.

The work on OpenXView has represented the subject of the second part of Imen Sebei’s PhD thesis
and of the Master thesis of François Boisson. It was presented in two conference papers ([BSSV06b]
and [BSSV06a]), and published in a journal paper [BSSV07]. An OpenXView prototype is currently
under development.

A detailed description of my work in this research axis is presented in Chapter 3.

1.2.3 Peer-to-peer architectures for data sharing

My research in this axis corresponds to the period between 2004 and 2007 and corresponds to my
collaboration with the Gemo team at INRIA Futurs - I am an associate member of Gemo since 2005.
This work is realized in relation with the software platformdeveloped by Gemo, composed ofAc-
tiveXML [AMT06], a P2P platform for dynamic XML documents (containing web service calls), and
of KadoP [AMP05], a distributed XML management system, built on top of ActiveXML and of a
distributed hash table (Pastry).

Part of this work has been realized within the framework of theEDOSEuropean project [EDO04]
(2004-2007) and of theWebContentFrench RNTL project [web06] (2006-2009).EDOSaims at
creating a platform for producing, testing and disseminating free/open-source software. I have been
in charge (with Serge Abiteboul) of the work package 4, that aims at building a P2P platform for
content dissemination, and gathering teams from INRIA, Mandriva, University of Tel Aviv, University
of Geneva and CSP Torino. In theWebContentproject, that aims at building an advanced platform
for enriching and exploiting web documents, I am currently participating for Gemo to the design of a
P2P architecture for scalable data management.

In this axis, I am supervising the CIFRE PhD thesis of Radu Pop(2005-2008), in collaboration
with Mandriva. I also supervised on the same topic the CNAM engineer thesis of Eric Darondeau
(2004-2005) and the Polytechnique engineer internship of Ming Hoang To (2006).

The goal of my research in this axis is to design and implementscalable systems for content
management on the web, based on P2P architectures where peers cooperate and share resources in
order to transparently provide global functionalities [AP07]. The system should provide its services
in a transparent way, being the only responsible for load balancing and resource sharing.

The EDOS distribution system belongs to this category. It replaces the classical ”hierarchy of mir-
rors” distribution architecture and provides scalable functionalities for the dissemination of Mandriva
Linux packages within the community network: publishing, indexing and querying of metadata, opti-
mized content dissemination, notification on changes, etc.The EDOS distribution system represents
the subject of the PhD thesis of Radu Pop and is presented in four conference papers ([ADP+07c],
[ADP+07a], [ADP+07b], [APVV07]). The system has been implemented on top of KadoP and Bit-
Torrent [Coh03]; I supervised and participated to its implementation, that will be the object of a
demonstration at VLDB 2007 [ADP+07c]. Also, the EDOS distributed system is the basis of the
distributed architecture adopted in the WebContent project.

In the same research axis, I participated to the improvementof the ActiveXML platform [weba],
by providing support for coupling with an XML database. Initially, the ActiveXML platform was
using a simple persistence mechanism, based on XML files and in-memory query processing and
updates. Coupling it to an XML database allows using the database capabilities for storage, querying

1.2. DATA MANAGEMENT ON THE WEB 11

and updating, and guarantees scalability in terms of data managed by a peer. This work has represented
the subject of the CNAM engineer thesis of Eric Darondeau (2004-2005), for a coupling with Xyleme,
then of the Polytechnique engineer internship of Ming HoangTo (2006), for a generic coupling with
any XML database supporting XQuery and XUpdate.

A detailed description of my work in this research axis is presented in Chapter 4.

1.2.4 Summary of publications

Web-scale integration of XML data

[ACM+02] V. Aguilera, S. Cluet, T. Milo, P. Veltri, and D. Vodislav. Views in a large scale XML
repository.VLDB Journal, 11(3):238–255, 2002.

[DRR+03] C. Delobel, C. Reynaud, M.-C. Rousset, J.-P. Sirot, and D. Vodislav. Semantic inte-
gration in Xyleme: a uniform tree-based approach.Data & Knowledge Engineering Journal,
44(3):267–298, 2003.

[CCT+05] M. Cannataro, S. Cluet, G. Tradigo, P. Veltri, and D. Vodislav. Using views to query
XML documents. InEncyclopedia of Database Technologies and Applications, pages 729–
735. IDEA Group Reference, 2005.

[CVV01] S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository. InVLDB, pages
271–280, 2001.

[RSV01] C. Reynaud, J.-P. Sirot, and D. Vodislav. Semantic integration of XML heterogeneous data
sources. InIDEAS, pages 199–208, 2001.

[ACV+01] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, and F. Wattez.Querying a web scale XML
repository. InSEBD, pages 105–118, 2001.

[ACV+00] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, and F. Wattez.Querying XML documents in
Xyleme.ACM SIGIR workshop, 2000.

Views for heterogeneous XML data

[BSSV07] Francois Boisson, Michel Scholl, Imen Sebei, and Dan Vodislav. Source identification
and query rewriting in open XML data integration systems.IADIS International Journal of
WWW/Internet, 5(1), pages 29–44, 2007.

[VCCS06] Dan Vodislav, Sophie Cluet, Grégory Corona, and Imen Sebei. Views for simplifying
access to heterogeneous XML data.OTM Confederated conferences/CoopIS, pages 72–90,
2006.

[BSSV06b] Francois Boisson, Michel Scholl, Imen Sebei, and Dan Vodislav. Scalability of source
identification in data integration systems.IEEE SITIS, 2006.

[BSSV06a] Francois Boisson, Michel Scholl, Imen Sebei, and Dan Vodislav. Query rewriting for
open XML data integration systems.IADIS WWW/Internet, pages 133–141, 2006.

[VCCS05] Dan Vodislav, Sophie Cluet, Grégory Corona, and Imen Sebei. XyView: Universal rela-
tions revisited.Bases de Donńees Avanćees (BDA), pages 357–372, 2005.

12 CHAPTER 1. INTRODUCTION

Peer-to-peer architectures for data sharing

[ADP+07c] S. Abiteboul, I. Dar, R. Pop, G. Vasile, D. Vodislav, and N. Preda. Large scale P2P
distribution of open source software. Demonstration, inVLDB, pages 1390–1393, 2007.

[ADP+07a] S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav. EDOSdistribution system:
a P2P architecture for open-source content dissemination.In IFIP Intl. Conference on Open
Source Systems (OSS), pages 209–215, 2007.

[ADP+07b] S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav. Snapshot on the EDOS dis-
tribution system.FOSDEM Workshop, Free & Open source Software Developers’ European
Meeting, 2007.

[APVV07] S. Abiteboul, R. Pop, G. Vasile, D. Vodislav. Scalability Evaluation of a P2P Content
Distribution System.Bases de Donńees Avanćees (BDA), 2007.

Multimedia user interfaces

[VV00] D. Vodislav and M. Vazirgiannis. Structured interactive animation for multimedia docu-
ments.IEEE Symposium on Visual Languages (VL), 2000.

[Vod97b] D. Vodislav. A visual programming model for user interface animation. IEEE Symposium
on Visual Languages (VL), pages 344–351, 1997.

[AVFC98] B. Amann, D. Vodislav, J. Fernandes, and G. Coste. Browsing SGML documents with
maps : The French ’Inventaire’ experience.International Conference on Database and Expert
Systems Applications (DEXA), 1998.

[CTV00] P. Cubaud, A. Topol, and D. Vodislav. Les limites de VRML pourles comportements
interactifs: étude de cas.ERGO-IHM, 2000.

Chapter 2

Web-scale integration of XML data

This chapter presents a synthetic view of my work in the field of web-scale integration of XML data,
realized in relation with the Xyleme system. After a brief presentation of the context of this research
axis, we present the Xyleme web-scale integration model, the query rewriting problems, the automatic
view generation algorithms and we end up with a presentationof the work done for extracting XML
elements from unstructured text.

2.1 Context: data integration on the web

Data integration is the problem of providing unified and transparent access to data stored in multiple,
autonomous and heterogeneous data sources [Len02]. This problem, extensively studied for many
years, acquired a new dimension in the context of the web. Various data integration architectures have
been proposed, among whichmediators[Wie95], warehouses[Wid95], and more recentlypeer-to-
peer[KP05] (that may be seen as a generalization of mediator/warehouse architectures), are the most
common ones.

Compared to warehouses, mediators provide a more flexible architecture. Data is leaved under
the control of each source and the relation between the global model and sources is defined through
mappingsthat enablequery rewriting(from queries on the global model to queries on sources) and
results typing(from the source type to the global type). Warehouses provide better performance by
materializing the integration viewfrom data gathered from sources, transformed and merged follow-
ing the global model and stored in a common repository, but have to deal with the problem ofdata
freshness.

The definition of the relation between the global model and local source models (the data integra-
tion view) mainly follows two different approaches. Theglobal-as-view(GAV) approach considers
that all the sources are known in advance (close world assumption) and the global model is defined as
a view over the set of local source models. A GAV model definition has the formg 7→ qs, i.e. each
elementg of the global model is defined as a query (view) over the local sources. This corresponds to
the classical database integration approach and has the advantage of very simple query rewriting al-
gorithms. Data integration systems such as Tsimmis [GMPQ+97], YAT [CCS00], Enosys [PBO+03],
XMLMedia [GMT02], Agora [MFK02] use a GAV integration schema.

The local-as-view(LAV) approach considers that the global model is fixed and describes an ap-
plication domain, independently of the data sources. Each data source describes its contribution as a
local view over the global model, independently of other data sources. A LAV model definition has
the forms 7→ qg, i.e. each elements of the the local model of each source is defined as a query

13

14 CHAPTER 2. WEB-SCALE INTEGRATION OF XML DATA

Figure 2.1: Xyleme functional architecture

(view) over the global model. LAV has the advantage of easilyintegrating new sources (open world
assumption) and are consequently more appropriate for dataintegration on the web. The main prob-
lem of LAV system is the complexity of query rewriting, knownas the problem of answering queries
using views [Hal01] (sources are views over the global model), that is discussed in more details in
Section 3.1. Systems such as Information Manifold [LRO96],Tukwila [IHW02], Picsel [GLR00],
STYX [ABFS02] are based on LAV integration schemas.

More recent approaches for defining the integration view include global-local-as-view[FLM99]
(GLAV) and both-as-view[MP03] (BAV). GLAV can express both GAV and LAV with the same type
of mapping rules; a GLAV model definition has the formqs 7→ qg. BAV uses reversible schema
transformations sequences to express the relation betweenglobal and local schema elements, which
can be used at query rewriting.

In this context, we addressed in Xyleme the particular problem of building a data integration
systemat the scale of the web, i.e. scalable in both number of sources and number of users.The chal-
lenges concerned more data heterogeneity, the size of the integration view and the methods for creating
and maintaining it, than the expressive power of the view or query rewriting. Also, we addressed the
problem of integratingXML data, stored in anative XML repositoryand did not consider the prob-
lem of XML views built on top of relational storage, such as inSilkRoute [FKS+02], XPERANTO
[CKS+00] and many others. At that time, with the significant exception of web-search engines for
text documents, data integration systems only addressed small- or medium-scale integration. Recently,
new approaches for data integration at the web scale were proposed, such as MetaQuerier [CHZ05]
and PayGo [MCD+07].

2.2 The Xyleme data integration model

2.2.1 The Xyleme system

Xyleme [ACFR02] is basically a warehouse of XML documents, acquired from the web or from
local sources; the warehouse is distributed in a cluster of computers connected through a fast speed
local network. Xyleme is able to store all the XML documents from the web and to provide a set of
advanced services on top of this data, illustrated in the functional architecture presented in Figure 2.1.

TheRepository and Index Managermodule allows storing, retrieving and indexing XML docu-
ments. Storage is based on a native XML database and indexingon a fast, in-memory full-text XML

2.2. THE XYLEME DATA INTEGRATION MODEL 15

Figure 2.2: Distributed architecture in Xyleme

index structure. TheAcquisition and Crawlermodule inspects the web and local content to collect
XML documents, which are loaded in the repository by theLoader module. TheChange Control
moduleis responsible of monitoring of document changes, version management and subscription of
temporal queries. TheSemantic moduleprovides a homogeneous integrated and mediated schema on
the heterogeneous XML documents stored in the repository. TheQuery Processor moduleenables to
query the XML repository as a database. In particular, it translates a query in terms of the semantic
layer into another one computable on the stored documents.

My work in Xyleme concerns the Semantic and Query Processingmodules, as described in
the next sections. More details on the other Xyleme modules are presented in [KM00, MAA+00,
MACM01].

Scalability is guaranteed by the distribution of the repository and of the index on several comput-
ers, such as presented in Figure 2.2, that illustrates the distributed architecture of Xyleme.

• Repository machines(RM) are in charge of storing the documents. Data is clustered according
to a semantic classification, each RM storing potentially several clusters of semantically related
data (e.g., art, and literature), in order to reduce the number of machines that have to be accessed
to evaluate a particular query.

• Index machines(XM) have large memories that are mainly devoted to indexes.Clusters are
partitioned on index machines so as to guarantee that: (i) all indexes reside in main memory;
and (ii) each XM is associated to only one RM.

• Interface machines(IM) are connected to the Internet. They are in charge of running applica-
tions. Whereas the number of RMs and XMs depends on the warehouse size, the number of
interface machines grows with the number of users.

2.2.2 The data integration model

The Xyleme data integration model usesa mixed mediator-warehousesolution, that combines benefits
from both approaches. XML files from the web are stored and indexed in the local repository, without
being transformed to a global model. This allows fast query processing and the use of the same query
language for querying data from all the sources. Freshness problems are handled by the Change
Control Manager, that monitors changes in data sources and can trigger the reloading of the data
source into the repository.

We use a LAV integration schema, to be able to deal with the variable number of sources on the
web. As explained above, Xyleme data is organized inclusters, built through semantic classification

16 CHAPTER 2. WEB-SCALE INTEGRATION OF XML DATA

Figure 2.3: Example of Xyleme data integration view

of documents. A view is defined over anabstract cluster, composed of a set of real clusters. The
global schema is a tree, calledabstract DTD, describing a homogeneous structure of XML docu-
ments accessible through the integration view. Each XML source is described by a local tree schema,
calledconcrete DTD. Concrete DTDs can be automatically extracted from a cluster by building tree
data summaries, similar to Lore data guides [GW97]. Figure 2.3 presents an example of integration
view for cultural information, built over the abstract cluster ”culture” composed of real clusters ”art”,
”literature”, ”cinema” and ”tourism”.

Mappings are expressed as a set of two-way correspondences between a node in the abstract
DTD and a node in a concrete DTDs, represented as paths (path-to-path mappings). This simple
representation has the advantage to besimple to generate automatically, which is essential for web-
scale view creation and maintenance, and to bereversible, which simplifies query rewriting. Actually,
a path-to-path mappingpglobal ↔ plocal has the following meaning: all the XML elements that match
plocal in the source data are included in the answer to the global query pglobal. This corresponds to a
GLAV definition of the view and is also close to BAV because of its reversibility.

The problem of path-to-path mappings is that when the globalquery is composed of several paths
(tree queries), the way of combining the interpretation of each individual path cannot be expressed by
a general rule (constraint) and may vary from a source to another. A solution would be to usetree-
to-tree mappings, that express correspondences between a subtree of the abstract DTD and a subtree
of a concrete DTD, but the problem is that such mappings cannot be automatically generated with
precision.

With the constraints of web-scale views, the choice of path-to-path mappings is a good com-
promise. We define algorithms for automatic mapping generation (see Section 2.4 below) and a set
of general rules for combining mappings in tree queries at query rewriting (see Section 2.3 below).
This pragmatic solution provides incomplete answers in thegeneral case, but can be considered as
acceptable in web-scale applications.

A novelty in the Xyleme integration system isthe distribution of viewsover the local Xyleme
cluster. The idea is to follow the data distribution schema for clusters over Repository machines:
for each cluster stored on a RM, all the view mappings concerning that cluster will be stored on the
Index machine (XM) associated to the RM. This method guarantees both storage and query processing
scalability for views, by sharing the storage and processing effort among XMs, as explained below.

2.3. QUERY REWRITING IN XYLEME 17

Figure 2.4: View structures on an interface machine (a) and on an index machine (b)

2.3 Query rewriting in Xyleme

View representation Figure 2.4 presents the distribution of the view over the Xyleme network.
Interface machines storea global description of the view, composed of the abstract DTD tree, where
each node is annotated with the set of clusters that contain data corresponding to that node. Index
machines storea local description of the view, composed of the set of concrete DTDs for the clusters
indexed by that XM, together with the set of mappings betweenthese concrete DTDs and the abstract
DTD.

The forest of concrete DTDs on an XM is represented by a table,with one entry per tree node,
containing the tag name and the entry number for the node’s parent, e.g. in Figure 2.4 entry 5 repre-
sents the pathpainter/paintingin the concrete DTD of root entry 4. Mappings are representedby the
abstract DTD tree, where each node is annotated with the listof local concrete DTD nodes mapped
to it. A concrete DTD node is represented by a couple of integers (root, cpath), wherecpath and
root are respectively the entry numbers for the node and for the root of its concrete DTD, e.g. the
abstract pathculture/painting is mapped toWorkOfArt in the concrete DTD of root entry 0 and to
painter/painting in the concrete DTD of root entry 4. Lists of(root, cpath) couples are sorted in
ascending order. This representation is optimized for the query rewriting algorithm presented below.

Queries on views are similar to queries on real XML data, but address the tree structure of the
abstract DTD. The main algebraic operator in the Xyleme query algebra isPatternScan, that filters
a cluster through a query pattern tree [AYCLS01], e.g. the query pattern tree in Figure 2.5 asks for
the titles of paintings of Van Gogh at the Orsay museum. The difference between view queries and
normal queries is the introduction of two specific operatorsfor query rewriting:

• AQT (Abstract Query Translator): executed on the Interface machine, transforms aPatternScan
on an abstract cluster into aunion of PatternScanon real clusters and sends them only to the
corresponding Index machines (see Figure 2.5).

• A2C (Abstract to Concrete): executed on the Index machine, transforms aPatternScanon
the abstract DTD received from the AQT into aunionof PatternScanon concrete DTDs. Each
resultingPatternScanis then executed on the local Index machine, as for a normal query. Figure
2.6 shows one possible translation of the abstract tree query.

Query rewriting Query rewriting in A2C considers several constraints, which reduce the number
of rewritings to a reasonable amount for web-scale applications, by keeping only the most ”pertinent”
rewritings:

18 CHAPTER 2. WEB-SCALE INTEGRATION OF XML DATA

Figure 2.5: AQT operator

Figure 2.6: A2C operator

1. When rewriting an abstract query tree, all the paths must be translated into paths of a same
concrete DTD, i.e. there are no joins between documents.

2. Rewriting must preserve the descendant relationship, e.g. if abstract pathsap1 and ap2 are
translated into concrete pathscp1, respectivelycp2 andap1 is a prefix ofap2, thencp1 must be
a prefix ofcp2. This rule preserves only the most semantically close rewritings.

3. An abstract path should not have two mappings along the same concrete path, i.e.ap should
not be mapped to bothcp1 andcp2, such thatcp1 is a prefix ofcp2. However, if this happens
(very rarely in practice), only the most specific (the longest) path is considered as valid. This
rule allows reducing the complexity of query rewriting.

The idea of the algorithm, detailed in [ACM+02] is to consider all the branches of the abstract
query tree, starting from the leaf up to the root, and to buildrewritings of each branch, then ”join”
them at the junction nodes. Constraints 2 and 3 above guarantee that the cost of finding one rewriting
for a branch is proportional to the branch length. Moreover,since mappings are sorted by concrete
DTD, branch join can use traditional mergesort algorithms,thus keeping the cost of finding all the
tree rewritings linear in the number of concrete DTDs. We shown in [ACM+02] that the average cost
of producing all the rewritings isCrewriting = O(khml), wherek is the average number of mappings
per abstract path,h is the height of the query tree,l is the number of leaves in the query tree andm
is the average number of mappings for a path in one concrete DTD. In conclusion, query rewriting is
scalable with the view size (which is proportional withk).

Improvements A different approach for query rewriting was presented in [DRR+03], based on the
idea of precomputing and storing all the branch translations, together with mappings, distributed on

2.3. QUERY REWRITING IN XYLEME 19

Figure 2.7: Results typing

the Index machines. Then, query rewriting only selects the branches that correspond to the current
query and computes the branch join.

Other enhancements of the query rewriting algorithm have also be proposed in [ACM+02]. One of
these is allowingjoins by linksbetween documents. The idea is to mark in the global view structure,
stored on the Interface machines, what abstract paths have mappings to concrete paths containing
links. At query rewriting, a join-by-link plan may be generated each time a concrete DTD can only
answer a part of the query tree. Another enhancement is the definition of several levels ofquery
relaxation, to be activated when a query does not get enough answers. Query relaxation is obtained by
eliminating some of the constraints imposed by the A2C algorithm: descendant relation preservation,
join of branches at all the junction nodes, translation for all the nodes of each branch, etc.

Results typing Another problem addressed in this context isthe typing of query results. The answers
to an abstract query come from heterogeneous sources and should be transformed in order to respect
the homogeneous types of the abstract DTD. This is important, e.g. when query results are handled
by programs that need precise and homogeneous types in orderto be able to process data.

In Xyleme, we faced the problem of transforming XML results following the abstract XML types,
with a query language that does not support nested queries, nor set variables. The Xyleme query
language is equivalent to only a subset of full-text XQuery,but sufficient for most applications and
highly optimized.

Figure 2.7 presents a fragment of an abstract DTD and one concrete DTD with the correspond-
ing mappings. ”publication” elements in the view correspond to ”book” elements in the documents,
however, ”book” elements contain some extra information (ISBN and price). A query on the view,
which asks for ”publication” elements, should only extracttitle and author information from ”book”
elements. We introduced agrouping operatorin the Xyleme query algebra and language, that, for
a given element, allows grouping together its subelements (at any level) specified by the parameters.
Moreover, this operator allowsrenamingthe selected subelements.

On the right side of Figure 2.7 two return expressions for result typing are presented. The first
one corresponds to the classical approach of building the result tree from fragments. The problem is
that variables$t and$a are monovalued, so if a book has a title and several authors, it will produce
one result for each author. The second expression, presented with a simplified syntax, corresponds to
our grouping operator. It extracts from books (renamed to ”publication”) only title (not renamed) and
author (renamed to ”authorname”) subelements, that remaingrouped together for each book. This
operator allows expressing subelements through path expressions and can be nested. This grouping
operator can also be seen as aselective projectionoperator, because it allows projecting only a part of
the composition subtree.

20 CHAPTER 2. WEB-SCALE INTEGRATION OF XML DATA

2.4 Automatic generation of mappings

The use of automatic techniques for building and maintaining views is essential for views at the web
scale, which cannot be handled manually. As shown above, thechoice of the view model, based on
path-to-path two-way mappings is strongly influenced by this issue.

We proposed a general method for automatic generation of path-to-path mappings between two
tree structures, presented in [RSV01, DRR+03] and based on two main ideas:

• Two paths can be mapped only iftheir ending tags are similar. We used the WordNet thesaurus
[Fel98] to determine word similarity. WordNet provides several semantic relations, such as syn-
onymy, hypernymy (generalization), meronymy (composition), etc. E.g.,culture/painting/museum
can be mapped toWorkOfArt/gallery, becausemuseumandgallery are synonyms. Additional
techniques for dealing with composed words (e.g.ProductName) are also defined, but not de-
tailed here.

• Two paths can be mapped only iftheir contexts are similar. Ending tag similarity is not enough,
e.g. artist/nameshould not be mapped tomuseum/name, because they represent the name of
two different entities. We considered that the context of a path, if it exists, is one of its prefixes
(the context of a node is one of its ancestors). A pathp can be mapped to a pathp′ only if the
context ofp is mapped to the context ofp′. In practice, we cannot define the context for all the
concrete paths, but we can do it for abstract paths, whose number is limited. In this case, the
rule is: an abstract pathap can be mapped to a concrete pathcp only if the context path ofap is
mapped toa prefixof cp.

Part of these techniques are similar to those developed in Cupid [MBR01], Clio [HMH01], COMA
[DR02] and other schema matching methods [RB01], proposed at the same period with our work on
Xyleme.

We realized several prototypes and a graphical tool for Xyleme, calledMapGen(Figure 2.8), able
to generate, edit and update mappings for Xyleme views. MapGen allows editing the abstract (virtual)
DTD tree and annotating each abstract node (path) with:

• A set of similar words, used for tag similarity. Instead of using an on-line thesaurus, such as
WordNet, we choose to manually build this set, using thesauri and dictionaries only at annota-
tion time. The advantages are a faster mappings computation(no thesaurus queries at run-time)
and more precision, by selecting only the appropriate similar words in the given context and by
including domain-specific knowledge.

• The context node, if exists, e.g. Article/Text is the context ofArticle/Text/Paragraphin the
example in Figure 2.8.

• The identifier mark, that indicates that the current node is an identifier property of its context
node, e.g.museum/nameis an identifier property ofmuseum. This information helps finding
mappings such asmuseum/name↔ art/gallery, even ifnameandgallery are not similar words.

Notice that the manual annotation of the abstract DTD is not scale dependent. After the view
administrator annotates the abstract DTD, it can launch theautomatic mapping computation, globally
or concrete DTD by concrete DTD, can visualize and edit the results, can adjust annotations, save the
view, etc.

2.5. XML-IZATION OF UNSTRUCTURED DOCUMENTS 21

Figure 2.8: TheMapGenview management tool

2.5 XML-ization of unstructured documents

If XML documents can be easily produced from structured datasuch as relational databases or spread-
sheets, extracting meaningful XML from weakly structured content is a hard problem. Huge quantities
of unstructured or weakly structured documents in various formats (PDF, Word, HTML, etc.) are only
exploited as plain text. The transformation of such large amounts of data in XML has to be handled
through appropriate tools and cannot be done manually.

We developed a Xyleme tool, calledXMLizer, that allows identifying recurrent patterns in plain
text documents, learning these patterns, annotating elements to be extracted, then using these patterns
to extract XML structures from a document corpus, while accepting small variations in data with
respect to the learned patterns.

The functional architecture of theXMLizer tool is presented in Figure 2.9. During the learning
phase, documents from the learning corpus are processed to discover recurrent patterns.The cleaning
module, parameterized with a pre-processing grammar, extracts only those parts of the documents
concerned by the XML-ization process, and splits them in unit blocks (e.g. lines, paragraphs, etc.)
Themodel discovery module, also parameterized with a token grammar, extracts apattern of tokens
(model) from each block and realizes a clustering of patterns by similarity. This module also detects
repetitions inside a pattern (lists) and asks validation tothe user in these cases. Clusters of patterns
are stored in theknowledge base, where the user can delete, split, merge, modify them. Each cluster is
characterized by aregular expression pattern, that the user annotates in order to specify what parts are
to be extracted. The user specifies the target XML structure and the transformation of the extracted
parts into this structure. Also, the user may indicate partsto be stored inthesauri(e.g. country names,
person names), that are used for validation at run-time.

At run-time, documents to be XML-ized are split in blocks through the same cleaning module,

22 CHAPTER 2. WEB-SCALE INTEGRATION OF XML DATA

Figure 2.9: Functional architecture of theXMLizer tool

then patterns extracted from blocks are matched with those stored in the knowledge base. In case of
successful match, information is extracted from the block,validated with the thesauri (if necessary)
and transformed into XML. A salient characteristic of theXMLizer tool is that it allowsapproximate
matching, i.e. if the pattern is close enough to one pattern in the knowledge base, the tool accepts it
and realizes then an approximate extraction. Such situations are frequent in practice, e.g. an address
that contain the floor number while addresses in the learningcorpus did not, etc.

If no match is found or the approximate extraction cannot be done, an exception is generated and
stored in the exception database. Theexception managerallows to the user an off-line visualization
of the exception context and possibly new document examplesto feed the learning process.

TheXMLizerbelongs to the family of XML wrapping tools, such as W4F [SA99], Lixto [BFG01]
and many other commercial tools. Unlike these tools, that generally use existing structures in docu-
ments (e.g. HTML tree structure, Word styles, etc.), theXMLizer is able to find structures in plain
text, to learn patterns and lists, and to allow approximate matching.

Chapter 3

Views for heterogeneous XML data

This chapter presents the main elements of my work on views for heterogeneous XML data, in the
context of the PhD thesis of Imen Sebei. After a brief presentation of the context of this research axis,
we present the two parts of this work: theXyViewmodel, for application views in Xyleme, and the
OpenXViewmodel, for open systems on the web.

3.1 Context: views, query rewriting and rapid application development

The work in this research axis is closely related to the data integration issues in Xyleme, presented in
Chapter 2, but addresses a different context. We focus on application-oriented views for data integra-
tion, at a lower scale, thus in a more traditional data integration environment, without the limitations
of web-scale views and where a better expressive power can beconsidered. If we still consider het-
erogeneous XML sources, the goal is here to make the access tothis data as simple as possible, by
exploring universal relation-like views for novice users and for rapid application development.

With such expressive application views, in the case of a (G)LAV integration schema, the problem
of answering user queries is more complex than for Xyleme views. This issue, also known as the
problem of answering queries using views [Hal01, Len02] (sources are views over the global model),
has two aspects: (i)query answering, which consists of describing the set of data elements in sources
that correspond to a user query, and (ii)query rewriting, which consists of translating the user query
into the source query language. Many query rewriting algorithms, covering various data models
and constraint types have been proposed, e.g. Bucket, Inverse rule and MiniCon [Hal01, PH01]
for relational data, constraint-based algorithms for relational and XML data [DT05, YP04], etc. A
particular case corresponds to higher-level models, such as Styx [ABFS02] or Yacob [SGS05], using
ontology global schemas, where the rewriting algorithm is based onimplicit joins between sources
using key elements (Styx) or common attributes (Yacob).

The problem of simplifying the access to (heterogeneous) XML data was addressed in different
ways. Users that want to query a collection of XML documents may have difficulties in manipulat-
ing XML structures and query languages, more complex than inthe relational model. This is true
not only for novice users, but also for application programmers that are not XML experts. To sim-
plify query formulation, systems like XQBE [ABCC03] and Xing [Erw03] use visual specification
of XML queries based on tree patterns, but users still need tohandle XML structures, express joins,
etc. Other systems allow writing queries with minimal knowledge about the structure of documents:
keyword search in XML data [CMKS03, HPB03, GSSB03] or tag andkeyword search [LYJ04]. Such
systems are apropriate for interactive user queries, but not adapted for application development over

23

24 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

heterogeneous XML documents, because of their limited expressive power (e.g. no joins) and lack of
precision.

Among the tools for rapid development of web applications over XML data, Qursed[PPV02]
comes the closest to our application development context. Qursed enables rapid development of inter-
active applications over XML data, based on web query forms and reports. It provides a visual editor,
which roughly takes an HTML query form (input for the user), areport template (output for the user)
and an XML Schema describing the data. The application view is defined by mappings between input
query fields and XML data, then between XML data and report output. The limitations of Qursed
concern the management of heterogeneous or schema-free XMLdata and the development of non-
interactive applications. Commercial products, such as BEA Liquid Data [BEA], provide advanced
environments for data integration and web application development, focusing on specialized pro-
grammers. A major limitation in such tools is the lack of support for creating views over multi-source
heterogeneous data; BEA Liquid Data uses query-based views, inappropriate for heterogeneous XML
management, and is not designed to mix many sources into a single view.

In this context, our approach for simplifying the access to heterogeneous XML data is to define
universal relation-like views, that provide a very simple query interface for users and application
programmers; querying the view is as simple as querying a table through selection and projection
operators. Unlike keyword- and tag-based search, view-based queries are precise, the price to pay
being the creation and the management of this view. A possible approach for creating table views over
XML data would be to shred XML in relations, physically (likemany RDBMS today) or virtually
([HJL+04]), then to create a relational view on top. This solution,that may work efficiently for
homogeneous XML documents, with no structural variation, is not appropriate in our context: we want
to build views over heterogeneous and possibly schema-freeXML, stored in any system supporting
an XML query language.

We also explored the best way of defining such application views and shown that mediator-based
views are more appropriate than traditional query-based views for integrating heterogeneous XML
data. Mediator-based views, defined through a set of mappings between structure elements, provide
a more structured view model, easy to edit and to modify through visual, intuitive tools. Moreover,
mediator-based views are adapted to the integration of manysources and are more flexible than query-
based views at query rewriting for e.g. discarding useless elements and joins.

We proposed two such view models for heterogeneous XML integration:

• XyView, adapted to data stored in XML repositories supporting an XML query language.
XyView is based on a GAV integration schema, but accepts a limited set of source updates
that require low view update effort.

• OpenXView, adapted to open systems, where sources are autonomous and can publish new
content in an unpredictable manner. OpenXView uses a (G)LAVintegration schema adapted to
a large number of heterogeneous sources. Query rewriting isbased onimplicit joins between
sources, that are not handled appropriately by classical rewriting algorithms such as MiniCon
[PH01].

3.2 The XyView model

3.2.1 Motivation and goals

Huge amounts of data produced by companies, such as notes, contracts, emails, progress reports, min-
utes, and other documents, are largely unexploited becausethey do not fit with traditional databases

3.2. THE XYVIEW MODEL 25

<!-- Document 1: National league result -->
<GameResult>

<WireHeading> ... </WireHeading>
<Description> Real Madrid 1 - Valencia 0
</Description>
<Date> 2004-05-22 </Date>
<Team>

<Name> Real Madrid </Name>
<Scored> 1 </Scored>
<Scorer><PlayerName> Zidane </PlayerName>

<Count> 1 </Count>
</Scorer>

</Team>
<Team>

<Name> Valencia </Name>
<Scored> 0 </Scored>

</Team>
</GameResult>

<!-- Document 2: Inter-countries game -->
<Result Date="2004-03-15">

<Summary> France 1 - Spain 1 </Summary>
<Scorers>

<Player Goals="1">
<Name> Zidane </Name>
<Country> France </Country>

</Player>
<Player Goals="1">

<Name> Raul </Name>
<Country> Spain </Country>

</Player>
</Scorers>

</Result>

<!-- Document 3: Sports encyclopedia -->
<Encyclopedia>
<Football>

<Player><Name> Zidane </Name>
<Biography>...</Biography>

</Player>
...

</Football>
...

</Encyclopedia>

Sample queries on football documents

Q1: “Games in which Zidane scored
more than once”

Q2: “The biography of Zidane”
Q3: “Biographies of scorers

from games on 2004-09-08”

Figure 3.1: Examples of documents and queries

and tools. The advent of XML provides the opportunity to change that, by storing such data in XML
repositories so as to be able to query them with tools more sophisticated than full text search engines.
However, if data is heterogeneous and schema-free, querying the repository may be a difficult task.
The XyView model addresses the problem of simplifying queries on such data and enables develop-
ing, easily and quickly, simple query API (web services) or user interfaces (web forms) over these
repositories.

Consider the example of a sports news company that handles several types of news wires, which
are well formed XML documents extracted from text files, withno global schema, and with different
structures. Figure 3.1 shows two such wires about football,containing results from national leagues
(Document 1) and results from international games (Document 2). The news company wants to build
an application that queries through simple web forms the various football results wires and a sports
encyclopedia with detailed information about football players (Document 3). Document similar to
these three categories are stored in a single XML repository, in collections identified respectively by
NationalURI, InternationalURIandEncyclopediaURI.

The application queries, as those in Figure 3.1, may concernfootball results (Q1), player biogra-
phies (Q2), or both (Q3). These apparently simple queries are in fact rather hard toprogram in XQuery
as illustrated by Figure 3.2 for Query Q3 (where the result is supposed to be a string).

We want to simplify the task of users that query this repository, by allowing them to view the
database as something as simple as a query form consisting offields that can be used to filter or
extract data. The solution we propose borrows from the universal relation paradigm [Ull83]:XyView
provides the means to easily view a set of heterogeneous XML documents as a single array that can
be queried through simple selections and projections. Besides the fact that the elements of this array
are XML trees instead of atomic types, two fundamental differences with classical universal relations
exist:

• The array is not defined by a query, but by a set of mappings and joins between structure el-
ements, such as in mediator views. The problem with universal relations is that, due to join
operations, projections generate many duplicates that arenot always easy to remove, or alterna-
tively, joins can also be the cause of missing information. This is usually solved by introducing
outer-joins but at the cost of having to deal with null values.

26 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/Date = xs:date(’2004-09-08’) and
$var1/Team/Scorer/PlayerName = $var2/Name

Return string($var3),
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/@Date = xs:date(’2004-09-08’) and
$var1//Player/Name = $var2/Name

Return string($var3))

Figure 3.2: Query Q3 expressed in XQuery

By defining it through a set of mappings and joins, the view is not equivalent to a query, but to a
virtual set of queriesthat are generated on the fly to fit the user query, avoiding useless joins and
useless paths in the view structure. The virtual set of queries is deduced from the set of view
mappings and joins; XyView uses a GAV integration schema, where the role of query rewriting
is mainly to discard all useless view elements, in relation with the user query.

• The view definition is highly structured, organized at several levels. The task of the view admin-
istrator is much simpler when the view is defined through mappings and joins, because it may
be created, edited and maintained through intuitive, visual tools.

Moreover, we introduce an intermediary view level, thelogical data view(LDV), that deals
with data heterogeneityby providing homogeneous tree structures for groups of heterogeneous
sources, and that separates join and union operations in theview definition, thus providing a
simpler view structure. This level also separates the view definition in two mapping layers: a
GAV one, from the user view to the LDV, and a GLAV one, from the LDV to source data, thus
providing a better control on view updates, e.g. when new sources are added.

The practical goal of XyView is to optimize the productivityof web application programmers,
who are not database experts and to simplify as much as possible the task of creating and maintaining
such views. We created a set of tools on top of the Xyleme repository, which can easily be adapted
to any system supporting XQuery. These tools cover the view editing process, but also automatic
generation of web form applications based on these views.

3.2.2 The data model

A XyView view is organized at three levels, connected through mappings and join predicates. Figure
3.3 presents the view levels in the case of the sports news example (mappings and join predicates are
not shown).

1. The first level deals with schema-free data, by definingphysical data views(PDV) that summa-
rize XML access paths to useful information in documents. The example view contains three
PDVs that correspond to the three different document structures: National, International and
Encyclopedia.

2. The second level deals with heterogeneity, by defining integratedlogical data views(LDV)
over unionsof physical data views with similar contents. The example view contains two
LDVs, Game, which provides a homogeneous structure for game results inPDVs National
andInternational, andEncyclopedia, which covers the last PDV.

3.2. THE XYVIEW MODEL 27

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography

Encyclopedia

Football

Player

Name Biography

Description Date Team

Name Scored

GameResult

Scorer

CountPlayerName

Result

Date(@) Player

//

Country

Summary

Goals(@) Name

GameDescription

GameDate

Game

TeamGoals

Team

Biography

Scorer

PlayerGoals

PlayerName

Encyclopedia

International

Physical Data Views

National

Encyclopedia

Game

User Data ViewLogical Data Views

Figure 3.3: View levels for the sports news example

3. The third level defines theuser data viewas joins between logical data views. Its structure is
composed of a set ofconcepts, that the user wants to query as a table. This table represents the
join between the two LDVs (the scorer name inGamemust be the same as the player name in
Encyclopedia).

Physical Data Views (PDV) Physical data views represent the structure of XML data as itis stored
in the repository. We consider that data is organized in collections of XML documents (clusters) and
that each collection provides adata summary, i.e. a set of tree structures representing the access
paths to documents in that collection. Data summaries, similar to Lore data guides [GW97], represent
implicit DTDsfor the XML documents in the collection and allow handling schema-free data.

All the elements in a data summary do not necessarily correspond to elements in the user view. A
PDV may discard useless elements, by removing branches or bycreating shortcuts in long branches
by using descendant connections (//). E.g., in the view example in Figure 3.3, theWireHeading
subtree has been removed from PDVNational, while in PDVInternational, elementScorershas been
discarded from the path toPlayer, because it is useless and removing it introduces no ambiguity; the
edge leading toPlayer is marked with//. Note that there is an edge above each root element in the
example figure, not shown for simplicity; this edge may also be marked with// if the root element is
discarded. Tree simplification eases the view design process, by keeping only useful access paths from
possibly cumbersome document structures. Also,// shortcuts significantly improve query processing
of the final XQuery, by reducing the number of structural conditions to check.

Actually, the notion of PDV is more general than its illustration in XyView. Generally speaking,
a PDV is an intermediary view level between data sources and the global level. If a data source
S = (SS , CS) is defined by a collection of XML documentsCS and a tree schemaSS, and the global
level is defined by a global schemaSG, then a PDVp over the data sourceS is defined by:

• A PDV tree structureSp, obtained from the source tree structureSS by eliminating useless
nodes, as explained above. The PDV tree structure is a tree with labeled nodes and edges,
where edge labels may be ”/” (default value) or ”//”.

• A collection of documentsCp over which the PDV is defined, its default value being the data
source collectionCS.

28 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

GameResult

Description Date Team

Name Scored Scorer

CountPlayerName

Result
//

Date(@) Summary Player

Goals(@) Name Country

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography GameDescription

GameDate

Game

TeamGoals

Team

Biography

Scorer

PlayerGoals

PlayerName

(Game:Game/Team/Scorer/Name,
Encyclopedia:Encyclopedia/Football/Player/Name, "=")

Mappings

Joins

Encyclopedia:Encyclopedia/Football/Player/Name
Player −−> Game:Game/Team/Scorer/Name

PlayerGoals −−> Game:Game/Team/Scorer/NbOfGoals

.................
Biography −−> Encyclopedia:Encyclopedia/Football/Player/Biography

Date Description Team

Game

NbOfGoals ScorerName

Name NbOfGoals

Physical Data Views Logical DataViews

Game

International

National

Logical Data Views User Data View

Game

Encyclopedia

Mappings

............

Game:Game −−> National:GameResult, International:Result
Game:Game/Date −−> National:GameResult/Date, International:Result/Date

Figure 3.4: From physical to logical data view, from logicalto user data view

• An element-to-element mappingbetween the global schemaSG and the PDV structureSp, such
that any element ofSG is mapped toat most oneelement inSp. Therefore, the mapping between
SG andSp can be defined by apartial functiondefined on the set of elements inSG, with values
in the set of elements inSp.

The mapping constraint in the PDV definition is essential. Figure 3.4 illustrates XyView LDV-
PDV mappings, represented as sets of GLAV path-to-path relations, similar to those in Xyleme views
described in Section 2.2.2. The difference with Xyleme views comes from the mapping constraint:
a LDV path cannot be mapped to more than one path in a PDV. This rule guarantees that any set of
paths in a LDV (any subtree) hasat most one translationinto a set of paths (subtree) of a PDV. In
Xyleme views this was not true, and an abstract tree pattern could have many translations, filtered by
the set of constraints we defined; the problem is that some valid rewritings may be lost, while some of
the rewritings obtained may be wrong. This is acceptable forweb scale applications, but not for the
XyView context.

In XyView, a single rewriting is possible in each PDV, thus precision is guaranteed by the view
designer that created the PDV. But this also means that a document structure may lead to several
PDVs and the price to pay is that the view designer must carefully extract the PDVs from the data
summary structures and maintain them in case of changes. An example is presented in Figure 3.5:
for the LDV on the left, two PDVs can be extracted from the document structure (we consider the
obvious path-to-path mappings). Notice that Xyleme views would produce no rewriting of the LDV
tree, because theworkOfArt - styledescendant relationship is not preserved in the document structure.
Notice also that automatic PDV extraction, by combining path-to-path mappings, could be considered,
but user validation cannot be avoided. In our example, thegallery/styleelement may correspond to
the style of paintings and not to the one of the other art items; only the view administrator can decide
if gallery/styleshould be included or not in the second PDV.

For query answering over PDVs, the semantics of a PDVp over a collection of documentsc may
be summarized as follows. The interpretation of any tuple[pn1, ..., pnk] of nodes of the PDV tree
is given by the evaluation of aquery pattern treeover the collectionc. The query pattern tree is the

3.2. THE XYVIEW MODEL 29

Figure 3.5: An example of multiple PDVs in a document structure

subtree ofp that haspn1, ..., pnk as leaves and that asks all of them for projection. Intuitively, the
elements in the returned tuples arethe closest possiblewrt the PDV, because they have the closest
possible common ancestor in the document (because of the pattern tree structural constraints).

Logical Data Views (LDV) Logical data views are defined by a group of PDVs, a homogeneous
tree structure for those PDVs and a set of path-to-path mappings between the LDV structure and the
PDV structures, illustrated in Figure 3.4 and discussed above.

LDVs provide a homogeneous XML structure for query results,i.e. the value of a concept mapped
to an LDV element has the XML structure of that element in the LDV tree. For query answering, the
semantics of an LDVl over a set of PDVsP may be expressed as follows. The interpretation of any
tuple [ln1, ..., lnk] of LDV elements inl is the union of the intepretations of tuples[pn1, ..., pnk] for
all PDVsp ∈ P , wherepni is the (unique) element ofp mapped tolni, ∀i ∈ {1, ..., k}. If somelni

has no mapping inp, the interpretation of[pn1, ..., pnk] is considered to be empty.
This union semantics of LDVs and the GLAV mappings between LDVs and PDVs allow flexible

updates of the view inside each LDV group. E.g., to add a new PDV to a LDV group, one have to only
compute the mappings between the new PDV and the LDV.

User Data View The user data view consists of a set of typed concepts, their mappings with LDV
elements and a set of predicates that are used to join the LDVs. Figure 3.4 illustrates the user data
view for the sports news example. Mappings, of the formconcept-to-LDV path, are similar to LDV to
PDV mappings, but join specification, as a set of predicates relating paths in the joined LDVs, makes
the global mapping between concepts and LDVs a GAV one (an LDVdepends of other LDVs because
of the joins). The example shows several mappings and the unique join (by equality) between the
player names in the two LDVs.

Concepts are typed by the view designer, for instancePlayerGoalsis an integer,GameDateis of
type date,PlayerNameis a string, whileGameis an XML element.

The semantics of a user data view can be intuitively summarized as follows. The interpretation of
a tuple of concepts is a n-ary join of partial tuples of LDV nodes, found in LDVs through mappings.

View construction The components of a view depend each other, e.g. PDVs depend on the data
summaries and on mappings to LDV elements (in order to respect the unique mapping constraint),
LDVs depend on the set of corresponding PDVs and on the concepts mapped to them, etc. In this
context, the view definition flow could respect the followingschema:

1. Fix the view domain, i.e. the set of document collections in the repository, then extract the data
summaries for these collections.

2. Establish the set of concepts (the user view), based on theknowledge that the view designer has
about data in the repository and the application domain.

3. For each data summary, establish the mappings between tree nodes and concepts, then extract a
set of PDVs from the data summary structure by respecting theunique mapping constraint.

30 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

Concepts
Biography
GameDate

LDVs
Game
Encyclopedia

TeamDate

Game

{= 2004−09−08}
Scorer

. . .

. . .

Name

Encyclopedia

Football

Player

BiographyName

1

2

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Joins
Game/Team/Scorer/Name =

LDV

Join (=)

LDV

Game

Encyclopedia

Step 1
identify LDVs and joins in query

Encyclopedia/Football/Player/Name

add query annotations to LDVs

Step 2
find PDVs matching the query

PDVs for LDV

PDVs for LDV Game

Encyclopedia

National
International

both have mappings for
the marked nodes
Date and Name

Encyclopedia

has mappings for
the marked nodes
Name and Biography

Step 3 Step 4
generate and annotate combinations of PDV joins

 (=)

Team

Scorer. . .
{= 2004−09−08}

Date

GameResult

. . .

National

PlayerName

 (=)

Player
{= 2004−09−08}

Name

. . .

. . .

Result
//

International

Date(@)

Figure 3.6: Steps for translating Query Q3: Select BiographyWhere GameDate=2004-09-08

4. Group PDVs by the set of concepts they cover (i.e. the concepts mapped to the PDV); a group
contains PDVs that cover the same (or almost the same) set of concepts.

5. For each group, build an LDV structure and create the mappings to the PDVs.

6. Create the concept to LDV mappings and define the join predicates.

3.2.3 Query rewriting

As is the case with universal relations, the query language supported at this level consists of selections
and projections over concepts, where selection predicatesdepend on the concept type. For instance,
Query Q3, that returns biographies of scorers from games on 2004-09-08, has the form:

Select BiographyWhere GameDate= 2004-09-08

Query rewriting mainly consists of a GAV rewriting of the user query into a join of LDVs, then
into a union of joins of PDVs. At each rewriting level, useless view elements (joins, tree paths) are
discarded. The last step is to transform the PDV rewriting into an XQuery over the repository. Figure
3.6 illustrates this rewriting process for Query Q3.

Step 1 identifies the sets of concepts (CQ), LDVs (LQ) and joins (JQ) involved in queryQ. Basi-
cally, CQ is composed of concepts addressed in the selection or projection clauses ofQ, LQ of LDVs
that have mappings to concepts in CQ and JQ of joins between LDVs in LQ. This allows eliminating
from the rewriting all the LDVs not in LQ and joins not in JQ. Other semantics for LQ are possible
in XyView, e.g. by removing redundant LDVs (those contributing with concepts already provided by
other LDVs in LQ), or by including LDVs that appear along some join path between LDVs in LQ.

Step 2 consists of adding query annotations to the nodes of LDVs from LQ. Annotations include
projection marks, selection conditions and join marks, obtained from the corresponding query con-
cepts, through mappings. This produces an equivalent rewriting of the query at the LDV level, as an
n-ary join of LDV pattern trees.

Step 3 detects for each LDV in LQ the set of PDVs that provide a non-empty interpretation of the
annotated LDV nodes.

Step 4 generates all the combinations of PDVs found at Step 3;this produces the rewriting at
the PDV level, as an union of n-ary joins between PDVs (one join per combination). LDV trees are
replaced by PDV trees and node annotations are obtained fromLDVs by using LDV-PDV mappings.

3.2. THE XYVIEW MODEL 31

The final step produces the equivalent XQuery rewriting. First, each PDV tree is minimized, by
keeping only paths that lead to annotated nodes. The resulting tree patterns are used to generate
a union of flat FLWR XQueries, expressing the structural constraints in each PDV tree and joins
between these trees. The final XQuery obtained for Query Q3 is presented in Figure 3.2 above. More
details on the rewriting algorithm are given in [VCCS06].

Comparison with query-based views XyView differs from standard view mechanisms relying on
query composition: the view is not defined by an a priory query, but by mappings that allow an
opportunistic adaptation of the view to the user query.

A query-based view must provide a full view over the documentstructures for all the concepts.
A good candidate for the view query isthe user query that projects all the view concepts, i.e. its
translation through the previous algorithm. A query on thisview faces problems such asdata lossand
duplicates, due to the presence of unnecessary joins and PDV paths in theview definition wrt the user
query.

For instance, a query that asks for player biographies wouldnot return biographies of players that
are not recorded as scorers, because of the join between LDVsGameandEncyclopedia, unnecessary
for this query. Using outer-joins avoids data loss, but introduces null values and duplicates. Similarly,
when asking for game descriptions, the view only provides games for which all the concepts in the
GameLDV tree can be instantiated, i.e. games without scorers arenot returned.

Also, the query asking for player biographies will produce duplicates because of the unnecessary
join - the player’s biography is returned each time it appears as a scorer. The same is true for the query
on game descriptions - the same game description is returnedfor each scorer of the game. Duplicates
can be eliminated throughdistinct operations, but this has a cost and it is sometimes difficult to
distinguish between good (existing in data) and bad duplicates.

Typing Query results may be typed in several ways: (i)flatten as strings, such as for Query Q3
in Figure 3.2, where thestring function is applied to the element, (ii)unchanged, i.e. returning the
elements without transformation, thus producing heterogeneous results, or (iii)typed following the
LDV tree structure.

Typing is specified throughLDV node transformations, described as node annotations. Consider
for instance a query close to Q3, that asks forscorer information(name and number of goals) from
games on 2004-09-08. Results typed following the LDV shouldbe Scorerelements, composed of
Name(string) andNbOfGoals(integer) subelements. This is obtained by annotating eachLDV node
following its type. E.g., theScorernode is annotated as follows:

Return: <Scorer> $1 $2 </Scorer>

Symbol ”$i” indicates the i-th child of the current node in the LDV tree, which will be recursively
typed following its own annotation. Note that XyView adaptsthe recursive tree typing of an element
to each PDV: in the tree result, only branches that appear in the PDV are considered. For instance, if
a PDV does not have a node corresponding toNbOfGoals, Scorerresults in that PDV will only have
aNamesubelement.

We also use symbol ”$$” to indicate the XML data element that corresponds to the current node.
For instance, the annotation of a leaf node (such asName) for LDV typing would be:

Return: <Name> string($$) </Name>

Note that this annotation mechanism allows expressing the three typing methods above and en-
ables additional customization of results typing. More details on LDV node annotations in XyView
are given in [VCCS06].

32 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

Figure 3.7: XyView editor and web-form generator

3.2.4 The XyView system

XyView has been implemented as a set of tools for rapid development of web applications over the
Xyleme XML repository, but can be easily adapted to any system that supports XQuery. The XyView
system is composed of the following modules:

• A view editor(upper-left window in Figure 3.7) that enables visual creation and modification of
XyView views, through editors for each view component: PDVs(using data summary extrac-
tors), LDVs, concepts, mappings, joins, etc. Views are saved in a persistent form, as a set of
XML files.

• A run-time environmentthat provides a simple Java API for using XyView views in web form
or web service applications. The XyView API allows creating/modifying views, loading/saving
views from/in the persistent form, building and translating user queries against the view. Note
that XyView does not interfere in the communication betweenthe application and the XML
repository, but simply provides a query rewriting service;this architecture simplifies the adap-
tation of XyView to any system supporting XQuery.

• A web-form application generator(upper-right window in Figure 3.7) that provides a graphical
environment for creating simple web-form applications over the Xyleme repository. The sys-
tem automatically generates the HTML query form (bottom-left window) and the application
servlets producing the query report (bottom-right window).

3.3. THE OPENXVIEW MODEL 33

3.3 The OpenXView model

3.3.1 Motivation and goals

OpenXView [BSSV06a, BSSV06b, BSSV07], addresses the problem of XML data integration inopen
integration systems, overa large number of sources, where users may freely publish data in order to
share information on common interest topics. A typical example is peer-to-peer [KP05] communities
sharing structured content, such as XML data. The key characteristic of open integration systems is
source autonomyin publishing data, leading tofrequent and unpredictable changesin data and in
the composition of the set of sources, and todata heterogeneityfor documents whose structure was
independently designed by different users.

A view model for heterogeneous XML data such as XyView is not appropriate in this context,
because of the frequent and unpredictable changes in sources, which may lead to a reorganization of
the view structure (the grouping of PDVs by LDV, the structure of LDVs, joins, etc.)

OpenXView is an evolution of XyView towardsa more flexible model, where the intermediary
LDV level disappears, where union groups and joins between them are automatically generated at
query rewriting, depending on the user query. It uses a GLAV integration schema, appropriate for
large scale integration in open systems.

The global integration modeladopted by OpenXView is a mix ofontologiesand tree-like XML
schemas, that combines the advantages of these two most common global models for XML data
integration [HIMT03]. The advantage of tree-like schemas is a lower model mismatch with source
data, thus simplifying mapping generation, query rewriting and results typing. The advantage of
ontologies is a better expressive power for the global model, mappings and queries, but mapping
generation and mapping update are generally too complex forlarge scale integration. We propose aa
hybrid integration schema: a simple ontology, where concepts have attributes organized in hierarchies
(such as in XML structures), but may be connected through two-way ”relatedTo” relationships, more
flexible for mapping constraints than ”partOf” XML relations.

On the source side, users publishPhysical Data Views(PDVs), such as in XyView. Mappings,
similar to LDV-to-PDV mappings in XyView, are directly expressed between the global schema and
PDVs. They are generated together with PDVs at publication time.

Concerning user queries, OpenXView has the same goal as XyView: a very simple query language
for heterogeneous XML data, based here on selections and projections over concept attributes in
the ontology. Unlike XyView,joins between documents areimplicit and are based onconcept key
attributes, defined for each concept in the ontology. This completely hides the way concepts are
fragmented among sources, to both users that express queries and to those that publish data, thus
providing a higher abstraction level in data management.

For now, we addressed in OpenXView the model definition and the problems of query answering
and query rewriting; other issues, such as data publication, schema maintenance and query optimiza-
tion are left for future work. We followedtwo main goalsin OpenXView query rewriting: (i) to
provide algorithms that are scalable with the number of sources, and (ii) to introduce criteria for lim-
iting the number of query rewritings to a ”most pertinent” subset, their number being very large due
to the use of implicit joins.

The closest related work to OpenXView are XML integration systems such as Styx [ABFS02], and
Yacob [SGS05], that use an ontology as a global schema and implicit joins. Styx uses concept keys
for implicit joins, but its query rewriting algorithm does not scale with the number of sources. Yacob
uses both explicit and implicit joins, but defines a special (and very expensive) algebraic operator to
compute concept extensions through implicit joins, instead of producing XQuery rewritings. Tradi-

34 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

Games

Game

id(@) info Stadium
address name(@)

//

//

StadiumEncyclopedia

Stadium

addressname

//

capacity

Winner
Team(@) NbOfGoals

Ontology

biography

Game

date

Team

Scorercapacityname id name

name

Stadium

Physical Data Views

Mappings

................

stadium address

FootballGamesHistory

Team
name(@)

date(@)event

capacity Goals

Pdv3

Pdv1

Pdv2

Pdv4

Pdv5

Pdv3:/Games//Game//Stadium/address
Pdv2:/StadiumEncyclopedia//Stadium/address,

Pdv2:/StadiumEncyclopedia//Stadium/capacity,
Pdv4://ChampionsLeague/Stadium/capacity,
Pdv5://WorldCupContention/Stadium/capacity}

Pdv5://WorldCupContention/Stadium/
Winner/NbOfGoals}

O:Stadium/address−−> {Pdv1:/FootballGamesHistory/event/address,

 O:Stadium/capacity −−>{Pdv1:/FootballGamesHistory/event/capacity,

{Pdv1:/FootballGamesHistory/Team/Goals,
Pdv4://ChampionsLeague/Game/NbOfGoals,

address

city zipCode

description nbOfGoals

nbOfGoals

O:Game/description −−>{Pdv3:/Games//Game/info}

O:Team/nbOfGoals −−>

date Stadium

address

//

capacityname(@)

WorldCupContention

Game

reference

ChampionsLeague

GameStadium

name(@) capacity

//

id TeamName NbOfGoals

Pdv5:/WorldCupContention/Stadium/address}

Figure 3.8: An example of OpenXView ontology, Physical DataViews (PDV) and mappings

tional query rewriting algorithms for LAV systems, such as MiniCon [PH01], or Chase & Backchase
(C&B) [DT05] do not work in the case of implicit joins.

3.3.2 The OpenXView data model

We give here an informal presentation of the OpenXView data model elements, illustrated by an
example.

Ontology, concepts, attributes An OpenXViewontology is a labeled graph, whose nodes, called
concepts, have unique labels representing the concept name.

Eachconcepthasa set of attributes, organized in acomposition hierarchyrepresented as a tree
with labeled nodes. By convention, the root of this tree has the same label as the concept. Attributes
are not shared between concepts.

Attributesaretyped; types may beatomic(integer, date, string, etc.) orcomposed(XML element).
Only leaf attributes may have atomic types, all non-leaf attributes are composed.

Each concept hasa key, composed of a subset of its leaf attributes. Intuitively, each key value
identifies an ”instance” of the concept in the real data, as defined below.

Each edge in the ontology graph represents an untyped ”relatedTo” relation between concepts,
that implies a relation between the concept instances, as explained below.

Figure 3.8 presents an example of OpenXView ontology, composed of four concepts (Stadium,
Game, TeamandScorer), each one having a set of attributes organized in a composition hierarchy,
e.g. the stadium address is composed of a city and a zip code. For simplicity, no distinction is made
between a concept and the root of its attribute tree. Concepts keys are represented in italic font,
e.g. namefor conceptStadium, id for conceptGame. There are relations defined between concepts
(Stadium - Game, Game - TeamandTeam - Scorer), represented by an untyped edge (edge with no
label) in the ontology graph.

Data sources, mappings OpenXViewdata sourcesarecollections of XML documentsthat publish
a tree-like schemaover these documents. We use here the same source model as inXyView, where a
data summary structure is extracted from the set of documents.

3.3. THE OPENXVIEW MODEL 35

Also, we adopt the XyView’s notion ofPhysical Data View(PDV), presented in Section 3.2.2.
The only difference is that in OpenXView the global model above PDVs is the ontology, while in
XyView it was the LDV. Each data source produces upon publication a set of PDVs over its collection
of documents, and themappingsbetween the ontology and each PDV.

Figure 3.8 describes five PDVs, for documents about footballgames. Nodes annotated with (@)
represent attributes. Mappings between PDVs and ontology attributes are presented here grouped by
attribute. Each ontology node has at most one correspondingnode in each PDV, e.g.Stadium/address
is mapped to/FootballGamesHistory/event/addressin Pdv1, to /StadiumEncyclopedia//Stadium/address
in Pdv2, etc.

Concept instances, constraints Intuitively, a concept instanceis identified by a given value for
the concept key.A concept occurrencecorresponds to an occurrence of a concept instance (key) in
a document. There may beseveral concept occurrences of a concept instancein the source data. A
concept occurrence is composed of all the elements corresponding to the concept’s attributes ”accom-
panying” the key element (as explained below). A concept occurrence may becompletewrt a setA
of the concept’s attributes, i.e. it contains all the attributes inA, but in many cases it ispartial (some
attributes are missing).Joining concept occurrences on the concept key attribute allows obtaining
complete values. Note that obtaining a single value for a concept instance (by combining occurrences
for the instance key) depends on several modeling choices, such as accepting or not multiple values
for an attribute (e.g. several descriptions for the same game), or the way of handling contradictory
attribute values (e.g. different capacity values for a stadium in two different stadium occurrences).

Figure 3.9 presents an example of XML document forPdv3. Note that the multiplicity for PDV
elements is always ”*” (zero-or-many), so not all the elements are always present. Also, other ele-
ments, not related to the ontology, may exist, e.g.referee. Given the mappings with the ontology, the
document contains three occurrences for conceptGame(for instances of keys ”N5”, ”N8” and ”I22”)
and two for conceptStadium(”Gerland” and ”Vélodrome”). E.g. the occurrence ofGamefor key
”N5” is composed of nodes 3, 4 and 5, corresponding to the attributes ofGame”accompanying” node
4 that holds the key. All these occurrences are partial wrt the set of all the concept attributes (date
missing forGame, capacity forStadium), complete values may be obtained by merging them with
other occurrences for the same key value.

Ontology relations between concepts and between attributes expressconstraints to be satisfied
in data sources, in order to enforce semantics.A ”partOf” relation between attributes constrains
the associated XML elements in a source document to have a similar ”partOf” relation (descendant
relation preservation). Our choice is tocheck ”partOf” relations between attributes at publishing
timeand to only accept mappings that respect this constraint. E.g., in Figure 3.8, ifGameis mapped
to /Games//Gamein Pdv3, only mappings forGame/descriptionto descendants of/Games//Game
are accepted (here/Games//Game/info). This constraint allows representing concept occurrences as
subtrees, e.g. nodes 3, 4 and 5 in Figure 3.9 form a tree.

By contrast,”relatedTo” relations between concepts are less restrictive and are not checked at
publishing time. They express a relation between concept instances and may have a different mean-
ing from an application domain to another. For simplicity, we define relations between instances as
follows: for two related conceptsc1 and c2, an instancei1 of c1 is related to an instancei2 of c2 iff
there exists an occurrenceo1 of i1 ”directly connected” to an occurrenceo2 of i2 in some documentd
belonging to a PDVp having mappings to bothc1 andc2. Direct connection is defined as follows: oc-
currenceso1 ando2 are directly connected if they are ”the closest” possible wrt the PDV, i.e.they have
a common ancestor at the same level as the lowest common ancestor in the PDV. Other definitions

36 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

Figure 3.9: An example of XML document for Physical Data ViewPdv3

are possible, e.g. adding descendant relation constraintsbetween occurrences.
In the example of Figure 3.9, the PDV nodes corresponding to conceptsGameandStadiumhave

the lowest common ancestor (LCA) in elementGame. Hence, theGameoccurrence of key ”N5” is
directly connected to theStadiumoccurrence of key ”Gerland” (LCA:Game), but not to the occur-
rence of key ”Vélodrome” (LCA:National). Also, Gameoccurrence ”I22” is not directly connected
to anyStadium(the LCA with bothStadiumoccurrences isGames). This example document produces
two couples of relatedGame - Stadiuminstances, ”N5” with ”Gerland” and ”N8” with ”Vélodrome”.
Other couples of related instances may be found in other documents.

3.3.3 Query answering and query rewriting

An OpenXView query Q is a conjunctive selection/projection query over the set ofontology at-
tributes:
Q: Select a1, ...,an

Where cond1(a
′
1) and ... and condm(a′m)

whereai anda′j 1 ≤ i ≤ n, 1 ≤ j ≤ m are attributes andcondj are predicates over the attribute
value, compatible with the attribute type.

We give here a sketchy semantics for OpenXView queries and for the query rewriting algorithm,
based on the following simplifying hypothesis:

• Concept keys are composed of a single attribute.
• Concept attributes are single valued.
• All the attributes of a concept are at the same level, their tree structure may be considered

afterwards for building a structured result.

We consider the followingnotations:
• For an ontologyO, concepts(O) is the set of concepts (nodes),rel(O) is the set of ”relatedTo”

relations (edges) in the ontology graph andattr(O) is its set of attributes.
• For a conceptc, attr(c) is the set of its attributes andkey(c) is its key attribute.
• For a set of conceptsC, rel(C) is the set of ”relatedTo” relations between the concepts inC.
• For a PDVp: coll(p) is the collection of documents over whichp is defined,tree(p) is its tree

structure andnodes(p) is the set of tree nodes.
• The mapping between ontologyO and PDVp is a functionmappingp : attr(O) → (nodes(p)∪

{nil}), where the special valuenil means ”no node”.
• For a PDVp, attr(p) is the set of ontology attributes mapped top, i.e. attr(p) = {a ∈

attr(O)|mappingp(a) 6= nil}
• For a queryq, attr(q) is the set of attributes that appear in the query,concepts(q) is the set of

concepts of these attributes andrel(q) is the set of ”relatedTo” relations between these concepts.

3.3. THE OPENXVIEW MODEL 37

Query answering The interpretation of a tuple of PDV nodes[n1, ..., nk] belonging to a PDVp is
the same as considered in XyView (Section 3.2.2), i.e. the evaluation of a query pattern tree over the
data source collection of documents, satisfying the ”closeness” constraint of the tuple’s elements.

The interpretation of a tuple of attributes[a1, ..., an] in the ontology wrt a PDVp is the interpreta-
tion of the corresponding PDV nodes:I([a1, ..., an], p) = I([mappingp(a1), ...,mappingp(an)], p)

If somemappingp(ai) is nil (attributeai has no corresponding node inp), the interpretation is
the empty set.

The interpretation of a tuple of attributes[k, a1, ..., an] belonging to a same conceptc, in a set of
PDVs P , wherek = key(c), is given bythe union of all the possible joins (on the key) of partial
tuples from different PDVs. Let us noteA = {a1, ..., an}, wherek /∈ A and letPartition(A) be the
set of all the partitions ofA. An element ofPartition(A) has the form{A1, ..., Am}, whereAi ⊂ A.
By convention, ifAi = {ai1 , ..., ail}, then[k,Ai] stands for[k, ai1 , ..., ail].

I([k, a1, ..., an], P) =
⋃

{A1,...Am}∈Partition(A)
{p1,...,pm}∈P,Ai⊂attr(pi)

I([k,A1], p1) 1k ... 1k I([k,Am], pm) (3.1)

The interpretation of a ”relatedTo” relation between conceptsc1 andc2 in a PDVp is given by all
the couples of directly connected occurrences ofc1 andc2 in the documents of PDVp:

I(rc1c2, p)
∆
= I([key(c1), key(c2)], p) (3.2)

The same relation in a set of PDVsP is interpreted as follows:

I(rc1c2 , P) =
⋃

p∈P

I(rc1c2 , p) (3.3)

The interpretation of a tuple of attributes belonging to several conceptsc1, ..., cm in a set of PDVs
P is given by an independent interpretation for each concept,combined with the interpretation of
the ”relatedTo” relations. That means that only combinations of concept instances that respect the
”relatedTo” relations are accepted.

I([k1, a1,1, ..., a1,n1
, ..., km, am,1, ..., am,nm], P) =

×i (I([ki, ai,1, ..., ai,ni
], P)) 1k1,...,km

(1r∈rel({c1,...,cm}) I(r, P)) (3.4)

whereki = key(ci) andai,j are attributes ofci.
Finally, the interpretation of a queryq is obtained by considering the tuple composed ofattr(q)

and of the keys of concepts inconcepts(q), and by realizing the selection and projection operations
on the interpretation of this tuple.

Query rewriting The query answering expressions above already provide a basic query rewriting
algorithm. It is easy to show that the resulting rewriting isequivalent toa union of unit rewritings, by
transforming formula 3.4 into a union of joins.

A unit rewriting does not contain unions, it is composed of a n-ary join of PDVsthat can produce
answers to the query. Joins on each concept key are necessaryto build tuples with all the concept’s
query attributes, by merging concept occurrences. Additional joins for the ”relatedTo” relations may
be necessary to include PDVs that provide an interpretationfor these relations.

We say thata PDV p covers a set of attributesA if attr(p) ⊇ A. A PDV coveringA can
provide tuples composed of all the attributes inA. A PDVp covers a ”relatedTo” relationbetween
two conceptsc1 andc2 if p’s structure can satisfy the corresponding constraint. With the ”relatedTo”
interpretation chosen above,p must simply cover the keys ofc1 andc2.

A unit rewriting for a queryq is described:

38 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

• For each query conceptc ∈ concepts(q), by a set of covering PDVs joined onkey(c) and a
partition of the concept’s query attributes (attr(c) ∩ attr(q)) among these PDVs. The partition
expresses what attributes each PDV ”provides” in the result. This corresponds to a term of the
union in Formula 3.1.

• For each ”relatedTo” relationr ∈ rel(q), by a PDV that coversr.

In other words, a unit rewriting must specify, for each attribute or relation in the query, the PDV
that provides that element. In the example of Figure 3.8, a possible unit rewriting for QueryQe:
Select Game/description, Stadium/name, Stadium/capacitywould be:

• For conceptGame, Pdv3, that providesGame/description.
• For conceptStadium, Pdv3, that providesStadium/nameandPdv4, that providesStadium/capacity.
• The relation betweenGameandStadiumis provided byPdv3.

A unit rewriting can be easily be translated into a simple FLWR XQuery expression, e.g. for the
example above, the XQuery rewriting would be (results typing is not considered here):

For $doc3 in collection(Pdv3URI), $doc4 in collection(Pdv4URI),
$g3 in $doc3/Games//Game, $n3 in $g3//Stadium/@name, $s4 in $doc4//ChampionsLeague/Stadium

Where $g3//Stadium/@name = $s4/@name
Return <Result> {$g3/info, $n3, $s4/capacity} </Result>

The number of unit rewritings produced by Formula 3.4 may be very large. We aim at reducing
them to a smaller, ”most pertinent” subset, and at exploring, in future work, theranking of unit
rewritings, in order to execute them following an order thatproduces the most pertinent results first.

We introduce severalunit rewritings equivalence and containment criteria, based on reasonable
symplifying hypothesis:

Equivalence: Two unit rewritings having the same sets of covering PDVs foreach concept and the
same PDVs for the ”relatedTo” relationsare equivalent, whatever the partition of attributes
among covering PDVs is. This is based on two simplifying hypothesis: (i) for a concept instance
(key value), attribute values found in any occurrence are the same or equivalent, and (ii) any
partition of attributes between the covering PDVs producesthe same set of concept instances.
In practice this is not always true, especially for the second point (tuples with more attributes
match less occurrences), but we consider that the differences are insignificant.

Containment: For two unit rewritingsur1 and ur2, such that the set of covering PDVs for each
concept inur1 is included in the corresponding set ofur2, and that have the same PDVs for the
”relatedTo” relations, we consider thatur2 is contained inur1. The idea is that, for a concept
covered by a set of PDVs, the set of concept instances produced by merging occurrences is the
intersectionof the sets of instances provided by each PDV. Adding a new PDVwill reduce this
set of instances to a subset.

The consequences of these criteria on query rewriting can besummarized in two points: (i) in unit
rewritings,only the set of covering PDVs for each concept matters, not the partition of the attributes
among these PDVs, and (ii) for each concept one must findthe minimal set of covering PDVs.

Query rewriting algorithm The OpenXView query rewriting algorithm is based on the above cri-
teria and on two additional ”pertinence”restrictionsthat reduce the number of unit rewritings:

1. The global set of PDVs that covers all the concepts and relations in the query must also be
minimal. This limits the dispersion of query attributes among sources that could produce less
pertinent results.

3.3. THE OPENXVIEW MODEL 39

2. A ”relatedTo” relation between conceptsc1 andc2 must be provided only by PDVs belonging
to the sets of covering PDVs ofc1 andc2. Two variants are possible: (i) belong to both sets
(strict condition), and (ii) belong to one of them (relaxed condition).

The containment criterion and restriction 1 above raise an essential issue in the OpenXView query
rewriting algorithm: the computation ofminimal covers. A coverof a set of attributesA with a set of
PDVsP is a subsetcp of P that coversA, i.e.

⋃
p∈cp attr(p) ⊇ A. A minimal coveris a cover where

no PDV can be removed without breaking the coverage.
The rewriting algorithm for a queryq consists of the following steps:

1. Reduce the size of the problem, by creatingequivalence classes of PDVs. Two PDVsp1, p2 are
equivalent if they cover the same subset of query attributes, attr(p1) ∩ attr(q) = attr(p2) ∩
attr(q). Computing minimal covers will use equivalence classes instead of PDVs. This reduces
the size of the problem fromN PDVs (that may be very large) down to2k−1 equivalence classes
(empty coverage class is discarded), wherek is the number of query attributes.

2. Compute the setMC of global minimal covers(of attr(q)).
3. For each conceptc in concepts(q), compute the setMCc of concept minimal covers(of the

query concept attributesattr(q) ∩ attr(c)).
4. Compute the setCMC of combinations of minimal covers of query conceptsthat arecompatible

with the global minimal covers,
CMC = {[mc1, ...,mcn]|mci ∈ MCi,∪imci ∈ MC}, whereconcepts(q) = {c1, ..., cn}.

5. For each combination of minimal coverscmc ∈ CMC, compute the setRCcmc of combina-
tions of ”relatedTo” covers, by considering that each relationrcicj

∈ rel(q) can be provided by
elements inmci ∩ mcj (strict condition) or inmci ∪ mcj (relaxed condition).

6. Each couple(cmc, rccmc) ∈ CMC×RCcmc provides a unit rewriting over equivalence classes,
that can be easily transformed into a set of unit rewritings over PDVs, by considering all the
combinations of PDVs in the equivalence classes.

Consider the case of the example queryQe above, whereattr(Qe) = {Game/description, Sta-
dium/name, Stadium/capacity}. There are two equivalence classes:cl1={Pdv1, Pdv2, Pdv4, Pdv5}
that coversStadium/nameandStadium/capacity, andcl2={Pdv3} that coversGame/descriptionand
Stadium/name. There is a single cover, which is a minimal cover, composed of both classes,MC =
{(cl1, cl2)}. For conceptGame, cl2 provides the only cover, which is minimal,MCGame = {(cl2)}.
ForStadium, there are two possible covers(cl1) and(cl1, cl2), but only(cl1) is minimal, soMCStadium =
{(cl1)}. The only combination of minimal covers iscmc = [mcGame = (cl2),mcStadium = (cl1)],
which is compatible withMC, becausemcGame ∪ mcStadium = (cl1, cl2) is a global minimal cover.
The Game-Stadiumrelation is covered byPdv3 in cl2, andPdv4, Pdv5in cl1. There is no way to
cover this relation under strict conditions (mcGame ∪ mcStadium = ∅), but it can be covered under
relaxed conditions, bycl2 (Pdv3) or cl1 (Pdv4, Pdv5).

The final result is composed of several unit rewritings:
• GameandrGame−Stadium in cl2 (i.e. Pdv3), Stadiumin cl1 (i.e. Pdv1or Pdv2or Pdv4or Pdv5).

This produces four PDV unit rewritings.
• Gamein cl2 (i.e. Pdv3), StadiumandrGame−Stadium in cl1 (i.e. only Pdv4, Pdv5because of

therGame−Stadium relation). This produces two PDV unit rewritings.

Minimal cover algorithm We proposed in [BSSV06b] a very efficient algorithm for minimal cover
computation, which is a critical operation at query rewriting. The basic idea is toprecomputeall the
possible minimal covers for a setA of k elements, with subsets ofA, for k = 1, 2, 3, etc. Figure 3.10
presents an example of minimal cover computation for a queryof sizek=3.

40 CHAPTER 3. VIEWS FOR HETEROGENEOUS XML DATA

1

c1 c2 c3 c4 c5 c6 c7 c8

1

1

1

1

1

1

1

1

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

00

00000

00 0 0 0

0000000

1

1

0

1

1

1 0 0 0

1 1

11 1 1 1111

3MSC

{2}

{3}

{2, 3}

{1}

{1, 3}

{1, 2}

{1, 2, 3}

3MSC

c1 c2 c3 c4 c5 c6 c7 c8

1

1

1

1

1

1

1

1

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

00

00000

00 0 0 0

0000000

1

1

0

1

1

1 0 0 0

1 1

{2}

{3}

{2, 3}

{1}

{1, 3}

{1, 2}

{1, 2, 3}

c1 c2 c3 c4 c5 c6 c7 c8

1

1

1

1

1

1

1

1

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

00

00000

00 0 0 0

0000000

1

1

0

1

1

1 0 0 0

1 1

3MSC

{2}

{3}

{2, 3}

{1}

{1, 3}

{1, 2}

{1, 2, 3}

a) Initial status

members

valid

0

1

0

0

1

0

1

11 1111 0 0

b) Intermediate status

valid

members

As={1}
0

1

0

0

1

0

1

sol1 sol2

110 0 0 0 0 0

c) Final status

valid

members

0

1

0

0

1

0

Figure 3.10: Minimal cover computation algorithm

We consider that the set of precomputed minimal covers holdsin memory. In practice, we use a
bitmapMSCk to store the precomputed minimal covers for sets of sizek. The bitmap has2k−1 lines
(one for each possible subset, excepting for∅) and as many columns as minimal covers. The example
in Figure 3.10 usesMSC3, which has23 − 1 = 7 lines and 8 columns (there are 8 possible minimal
covers for sets of size 3, named herec1, ..., c8). A ”1” value in a cell that corresponds to a subset
As and a coverc means thatAs belongs toc. Hence, columns represent the composition of minimal
covers and lines indicate to what minimal covers belongs each subset.

Given a queryq of sizek, Step 1 in the query rewriting algorithm above computes the set of PDV
equivalence classes. Each equivalence class is identified by the set of query attributes it covers; if the
set ofk query attributes is represented byK = {1, 2, ..., k}, an equivalence class is identified by a
subsetAs ⊆ K.

The minimal cover algorithm uses, besidesMSCk, two bit vectors (Figure 3.10):
• members, indicating the set of equivalence classes produced by Step1. In the example, only 3

classes exist, covering respectively the sets of query attributes{2}, {1,3} and{1,2,3}.
• valid, indicating the valid minimal covers (all are valid in the beginning).

The algorithm considers all the ”bad” members (equivalenceclasses that do not exist) and inval-
idates the minimal covers containing them (”bad” minimal covers). In the example, for the ”bad”
memberAs = {1}, minimal coversc5 andc6 are invalidated. At the end, only ”good” minimal covers
remain valid; in our example there are two solutionsc2 = [{2}, {1, 3}] andc8 = [{1, 2, 3}].

This algorithm is very efficient compared to traditional branch-and-bound methods that would
compute minimal covers starting with the set of equivalenceclasses. Its drawback is the amount of
memory necessary for storing the bitmap, because its size grows very fast withk. For the amount
of RAM memory available in today computers, the bound isk ≤ 8, which is reasonable for the
applications we have in mind.

Chapter 4

P2P architectures for data sharing

This chapter presents my activity in the field of distributedarchitectures for data sharing and content
distribution on the web, in the context of my collaboration with the Gemo group at INRIA Futurs.
After a brief presentation of the context of this research axis, we present the two parts of this work:
theEDOScontent distribution system, and the improvements to theActiveXMLplatform.

4.1 Context: P2P data management and content distribution systems

Peer-to-peer (P2P) architectures[KP05, LCP+05] provide effective means for resource sharing (pro-
cessor time, bandwidth, memory, disk space) in a distributed environment. They provide scalable and
robust solutions for the development of large scale web applications. Unlike grid architectures, P2P
is characterized by a large autonomy of peers, which may freely enter or leave the system.

More and more popular, P2P architectures are used in variousapplication types: file sharing
(Napster, Kazaa), P2P computing (Seti@home), communication (Skype, Jabber), file transfer (BitTor-
rent), distributed databases (PIER [HHL+03], Edutella [NWQ+02], KadoP [AMP05]), etc. Follow-
ing the degree of centralization, they may be centralized (e.g. Napster), decentralized, or hybrid (e.g.
JXTA). The most usual classification concernsthe overlay network, which may beunstructured(each
peer only knows a set of neighbors - Gnutella [Rip01], Piazza[HIM +04], SomeWhere [ACG+04])
or structuredin various configurations, the most usual beingdistributed hash tables(DHT) (Chord
[SMK+01], CAN [RFH+01], Pastry [RD01]) andhierarchical (e.g. MediaPeer [DGY05]).

In this context, we are interested by decentralized and hybrid P2P architectures for the manage-
ment of large amounts of semistructured data. We focus on structured networks, notably DHTs, able
to guarantee efficient routing and distributed query processing. The Gemo group at INRIA Futurs
developped a P2P platform for data management, based on two main modules.

• ActiveXML[AMT06, weba], that represents both (i)a model for dynamic XML documents, in-
cluding service calls in XML documents to represent dynamicchanges in their content, and (ii)
a P2P platformfor storing, querying and sharing such documents in a distributed environment.
The ActiveXML model provides a declarative framework for the specification of distributed
data management applications. Each ActiveXML peer stores local documents, maintains their
content by calling embedded service calls when specified, and provides web services for other
peers by querying local documents. The ActiveXML peers forma decentralized, unstructured
P2P network, connected by the service calls in documents.

• KadoP [AMP05, webb], that provides distributed indexing of (Active)XML documents, by
using a DHT (Pastry [RD01]). Peers may publish their ActiveXML documents, which are

41

42 CHAPTER 4. P2P ARCHITECTURES FOR DATA SHARING

indexed at the XML element level, then the index entries are distributed in the network by using
the underlying DHT. KadoP provides efficient distributed query processing over the published
documents.

We are interested in using P2P architectures, in particularthe ActiveXML and KadoP modules,
for building distributed systems for content sharingwithin a web comunity. Such systems, called
data ringsin [AP07], provide global functionalities to users and are responsibleas a wholefor all the
internal management of the content sharing functionalities: indexing, replication, reorganization, etc.

In the particular case of open-source software distribution (e.g. Linux), very large amounts of
data (tens of Gigabytes) must be disseminated to a very largecommunity of developers and users
(thousands of members). Moreover, content is frequently updated to new versions of the software
modules. Current software distribution architectures aremainly centralized or based on sets of mir-
rors. While centralized systems are not scalable, current mirror-based systems face difficulties to
guarantee reasonably uniform performances, because the effort is not uniformly shared between mir-
rors for realizing the system functionalities. Another major problem of such systems is the difficulty
to globally ensure the freshness of content in the system.

Among the current distribution architectures for Linux, the most popular open-source software,
only few propose improvements to the classical architecture. The most noticeable are Red Hat Net-
work [Wit], that adds notification channels to maintain freshness, and Conary [Con], that uses dis-
tributed versioning repositories to minimize downloads for updates. Currently, the use of P2P ar-
chitectures for content distribution mainly addresses load balancing and bandwidth sharing (Coral
[FFM04], Codeen [Cod]). We want to extend this primary use byadding new P2P functionalities,
such asdistributed information systembased on XML metadata indexing and querying, and efficient
file sharingandmulticast dissemination, similar to BitTorrent [Coh03].

4.2 The EDOS content distribution system

We present here the content distribution solution proposedin the context of the EDOS European
project [EDO04]. EDOS stands for ”Environment for the development and Distribution of Open
Source software” and addresses the production, management and distribution of open source software
packages. The EDOSdistribution systemproposes a P2P dissemination architecture including all
the participants to the distribution process: publishers,mirrors and end-users. The system has been
implemented as an application to the distribution of Mandriva Linux packages.

Compared to existing software distribution systems, EDOS introduces several key improvements:

• a P2P architecture providing resource sharing, load balancing and robustness;
• advanced information system capabilities, based on distributed indexing and querying of XML

content metadata;
• efficient dissemination based on clustering of packages andmulticast techniques;
• support for maintaining freshness on updates, by using subscription / notification techniques

(pub/sub).

4.2.1 System overview

The goal of the EDOS distribution system is to efficiently disseminate open-source software (referred
as data or content) through the Internet. Published by a main server, data is disseminated in the
network to other computers (mirrors, end-users), that get copies of the published content. EDOS is

4.2. THE EDOS CONTENT DISTRIBUTION SYSTEM 43

articulated around a distributed, P2P information system that stores and indexescontent metadata.
This metadata-based information system allows querying and locating data in the EDOS network.

Data model There arethree kindsof data units in the EDOS system:

• Package: main data unit type, represented by an RPM file;
• Utility : individual file used in the installation process;
• Collection: it groups packages, utilities or subcollections, to form ahierarchical organization

of data.

A releaseis a set of data units that form a complete software solution -it corresponds to a full
Linux distribution. Its content is described by a collection.

Content disseminationis initiated bypublishingdata units in the system. Publishing consists in
generating metadata for each data unit and indexing it in thedistributed system. Periodically, the main
server publishes a new release. Updates to the current release are realized by publishing new versions
of packages or utilities. When the time comes, a ”publisher”decides to transform the current status of
the current release into a new release.

Metadata management is a key issue in the distribution process. We built a global, distributed
information system about data to be disseminated in the network. This system is fed with content
metadata, which may include not only content properties, but also information on production, testing,
statistics, etc. Distributed management of metadata is justified by its size and by the high rate of
queries and updates it supports. We classify metadata properties in three main categories:

• identifiers- in our case, the name and the version number uniquely identify a data unit.
• static properties, that do not change in time for a content unit, e.g. size, category, checksum,

license, etc.
• changing properties, i.e. properties that may vary in time:locationof replicas in the network,

collectioncomposition, distribution statistics, etc.

The XML structure chosen for EDOS metadata is a compromise between efficiency requirements
for both query processing(that requires large XML files, containing all the elements addressed in
a query) andmetadata updates(that need small files). We choose to create separate XML filesfor
each package (package properties) and for each release (release composition). Changing properties
use service ActiveXML service calls to compute the current value. For efficiency reasons, replica
location management uses a separate mechanism.

Actors and roles Peers of the EDOS P2P distribution system may be classified inthree categories:

1. Publishers: They publish new content in the network, manage flash-crowddissemination and
the pub-sub system. In EDOS there is typically a single Publisher, but the architecture permits
several ones.

2. End-users(Clients): They download content from other peers, query the system, subscribe to
data changes. They also participate to the network by storing and providing their local data for
downloads. To query the metadata, they need an entry-point into the indexing network of the
Mirrors.

3. Mirrors : They provide all the functionalities of the End-users. Besides that, they participate in
the indexing network. Typically, these aretrusted1 and reliable servers providing some guaran-
teed quality of service.

44 CHAPTER 4. P2P ARCHITECTURES FOR DATA SHARING

Figure 4.1: Actors in EDOS P2P content distribution

Figure 4.1 presents the actors in the P2P distribution network. Actors are connected intwo distinct
networks:

• The distribution network, composed of all the peers - they store, download and share EDOS
data, i.e. software packages, utilities and collections.

• The indexing network, composed of trusted peers (Publisher and Mirrors) - they store the index
on content metadata. For security reasons, Clients are not allowed to participate in metadata
and index sharing, but can provide content, whose validity may be automatically verified by
using the checksum metadata property.

Usage scenarios Flash-crowd situationsgenerally happen when new, popular and large size con-
tent is published (here a new release), and many peers (Clients or Mirrors) want to get this content as
soon as possible. Flash-crowd distribution uses efficient dissemination methods, based on clustering
of data units and multicast. Each peer asking for some portion of the new release may already have
some of the packages - therefore it computes awish listcontaining only the missing data units. Based
on the wish lists gathered from peers, the Publisher computes clustersof data units to be dissemi-
nated. Instead of downloading individual data units, peersdownload clusters (where a cluster is a set
of packages that are requested by a common set of peers), in a global multicastprocess.

The flash-crowd dissemination of a new published release is described by the following steps:

1. Peers interested in the new release subscribe to a specialchannel for new release publication.
2. The Publisher publishes the new release and notifies all peers that subscribed to that release.

Among the metadata published for the new release, itscomposition(identifiers of data units) is
necessary for each peer to determine the set of data units to download.

3. Notified peers decide if they are finally interested in the new release or not. The peers compute
the delta between the new release and the content they already have. This delta, calledwish list,
composed of the identifiers of data units to be downloaded, issent to the Publisher.

4. The Publisher waits for wish lists during a predefined window of time. Then it computes clusters
of data units, based on the set of collected wish lists.

5. The Publisher published the computed clusters of data units and starts ”torrents” for dissemi-
nating them.

6. Each peer gets in parallel (via multicast techniques) a set of clusters that covers its wish list.

Off-peak distribution and query corresponds to periods between flash-crowd situations. During
these periods, Publishers may publish updates to the current release and the other peers may query

1The correctness of a file is guaranteed by its signature and checked at download. The correctness of metadata is
guaranteed by the fact that the mirrors are trusted peers.

4.2. THE EDOS CONTENT DISTRIBUTION SYSTEM 45

Figure 4.2: EDOS software modules & API structure

the system, download query results, subscribe to distribution channels, receive notifications on such
channels and download software updates.

4.2.2 Software architecture

EDOS distribution functionalities are implemented as aJava API, based on a set of external software
modules (Figure 4.2):

• ActiveXML [ABC+04] provides an extended XML format for EDOS metadata and storage
for metadata documents published in KadoP. Web service calls embedded in ActiveXML doc-
uments may be used to represent intensionally changing information (e.g. statistics on the
distribution process) or package dependencies.

• KadoP [AMP05] allows publishing, indexing and advanced queryingof EDOS metadata. KadoP
is the core of the EDOS information system.

• IDiP [MZ07] implements functionalities for the flash-crowd usage scenario: content clustering
and multicast dissemination using BitTorrent.

• BitTorrent [Coh03] is an efficient file sharing and downloading system. We use a slightly mod-
ified version ofAzureus, a Java implementation of BitTorrent, for multicasting anddownloading
from multiple replicas.

The structure of the EDOS distribution APIis presented in Figure 4.2. The API is organized into
three levels:

1. Physical level: it provides EDOS peer basic functionalities. It is composed of several modules:
a content manager, an index manager, achannel manager, adissemination manager, etc. Pro-
gramming distribution applications at the physical level requires more effort, but offers the best
flexibility.

2. Role level: it is built on top of the physical level, provides a default implementation for each
role in the distribution network, i.e. publishing, downloading, replicating, querying, and sub-
scribing.

3. Actor level: it provides a default implementation for each actor kind (Publisher, Mirror or
Client), by combining several roles.

Implementation and tests The first version of the EDOS distribution system has been implemented
as a set of Java/JSP web applications on top of the EDOS API. Each peer in the EDOS network runs
a Java web application. Peer applications use a Tomcat web server for deployment, with Axis for web

46 CHAPTER 4. P2P ARCHITECTURES FOR DATA SHARING

Figure 4.3: Publisher and Mirror/Client web applications

services. The functionalities of each EDOS peer are accessible through a JSP user interface, running
in a web browser.

The Publisher web application (left side of Figure 4.3) allows publishing new content, managing
subscription channels and driving flash-crowd dissemination. Mirrors and Clients have similar user
interfaces (right side of Figure 4.3), allowing queries, downloading, subscriptions to channels and
notification handling.

Tests with the first prototype demonstrated the relevance ofP2P-based solutions for large-scale
content distribution, the ability of managing very large amounts of metadata with KadoP and the
improvements brought by IDiP for flash-crowd dissemination. Tests have been realized on several
hundreds of peers on the Grid’5000 [gri03] network to evaluate the scalability of EDOS publish-
ing, querying and downloading. Other tests are planned to berealized on the Internet, by using the
Mandriva network infrastructure. More details are presented in [EDO].

The last developments in EDOS brought several improvements:

• In massive publication of metadata, which is critical in EDOS. Publishing a new release is time
consuming because it implies the publication of a large amount of metadata. We found that the
best method for accelerating publication is to split content between several Publishers that work
in parallel.

• In security, by introducing peer authentication, and by providing support for firewall/NAT
traversal.

• In the user interface, by providing new front-end, based on Java Eclipse RCP standalone appli-
cations.

The EDOS distribution framework is also used as a starting architecture in theWebContentRNTL
project, where the goal is to provide a distributed solutionfor storage, querying and transformation of
web documents.

4.3. IMPROVEMENTS TO THE ACTIVEXML PLATFORM 47

Figure 4.4: ActiveXML peer architecture

4.3 Improvements to the ActiveXML platform

The ActiveXML platform [weba] was realized as an open-source software and is used by several
research teams across the world. It is based on the peer architecture presented in Figure 4.4. Each
peer is composed of the following main modules:

• The document store, which provides persistent storage for local ActiveXML documents.

• The evaluator, which triggers service calls embedded in ActiveXML documents and updates
accordingly the documents with the service call results.

• The query processor, mainly used for service requests, evaluates queries or executes update
queries over the document store.

The main role of an ActiveXML peer is themanagement of the dynamic content of its local
ActiveXML documents, by scheduling and triggering the execution of the embeddedservice calls.
This function is realized by the Evaluator module.

The following example presents a very simple ActiveXML document containing service calls.
<temperature xmlns:axml="http://www-rocq.inria.fr/verso/AXML">

<axml:sc service="weather.com/temperatures" mode="replace" frequence="every day">
<axml:param name="place">

<city> Paris </city>
</axml:param>

</axml:sc>
</temperature>

It contains an elementtemperature, whose value is not fixed, but provided by a call to a web service
(weather.com/temperatures), receiving a parameter (place) and returning the current temperature at the
given place. Parameters may be ActiveXML documents, containing other service calls or queries to
local documents (evaluated by the query processor). The ActiveXML peer storing this document will
execute the embedded service callevery day(frequenceattribute) and insert the result in the document,
by replacing the previous result, if exists (modeattribute). The updated document has the following
structure:

<temperature xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
<axml:sc service="weather.com/temperatures" mode="replace" frequence="every day">

<axml:param name="place">
<city> Paris </city>

48 CHAPTER 4. P2P ARCHITECTURES FOR DATA SHARING

Figure 4.5: Coupling of ActiveXML with Xyleme

</axml:param>
</axml:sc>
<value date="2007-06-29"> 15 </value>

</temperature>

A second roleof an ActiveXML peer is to be aweb service provider. The services provided
by the peer are generally implemented asqueries over the local documents, evaluated by the query
processor. The peer maintains a WSDL-like description of the services it provides.

Peers communicate with each other only by the mean of web service invocations, through their
SOAP wrapper modules. They can exchange XML data with any webservice client/provider, and
ActiveXML data with ActiveXML peers.

The improvements that we brought to the ActiveXML platform addressesthe third role of an
ActiveXML peer, concerningthe persistence of local documents. The initial ActiveXML implemen-
tation used a simple persistence mechanism, based on XML files stored in the file system and loaded
in memory, where updates to documents are immediately written on disk. Query processing and
document updates are realized on the DOM in-memory representation.

This basic storage architecture is not scalable and limits the use of ActiveXML peers to small
volumes of data. The solution isthe use of an XML database, in order to use the database capabilities
for storage, querying and updating for providing scalable management of data on the peer.

We designed and implementedtwo variants of coupling ActiveXML with an XML database.
The main difficulty is to re-design the ActiveXML peer without broking the other functionalities.
The first variant, realized by Eric Darondeau during his CNAM engineer thesis, provides a coupling
of ActiveXML with Xyleme. Figure 4.5 presents the ActiveXMLarchitecture before and after the
coupling with Xyleme. The in-memory storage, querying and updating of data is replaced with the
database functions: the XyStore module for storage, XyQL for querying, XyUpdate for updates. The
other peer functionalities are preserved, the connection with the database documents being realized
through document and service call identifiers, assigned by the system and exploited through the query
and update languages.

The second variant, realized by Ming Hoang To, during his Politechnique engineer internship,
is a generalization of the coupling with Xyleme. This solution provides thecoupling with a generic
XML repository, providing querying and updating functionalities, based on the XQuery and XQuery
Update languages. Its validity was verified by instantiating the repository on top of theeXistXML
database.

Chapter 5

Conclusions and future work

5.1 Conclusions

My research activity since the end of my PhD thesis, in January 1997, has been milestoned bya
thematic reconversionin 1999, from the domain ofmultimedia user interfacesto the one ofdata
management on the web.

Two main topics have been addressed during this period:data integration on the webanddis-
tributed architectures for data management. The former encompasses two issues:web-scale integra-
tion of XML documentsandapplication views for simplifying the access to heterogeneous XML data.
The latter explorespeer-to-peer architectures for content sharing and distribution on the web. A note-
worthy feature of my research activity is thedesign and implementation of several software modules,
included in commercial products (Xyleme), in open-source software for Linux distribution (EDOS for
Mandriva Linux) or for the research community (ActiveXML platform), or in research prototypes.

Web scale data integration has been studied in the context ofthe Xyleme system. We proposed a
solution for XML data integration at very large scale, basedon a global XML schema (abstract DTD),
GLAV path-to-path mappings between global and local XML schemas, a method for distributing the
view among Xyleme machines, a method for including view querying into the general query process-
ing mechanism and a scalable algorithm for query rewriting.This system has been implemented as
part of the Xyleme software, together with tools for automatic generation of mappings (MapGen) and
for extracting XML from unstructured text, in order to feed the XML repository.

Application views for simplifying the access to heterogeneous XML data have been explored in
two different cases: XML repositories supporting a limitedset of changes in data sources (the XyView
model) and open systems, dealing with autonomy of sources that may enter/leave the system or change
their content at any moment (the OpenXView model). The XyView model has been implemented as
an application module in Xyleme, together with tools for view editing and for generating web-form
applications on top of views. In OpenXView, we explored for the time being query rewriting and
query answering issues.

Peer-to-peer architectures for content sharing and distribution on the web have been studied in the
context of the ActiveXML framework and tools for distributed management of data, where several
improvements of the ActiveXML platform have been realized.We designed EDOS, a P2P system
for the distribution of open-source software modules to a large community of users. EDOS homo-
geneously shares the effort between all the network nodes, to provide scalable, global functionalities
such as metadata management and querying, content dissemination and change notification.

49

50 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.2 Future work

The management of data distributed across the web continuesto be a very important issue and a major
challenge in today systems. My future work will address the following points, detailed below:

• A continuation of the ongoing work ondata integration in open systems(the OpenXView
model) and ondata ring systems(in the WebContent project, inspired by the EDOS content
management architecture).

• New directions in web data management and distributed web architectures:RSS feeds man-
agement(ROSES project),management of data with evolving schema in diachronic (archive)
databases(DIACHRON project), anddistributed management of multimedia data for content-
based queryingin heterogeneous networks (DISCO project).

Concerning thecollaboration with other research teams, the creation in 2007 of theWisdom
PPF (”Plan Pluri-Formation”), which gathers the database research teams from the CEDRIC (CNAM),
LIP6 (Paris 6) and LAMSADE (Paris 9) laboratories, enforcesthe collaboration with these teams.
The ROSES and DISCO projects mentioned above have been initiated and submitted byWisdom
to the French ANR MDCO 2007 call. I will also continue my collaboration with theGemogroup
at INRIA Futurs, in the context of my research on data ring system and of the RNTL WebContent
project (2006-2009).

At the European level, I am starting a collaboration with Vassilis Christophides from FORTH
Heraklion (Grece) in the context of the DIACHRON project on diachronic databases, that will be
submitted to the FP7 call of European projects. A collaboration with Michalis Vazirgiannis from the
Athens University, on the topic of distributed query processing in P2P systems, has been initiated
through the submission in 2007 of a proposal of Marie Curie ITN (Initial Training Network).

Data integration in open systems: I intend to continue the work on data integration in open systems
with the OpenXView model, by addressing other issues, such as source publishing(e.g. automatic
generation of mappings and extraction of PDVs from a source schema, inference of ontology updates),
ranking of query rewritings, query optimizationfor OpenXView execution plans on top of various
system architectures (repository, P2P with various overlay networks).

Data ring systems: The work initiated in collaboration with the Gemo group at INRIA Futurs,
around the ActiveXML framework and in the context of the EDOSproject, will continue with the
elaboration of new data ring systems for different types of applications. Data rings are P2P systems for
community content sharing, that are responsible for the internal organization of data and processing
among the peers (indexing, replication, etc), and that transparently offer global system functionalities
to end-users. Two goals can be outlined in this research direction:

• The design of a general declarative architecture for data ring system specification based on
ActiveXML, and of an algebra to implement these declarativespecifications.

• The design and implementation of data ring systems based on this general architecture. This
is the goal of the RNTLWebContentproject (2006-2009), in which I participate to the design
and implementation of a solution for distributed storage, querying and transformation of web
documents.

5.2. FUTURE WORK 51

Figure 5.1: Tasks in the ROSES project

RSS feeds management: I am interested in considering new dimensions in XML data integration,
such as time and change events. RSS feeds, generalized on thetoday web, provide a very large number
of XML data sources with changing content on the web. The RSS model adds time stamped change
events to XML data, in a data model that is a mix of changing documents and data streams. RSS comes
also with a web syndication model for using RSS feeds, that reduces the time lag between publishing
and consuming data on the web and that may constitute a general framework for data sharing on the
web.

RSS feeds management is the object of theROSESproject (2008-2010), submitted to the French
ANR MDCO 2007 call. I am co-leader (with Bernd Amann from LIP6) in this project that gathers
database teams from Wisdom (CEDRIC and LIP6), PRISM Versailles and LSIS Toulon, together with
the2or3thingscompany that created the Blasfeed RSS management software.The goal of ROSES is
to apply modern web database techniques to the management ofRSS feeds, encompassing localiza-
tion, integration, querying and composition of RSS data. More precisely, the project will study (see
Figure 5.1) the design of basic services (store, refresh, filter, notify) and optimization techniques for
feed management in centralized and distributed environments, the definition of a general RSS model
and algebra, of different system architectures, and of high-level services, methods and tools for feed
generation and composition.

My main points of interest in this project are the definition of a general RSS-XML model at
several levels (physical and logical algebra, query language, view language), adding a temporal end
event-oriented dimension to XML models, and the declarative specification of high-level RSS-XML
services as views over RSS feeds and XML data. A PhD thesis co-directed by Bernd Amann and
myself will be funded by this project.

Diachronic databases: The temporal dimension of data management is also present indiachronic
databases, which aim at perpetual preservation of their content. A diachronic database must be able
to manage the evolution of both data content and structure over the time. It must allow queries about
any past state, or ”longitudinal” queries about the evolution of a given element in time. Diachronic
databases must be distributed to ensure robustness; they must be human and machine readable and
independent of software packages.

The design of diachronic databases is the goal of theDIACHRONSTREP project proposal, where
the Vertigo group participates together with the University of Edinburgh, FORTH Heraklion, the Na-
tional Technical University of Athens, CNR Italy and others. In this context, I am interested in ex-
ploring the management and querying of data whose structurechanges in time. Changes in the data
structure could be represented with mappings, in a similar fashion to data integration models. The

52 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

user should be able to query the current data structure, and to get answers from past data, organized
following a different schema. Also, queries about structure changes themselves should be allowed.

Distributed management of multimedia content: Database management of multimedia content
(image, text, sound, video) is generally realized in centralized environments. Content-based queries
in such databases use multidimensional index structures toaccelerate query processing. When the
multimedia content comes from several sources, P2P architectures are a natural choice for building
scalable, robust and efficient multimedia management systems. Recently, methods for distributing the
query index over several peers in a network have been proposed.

I am interested in defining methods for distributed content-based indexing and querying of mul-
timedia files inheterogeneous networksin terms of indexing schema and access rights. This corre-
sponds to real life situations, where content providers usetheir own local indexes and need a strict
control over access to data, but want their content to be retrieved by user queries over a set of such
sources. The idea would be to define a content summary structure, exported by each peer in a com-
mon format and indexed in a distributed way in the network. Query processing uses in a first step this
distributed summary to detect relevant sources, then uses the result of the first step and local indexes
to find the final results.

This research problem is the subject of the PhD thesis of François Boisson, started in January
2007, directed by Michel Crucianu and myself. It representsalso one of the main issues in theDISCO
project (2008-2010), submitted to the French ANR MDCO 2007 call, and that gathers research teams
from Wisdom (CEDRIC and LAMSADE), INRIA Lille and IRCAM, in collaboration with Euro-
pearchive and the French Réunion des Musées Nationaux.

Bibliography

[ABC+04] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis, IoanaManolescu, Tova Milo, and
Nicoleta Preda. Lazy Query Evaluation for Active XML. InSIGMOD, 2004.

[ABCC03] Enrico Augurusa, Daniele Braga, Alessandro Campi, and Stefano Ceri. Design and
Implementation of a Graphical Interface to XQuery.Proceedings ACM Symposium on
Applied Computing, pages 1163 – 1167, 2003.

[ABFS02] Bernd Amann, Catriel Beeri, Irini Fundulaki, and Michel Scholl. Querying xml sources
using an ontology-based mediator.CoopIS/DOA/ODBASE, pages 429–448, 2002.

[ACFR02] Serge Abiteboul, Sophie Cluet, Guy Ferran, and Marie-Christine Rousset. The xyleme
project.Computer Networks, 39(3):225–238, 2002.

[ACG+04] P. Adjiman, P. Chatalic, F. Goasdoué, M.C. Rousset, andL. Simon. Distributed reason-
ing in a peer-to-peer setting. InECAI, pages 945–946, 2004.

[ACM+02] V. Aguilera, S. Cluet, T. Milo, P. Veltri, and D. Vodislav. Views in a large scale xml
repository.VLDB Journal, 11(3):238–255, 2002.

[ACV+00] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, and F. Wattez. Querying xml documents in
xyleme.ACM SIGIR workshop, 2000.

[ACV+01] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, and F. Wattez. Querying a web scale xml
repository. InSEBD, pages 105–118, 2001.

[ADP+07a] S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav.Edos distribution system: a
p2p architecture for open-source content dissemination. In IFIP Open Source Systems
(OSS), 2007.

[ADP+07b] S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav.Snapshot on the EDOS distribu-
tion system.FOSDEM Workshop, Free & Open source Software Developers’ European
Meeting, 2007.

[ADP+07c] S. Abiteboul, I. Dar, R. Pop, G. Vasile, D. Vodislav, andN. Preda. Large scale p2p
distribution of open source software. InVLDB, 2007.

[AMP05] Serge Abiteboul, Ioana Manolescu, and Nicoleta Preda. Constructing and Querying
Peer-to-Peer Warehouses of XML Resources. InICDE, 2005.

[AMT06] Serge Abiteboul, Ioana Manolescu, and Emanuel Taropa. A framework for distributed
xml data management. InEDBT, pages 1049–1058, 2006.

53

54 BIBLIOGRAPHY

[AP07] Serge Abiteboul and Neoklis Polyzotis. The Data Ring: Community Content Sharing.
In Conference on Innovative Data Systems Research (CIDR), pages 154–163, 2007.

[APVV07] S. Abiteboul, R. Pop, G. Vasile, and D. Vodislav. Scalability evaluation of a p2p content
distribution system. InBases de Donńees Avanćees (BDA), 2007.

[AVFC98] B. Amann, D. Vodislav, J. Fernandes, and G. Coste. Browsing SGML documents with
maps : The French ’Inventaire’ experience.International Conference on Database and
Expert Systems Applications (DEXA), 1998.

[AYCLS01] Sihem Amer-Yahia, SungRan Cho, Laks V.S. Lakshmanan, and Divesh Srivastava.
Minimization of tree pattern queries.ACM SIGMOD, 2001.

[BEA] BEA Liquid Data. http://www.bea.com.

[BFG01] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web information extrac-
tion with lixto. In VLDB, pages 119–128, 2001.

[BSSV06a] Francois Boisson, Michel Scholl, Imen Sebei, andDan Vodislav. Query rewriting for
open XML data integration systems.IADIS WWW/Internet, pages 133–141, 2006.

[BSSV06b] Francois Boisson, Michel Scholl, Imen Sebei, andDan Vodislav. Scalability of source
identification in data integration systems.IEEE SITIS, 2006.

[BSSV07] Francois Boisson, Michel Scholl, Imen Sebei, and Dan Vodislav. Source identification
and query rewriting in open XML data integration systems.IADIS International Journal
of WWW/Internet, 2007.

[Cat97] R. G. Cattell.The Object Database Standard: ODMG 2.0. Morgan Kaufmann, 1997.

[CCS00] Vassilis Christophides, Sophie Cluet, and Jérôme Siméon. On wrapping query lan-
guages and efficient xml integration. InSIGMOD Conference, pages 141–152, 2000.

[CCT+05] M. Cannataro, S. Cluet, G. Tradigo, P. Veltri, and D. Vodislav. Using views to query
xml documents. InEncyclopedia of Database Technologies and Applications, pages
729–735. IDEA Group Reference, 2005.

[CHZ05] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. Toward large scale integration:
Building a metaquerier over databases on the web. InCIDR, pages 44–55, 2005.

[CKS+00] Michael J. Carey, Jerry Kiernan, Jayavel Shanmugasundaram, Eugene J. Shekita, and
Subbu N. Subramanian. Xperanto: Middleware for publishingobject-relational data as
xml documents. InVLDB, pages 646–648, 2000.

[CMKS03] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. XSEarch: A Se-
mantic Search Engine for XML.Proceedings VLDB, 2003.

[Cod] Codeen. http://codeen.cs.princeton.edu.

[Coh03] B. Cohen. Incentives Build Robustness in BitTorrent. In Workshop on Economics of
P2P Systems, 2003.

[Con] Conary Software Provisioning System. http://wiki.rpath.com/wiki/Conary.

BIBLIOGRAPHY 55

[CTV00] P. Cubaud, A. Topol, and D. Vodislav. Les limites de VRML pour les comportements
interactifs: étude de cas.ERGO-IHM, 2000.

[CVV01] S. Cluet, P. Veltri, and D. Vodislav. Views in a largescale xml repository. InVLDB,
pages 271–280, 2001.

[DGY05] Florin Dragan, Georges Gardarin, and Laurent Yeh. Mediapeer: A safe, scalable p2p
architecture for xml query processing. InDEXA Workshops, pages 368–373, 2005.

[DR02] Hong Hai Do and Erhard Rahm. Coma - a system for flexiblecombination of schema
matching approaches. InVLDB, pages 610–621, 2002.

[DRR+03] C. Delobel, C. Reynaud, M.-C. Rousset, J.-P. Sirot, and D. Vodislav. Semantic inte-
gration in xyleme: a uniform tree-based approach.Data & Knowledge Engineering
Journal, 44(3):267–298, 2003.

[DT05] Alin Deutsch and Val Tannen. Xml queries and constraints, containment and reformu-
lation. Theor. Comput. Sci., 336(1):57–87, 2005.

[EDO] EDOS Work Package 4 deliverables. http://www.edos-
project.org/xwiki/bin/view/Main/Deliverables.

[EDO04] EDOS project: Environment for the development and Distribution of Open Source soft-
ware, 2004. http://www.edos-project.org.

[Erw03] M. Erwig. Xing: A Visual XML Query Language.Journal of Visual Languages and
Computing, pages 5–45, Februray 2003.

[Fel98] Christiane Fellbaum, editor.WordNet: An Electronic Lexical Database. MIT Press,
1998.

[FFM04] Michael Freedman, Eric Freudenthal, and David Mazieres. Democratizing Content
Publication with Coral. In1st USENIX/ACM Symposium on Networked Systems Design
and Implementation, 2004.

[FKS+02] Mary F. Fernandez, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and Wang Chiew
Tan. Silkroute: A framework for publishing relational datain xml. ACM Trans.
Database Syst., 27(4):438–493, 2002.

[FLM99] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational plans for data
integration. InAAAI/IAAI, pages 67–73, 1999.

[GLR00] François Goasdoué, Véronique Lattès, and Marie-Christine Rousset. The use of carin
language and algorithms for information integration: The picsel system.Int. J. Coop-
erative Inf. Syst., 9(4):383–401, 2000.

[GMPQ+97] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom. The tsimmis
approach to mediation: Data models and languages.J. Intell. Inf. Syst., 8(2):117–132,
1997.

[GMT02] Georges Gardarin, Antoine Mensch, and Anthony Tomasic. An introduction to the
e-xml data integration suite. InEDBT, pages 297–306, 2002.

56 BIBLIOGRAPHY

[gri03] GRID’5000 plate-forme de recherche exprimentale en informatique, 2003. http://www-
sop.inria.fr/aci/grid/public/Library/rapport-grid5000-V3.pdf.

[GSSB03] Lin Guo, Feng Shao, Jayavel Shanmugasundaram, andChavdar Botev. XRANK :
Ranked keyword search over XML documents.Proceedings SIGMOD, 2003.

[GW97] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases.Proceedings of the 23rd VLDB Conference, pages
436–445, 1997.

[Hal01] Alon Halevy. Answering queries using views: A survey. The VLDB Journal, pages
270–294, 2001.

[HHL+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker,
and Ion Stoica. Querying the internet with pier. InVLDB, pages 321–332, 2003.

[HIM +04] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The piazza
peer data management system.IEEE Trans. Knowl. Data Eng., 16(7):787–798, 2004.

[HIMT03] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data management infrastructure
for semantic web applications.Proceedings WWW, 2003.

[HJL+04] Alan Halverson, Vanja Josifovski, Guy Lohman, Hamid Pirahesh, and Mathias
Mörschel. ROX: Relational over XML.Proceedings VLDB, 2004.

[HMH01] Mauricio A. Hernández, Renée J. Miller, and LauraM. Haas. Clio: A semi-automatic
tool for schema mapping. InSIGMOD Conference, page 607, 2001.

[HPB03] Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Keyword proximity
search on XML graphs.Proceedings ICDE, 2003.

[IHW02] Zachary G. Ives, A. Y. Halevy, and D. S. Weld. An XML query engine for network-
bound data.The VLDB Journal, 2:380–402, December 2002.

[KM00] Carl-Christian Kanne and Guido Moerkotte. Efficientstorage of xml data. InICDE,
page 198, 2000.

[KP05] Georgia Koloniari and Evaggelia Pitoura. Peer-to-peer management of xml data: issues
and research challenges.ACM SIGMOD Record, 2005.

[LCP+05] Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison
of peer-to-peer overlay network schemes.Communications Surveys & Tutorials, IEEE,
pages 72–93, 2005.

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective.PODS, 2002.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille.Querying heterogeneous infor-
mation sources using source descriptions. InVLDB, pages 251–262, 1996.

[LYJ04] Yunyao Li, Cong Yu, and H.V. Jagadish. Schema free XQuery. VLDB, 2004.

[MAA +00] Laurent Mignet, Serge Abiteboul, Sébastien Ailleret,Bernd Amann, Amélie Marian,
and Mihai Preda. Acquiring xml pages for a webhouse. InBDA, 2000.

BIBLIOGRAPHY 57

[MACM01] Amélie Marian, Serge Abiteboul, Gregory Cobena,and Laurent Mignet. Change-
centric management of versions in an xml warehouse. InVLDB, pages 581–590, 2001.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic Schema Matching
with Cupid. Proceedings VLDB, pages 49–58, 2001.

[MCD+07] Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy, Shawn R. Jeffery,
David Ko, and Cong Yu. Web-scale data integration: You can afford to pay as you go.
In CIDR, pages 342–350, 2007.

[MFK02] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Answering xml queries on
heterogeneous data sources.VLDB, 2002.

[MP03] Peter McBrien and Alexandra Poulovassilis. Data integration by bi-directional schema
transformation rules. InICDE, pages 227–238, 2003.

[MZ07] Tova Milo and Tal Zur. Boosting Topic-Based Publish-Subscribe Systems with Dy-
namic Clustering. InSIGMOD, 2007.

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker,Michael Sintek, Ambjörn
Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella: a p2p networking
infrastructure based on rdf. InWWW, pages 604–615, 2002.

[PBO+03] Yannis Papakonstantinou, Vinayak Borkar, Maxim Orgiyan, Kostas Stathatos, Lucian
Suta, Vasilis Vassalos, and Pavel Velikhov. XML queries andalgebra in the Enosys
integration platform.Data & Knowledge Engineering., 44(3):299–322, 2003.

[PH01] Rachel Pottinger and Alon Halevy. Minicon: A scalable algorithm for answering
queries using views.The VLDB Journal, pages 182–198, 2001.

[PPV02] Yannis Papakonstantinou, Michalis Petropoulos, and Vasilis Vassalos. QURSED:
Querying and Reporting Semistructured Data.Proc. SIGMOD, 2002.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching.VLDB J., 10(4):334–350, 2001.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. InIFIP/ACM Middleware, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott Shenker.
A scalable content-addressable network. InSIGCOMM, pages 161–172, 2001.

[Rip01] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. InPeer-to-Peer
Computing, pages 99–100, 2001.

[RSV01] C. Reynaud, J.-P. Sirot, and D. Vodislav. Semantic integration of xml heterogeneous
data sources. InIDEAS, pages 199–208, 2001.

[SA99] Arnaud Sahuguet and Fabien Azavant. Building light-weight wrappers for legacy web
data-sources using w4f. InVLDB, pages 738–741, 1999.

[sem04] ACI SemWeb: Interrogation du web sémantique avec XQuery, 2004.
http://bat710.univ-lyon1.fr/ semweb.

58 BIBLIOGRAPHY

[SGS05] K.-U. Sattler, I. Geist, and E. Schallehn. Concept-based querying in mediator systems.
VLDB Journal, 14(1):97–111, 2005.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internetapplications. InACM SIG-
COMM Conference, pages 149–160, 2001.

[Ull83] J. D. Ullman. Universal Relation Interfaces for Database Systems.Proceedings IFIP,
1983.

[VCCS05] Dan Vodislav, Sophie Cluet, Grégory Corona, and Imen Sebei. XyView: Universal
relations revisited.Bases de Donńees Avanćees (BDA), pages 357–372, 2005.

[VCCS06] Dan Vodislav, Sophie Cluet, Grégory Corona, and Imen Sebei. Views for simplifying
access to heterogeneous XML data.OTM Confederated conferences/CoopIS, pages
72–90, 2006.

[Vel02] P. Veltri. A view mechanism for a large scale XML repository. PhD thesis, University
Paris 11, Orsay, 2002.

[Vod97a] D. Vodislav. Programmation visuelle pour l’animation dans les interfaces homme-
machine. PhD thesis, CNAM Paris, 1997.

[Vod97b] D. Vodislav. A visual programming model for user interface animation.IEEE Sympo-
sium on Visual Languages (VL), pages 344–351, 1997.

[vrm97] VRML97 - the Virtual Reality Modeling Language, International Standard
ISO/IEC 14772, 1997.http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-
VRML97/.

[VV00] D. Vodislav and M. Vazirgiannis. Structured interactive animation for multimedia doc-
uments.IEEE Symposium on Visual Languages (VL), 2000.

[weba] ActiveXML web page. http://activexml.net.

[webb] KadoP web page. http://gemo.futurs.inria.fr/projects/KadoP.

[web06] WebContent: The Semantic Web Framework, 2006. http://www.webcontent-
project.org/.

[Wid95] J. Widom. Research problems in data warehousing. InCIKM ’95: Proceedings of
the fourth international conference on Information and knowledge management, pages
25–30, 1995.

[Wie95] G. Wiederhold. Mediation in information systems.ACM Comput. Surv., 27(2):265–
267, 1995.

[Wit] Sean Witty. Best Practices for Deploying and ManagingLinux with RedHat Network.

[YP04] Cong Yu and Lucian Popa. Constraint-based xml query rewriting for data integration.
SIGMOD, pages 371–382, 2004.

