
Large Scale P2P Distribution of Open-Source Software

Serge Abiteboul
INRIA-Orsay, France

fname.lname@inria.fr

Itay Dar
Tel Aviv University, Israel

daritay@post.tau.ac.il

Radu Pop
INRIA & Mandriva, France

fname.lname@inria.fr

Gabriel Vasile
INRIA-Orsay, France

fname.lname@inria.fr

Dan Vodislav
CEDRIC-CNAM Paris, France

vodislav@cnam.fr

Nicoleta Preda
INRIA-Orsay, France

fname.lname@inria.fr

ABSTRACT
Open-source software communities currently face an increas-
ing complexity in managing and distributing software con-
tent among their developers and contributors. This is mainly
due to the continuously growing size of the software, of the
community, the high frequency of updates, and the hetero-
geneity of the participants. We propose a large scale P2P
distribution system that tackles two main issues in software
content management: efficient content dissemination and
advanced information system capabilities.

1. INTRODUCTION
In the context of an increasing need of sharing, retrieving

and loading data on the web, the problem of distributing
content to large communities across the web has acquired a
growing importance. In the particular case of open-source
software distribution (e.g. Linux), very large amounts of
data (tens of Gigabytes) must be disseminated to a very
large community of developers and users (up to thousands
of members). Moreover, content is frequently updated to
new versions of the software modules. For a Linux distribu-
tion, content is generally disseminated either as ISO images
of a full Linux release, or as packages that group binaries
or source code for a single software module. The problem
with the first approach is that successive Linux releases have
many common parts that users will uselessly download sev-
eral times. The finer granularity in the second approach re-
quires more complex data management, with frequent pack-
age updates inducing freshness problems.

The main requirements for a software distribution system
could be summarized in the following four points: (i) avoid
excessive loads on the distribution servers and in the commu-
nication network, that lead to poor global performances; (ii)
provide advanced content search based on metadata proper-
ties; (iii) provide support for maintaining freshness of con-
tent; (iv) guarantee robustness in case of failure of system
components, the consistency of information and in general,

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

some desirable QoS.
Current distribution architectures, centralized or based

on hierarchy of mirrors, fail to fulfill these requirements.
For Linux, the most popular open-source software, only few
of the various dissemination methods [8] propose improve-
ments to the classical architecture, e.g. Red Hat Network
[13], that adds notification channels to maintain freshness,
or Conary [7], that uses distributed versioning repositories
to minimize downloads for updates.

Motivated by the belief that incremental improvement of
existing distribution will fail to fulfill the needs, we introduce
a novel solution based on a P2P architecture. It has been
developed in the EDOS European project [1], where EDOS
stands for Environment for the development and Distribu-
tion of Open Source software and addresses the production,
management and distribution of open source software pack-
ages. The EDOS distribution system proposes a P2P dis-
semination architecture including all the participants to the
distribution process: publishers, mirrors and end-users.

We believe that P2P architectures, that uniformly share
the effort among participants and provide replication, are a
good solution for scalable software distribution. Currently,
P2P content distribution mainly addresses load balancing
and bandwidth sharing (Coral [10], Codeen [5]). We extend
this primary use by adding a distributed information system
based on XML metadata indexing and querying, together
with efficient file sharing and multicast dissemination, based
on BitTorrent [6]. Among the various P2P infrastructures
[4], structured overlay networks provide better performance
for locating and querying large quantities of data. We use
FreePastry, an implementation of the Pastry [12] distributed
hash table system.

The main contributions of the EDOS distribution system
are: (i) a P2P architecture providing resource sharing, load
balancing and robustness; (ii) advanced information system
capabilities, based on distributed indexing of XML content
metadata; (iii) efficient dissemination based on clustering of
packages and multicast; (iv) support for freshness maintain-
ing on updates, based on a pub/sub mechanism. A detailed
description of the system may be found in [9].

2. SYSTEM OVERVIEW
The goal of the EDOS distribution system is to efficiently

disseminate open-source software (referred at a more general
level as data or content) through the Internet. Published
by a main server, data is disseminated in the network to
other computers (mirrors, end-users), that get copies of the



Figure 1: Data units for EDOS distribution

published content.
EDOS is articulated around a distributed, P2P informa-

tion system that stores and indexes content metadata. This
metadata-based information system allows querying and lo-
cating data in the EDOS network.

2.1 Data model
There are three kinds of data units in the EDOS system:

• Package: main data unit type, represented by an
RPM file;

• Utility: individual file used in the installation process;

• Collection: it groups packages, utilities or subcollec-
tions, to form a hierarchical organization of data.

A release is a set of data units that form a complete soft-
ware solution - it corresponds to a full Linux distribution.
Its content is described by a collection.

Content dissemination is initiated by publishing data units
in the system. Publishing consists in generating metadata
for each data unit and indexing them in the distributed sys-
tem. Periodically, the main server publishes a new release.
Updates to the current release are realized by publishing
new versions of packages or utilities. When the time comes,
a ”publisher” decides to transform the current status of the
current release into a new release.

Figure 1 illustrates the organization of content in EDOS.
We adopted a standard hierarchical organization of data.
Such an organization is, for instance, used in the Man-
driva Cooker distribution, where packages and utility files
are grouped into collections at several levels, providing var-
ious levels of data granularity.

The example in Figure 1 corresponds to a release, whose
root collection is Cooker, containing subcollections i586, ...,
sparc64, amd64, each one of them containing other subcol-
lections, packages or utilities.

Metadata.management is a key issue in the distribution
process. We built a global, distributed information system
about data to be disseminated in the network. This system
is fed with content metadata, that may include not only con-
tent properties, but also information on production, testing,
statistics, etc. Distributed management of metadata is jus-
tified by its size and by the high rate of queries and updates
it supports. The ability to express complex queries over
metadata and to provide effective distributed management
is a major contribution of EDOS system.

In the largest sense, metadata consists in the set of prop-
erties that characterize data units. We classify metadata
properties in three main categories:

Figure 2: Actors in EDOS P2P content distribution

• identifiers - in our case, the name and the version num-
ber uniquely identify a data unit.

• static properties, that do not change in time for a con-
tent unit, e.g. size, category, checksum, license, etc.

• changing properties, i.e. properties that may vary in
time: location of replicas in the network, collection
composition, distribution statistics, etc.

The XML structure chosen for EDOS metadata is a com-
promise between efficiency requirements for both query pro-
cessing (that requires large XML files, containing all the
elements addressed in a query) and metadata updates (that
need small files). Our choice was to create separate XML
files for each package (package properties) and for each re-
lease (release composition). For efficiency reasons, replica
location management uses a separate mechanism.

2.2 Actors and roles
Peers of the EDOS P2P distribution system may be clas-

sified in three categories:

1. Publishers: They publish new content in the net-
work, manage flash-crowd dissemination and the pub-
sub system.

2. End-users (Clients): They download content from
other peers, query the system, subscribe to data changes.
They also participate to the network by storing and
providing their local data for downloads. To query the
metadata, they need an entry-point into the indexing
network of the Mirrors.

3. Mirrors: They provide all the functionalities of the
End-users. Besides that, they participate in the index-
ing network. Typically, these are trusted1 and reliable
servers providing some guaranteed quality of service.

Figure 2 presents the actors in the P2P distribution net-
work. Actors are connected in two distinct networks:

• The distribution network, composed of all the peers -
they store, download and share EDOS data, i.e. soft-
ware packages, utilities and collections.

• The indexing network, composed of trusted peers (Pub-
lisher and Mirrors) - they store the index on content
metadata. For security reasons, Clients are not allowed
to participate in metadata and index sharing, but can
provide content, whose validity may be automatically
verified by using the checksum metadata property.

1The correctness of a file is guaranteed by its signature and
checked at download. The correctness of metadata is guar-
anteed by the fact that the mirrors are trusted peers.



2.3 Usage scenarios

Flash-crowd situations.These generally happen when new,
popular and large size content is published (here a new re-
lease), and many peers (Clients or Mirrors) want to get this
content as soon as possible. Flash-crowd distribution uses
efficient dissemination methods, based on clustering of data
units and multicast. Each peer asking for some portion of
the new release may already have some of the packages -
therefore it computes a wish list containing only the miss-
ing data units. Based on the wish lists gathered from peers,
the Publisher computes clusters of data units to be dissem-
inated. Instead of downloading individual data units, peers
download clusters (where a cluster is a set of packages that
are requested by a common set of peers), in a global multi-
cast process.

The flash-crowd dissemination of a new published release
is described by the following steps:

1. Peers interested in the new release subscribe to a spe-
cial channel for new release publication.

2. The Publisher publishes the new release and notifies
all peers that subscribed to that release. Among the
metadata published for the new release, its composi-
tion (identifiers of data units) is necessary for each
peer to determine the set of data units to download.

3. Notified peers decide if they are finally interested in
the new release or not. The peers compute the delta
between the new release and the content they already
have. This delta, called wish list, composed of the
identifiers of data units to be downloaded, is sent to
the Publisher.

4. The Publisher waits for wish lists during a predefined
window of time. Then it computes clusters of data
units, based on the set of collected wish lists.

5. The Publisher published the computed clusters of data
units and starts ”torrents” for disseminating them.

6. Each peer gets in parallel (via multicast techniques) a
set of clusters that covers its wish list.

Off-peak distribution and query.This corresponds to pe-
riods between flash-crowd situations. During these periods,
the Publisher may publish updates to the current release
and the other peers may query the system, download query
results, subscribe to distribution channels, receive notifica-
tions on such channels and download software updates.

3. SOFTWARE ARCHITECTURE
EDOS functionalities are implemented as a Java API,

based on a set of external software modules (Figure 3):

• ActiveXML [2] provides an extended XML format
for EDOS metadata and storage for metadata docu-
ments published in KadoP. Web service calls embed-
ded in ActiveXML documents may be used to repre-
sent intensionally changing information (e.g. statistics
on the distribution process) or package dependencies.

• KadoP [3] is a very efficient distributed index for (Ac-
tive)XML documents, that allows publishing, indexing
and advanced querying of EDOS metadata. KadoP is
the core of the EDOS information system.

Figure 3: EDOS software modules & API structure

Based on the Pastry [12] distributed hash table (DHT),
KadoP decomposes ActiveXML documents into key-
value pairs stored in the DHT, and uses the DHT to
evaluate XML queries over the metadata.

• IDiP [11] implements functionalities for the flash-crowd
usage scenario: content clustering and multicast dis-
semination using BitTorrent.

• BitTorrent [6] is an efficient file sharing and down-
loading system. We use a slightly modified version
of Azureus, a Java implementation of BitTorrent, for
multicasting and downloading from multiple replicas.

The structure of the EDOS distribution API is presented
in Figure 3. The API is organized into three levels:

1. Physical level: it provides EDOS peer basic func-
tionalities. It is composed of several modules: a con-
tent manager, an index manager, a channel manager,
a dissemination manager, etc. Programming distribu-
tion applications at the physical level requires more
effort, but offers the best flexibility.

2. Role level: it is built on top of the physical level, pro-
vides a default implementation for each role in the dis-
tribution network, i.e. publishing, downloading, repli-
cating, querying, and subscribing.

3. Actor level: it provides a default implementation for
each actor kind (Publisher, Mirror or Client), by com-
bining several roles.

The first version of the EDOS distribution system has
been implemented as a set of Java/JSP web applications
on top of the EDOS API. Each peer in the EDOS network
runs a Java web application. Peer applications use a Tomcat
web server for deployment, with Axis for web services. The
functionalities of each EDOS peer are accessible through a
JSP user interface, running in a web browser.

The Publisher web application (Figure 4) allows publish-
ing new content, managing subscription channels and driv-
ing flash-crowd dissemination. Mirrors and Clients have the
same user interface (Figure 5), allowing queries, download-
ing, subscriptions to channels and notification handling.

Tests with the first prototype demonstrated the relevance
of P2P-based solutions for large-scale content distribution,
the ability of managing very large amounts of metadata with
KadoP and the improvements brought by IDiP for flash-
crowd dissemination. More details are presented in [9]. We
are now working on improvements in massive publication of
metadata, in security (peer authentication), in firewall/NAT
traversal and in the user interface. This various aspects will
also be briefly demonstrated.



Figure 4: The Publisher GUI

4. DEMONSTRATION SCENARIO
Our demonstration presents the functionalities of the sys-

tem. We consider one Publisher and a set of Mirrors and
Clients connected in the distribution network. Each peer
runs a web application. The work of the peer can be con-
trolled from a browser that provides the surveillance of the
progress of its work. We consider three releases sharing com-
mon parts: one large release R1, already published in the
index and two other smaller releases, R2 for demonstrating
publication and flash-crowd dissemination, and R3 for il-
lustrating subscription/notification. Each peer is initialized
with a different set of data units, which allows producing
different wish lists towards flash-crowd dissemination.

The publishing functionality is illustrated in two steps.
We first check that only release R1 is published and visible
on each peer. Then, on the Publisher we select and publish
R2 and we check on the other peers that R2 appears in the
index list.

The downloading functionality is illustrated in the flash-
crowd scenario. A set of Client/Mirror peers select release
R2 for download. They compute and send to the Publisher
their wish lists. The Publisher peer collects wish lists during
the time-window, then it computes clusters of packages and
creates torents used afterwards in the dissemination process
(Figure 4). After the download is finished, we observe the
effect of the updates.

The querying functionality is demonstrated on a Client
peer, as shown in Figure 5. We use a query form to search
for packages based on package identifiers and/or on a set
of metadata tags. We show how a subset of packages from
the result list can be selected and downloaded. A similar
functionality is shown for querying utility files.

The subscription/notification functionality is illustrated
by creating a subscription channel on the Publisher and by
showing how Clients can subscribe to this channel. On the
Publisher, we publish some new content (release R3) and
we show how some of the new packages are published in the
new channel. We demonstrate how each subscriber receives
notifications and an example of how they choose to handle
it, e.g. by dowloading new packages.

Figure 5: The Client/Mirror GUI

5. REFERENCES
[1] S. Abiteboul, R. Pop et al. EDOS: Environment for

the Development and Distribution of Open Source
Software. In 1st International Conference on Open
Source Systems, 2005. http://www.edos-project.org.

[2] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,
T. Milo, and N. Preda. Lazy Query Evaluation for
Active XML. In SIGMOD, 2004.

[3] S. Abiteboul, I. Manolescu, and N. Preda.
Constructing and Querying Peer-to-Peer Warehouses
of XML Resources. In ICDE, 2005.

[4] S. Androutsellis-Theotokis and D. Spinellis. A Survey
of Peer-to-Peer Content Distribution Technologies. In
ACM Computing Surveys, 2004.

[5] Codeen. http://codeen.cs.princeton.edu.

[6] B. Cohen. Incentives Build Robustness in BitTorrent.
In Workshop on Economics of P2P Systems, 2003.

[7] Conary Software Provisioning System.
http://wiki.rpath.com/wiki/Conary.

[8] EDOS deliverable 4.1: Distribution of code and
binaries over the Internet. http://www.edos-
project.org/xwiki/bin/view/Main/D4-1/edos-d4.1.pdf.

[9] EDOS deliverable 4.2.2: Report on the P2P
dissemination system. http://www.edos-project.org
/xwiki/bin/view/Main/D4-2-2/edos-d4.2.2.pdf.

[10] M. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing Content Publication with Coral. In 1st
USENIX/ACM Symposium on Networked Systems
Design and Implementation, 2004.

[11] T. Milo and T. Zur. Boosting Topic-Based
Publish-Subscribe Systems with Dynamic Clustering.
In SIGMOD, 2007.

[12] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM Middleware, 2001.

[13] S. Witty. Best Practices for Deploying and Managing
Linux with RedHat Network.


