
A VRML-based user interface for an online digitalized
antiquarian collection

Pierre Cubaud, Alexandre Topol
Centre d'Etudes et de Recherche en Informatique

Conservatoire National des Arts et Métiers
55, rue de Turbigo 75003 Paris

tel. : (33) 01 40 27 22 47 fax : (33) 01 40 27 22 96

{cubaud, topol}@cnam.fr

ABSTRACT
This paper presents a prototypal 3D application for the access to a
digital library. It is mainly written in Java and relying on the 3D
engine enclosed in a VRML browser. By describing the basic
interactions we have included in our prototype and how they are
implemented, we show that, with the actual Virtual Reality
Modeling Language specification (VRML97) and even with the
new Extented 3D (X3D) draft, it is too difficult to create some
highly interactive virtual worlds. The effort needed to program
basic behaviors with a script language raises some important
problems. For solving them, we propose to work on adding some
generic behavior nodes into the VRML specification.

Keywords
VRML, Navigation, Interaction, Behaviors, Digital Library.

1. INTRODUCTION
Digital library (DL) technologies have benefited during the last
decade from the impressive increase of digital data capture,
storage and transmission capabilities along with the consequent
fall of their cost [8]. The widespread use of the World-Wide Web
(WWW) also enables digital libraries to meet a very large,
international, population. Relying on digital resources for
academic researches is now a reality for many scientists, but it is
usually restricted to journals, acts or bibliographic databases. For
humanistic studies, a step forward is the digitalization of the
historical sources themselves. In France, the digitalization project
of the Bibliothèque Nationale de France (BNF) opened this trend.
The BNF WWW server (http://gallica.bnf.fr) has demonstrated the
feasibility of diffusing a large, image-based, digital repository
over the internet and time has come for smaller academic
institutions to undertake a digitalization program and a public
diffusion of their own antiquarian collections.

Started in Jan. 1998, the "Conservatoire Numérique des Arts et
Métiers" (CNum) is an internal, self-funded project of three
CNAM services : the library (which holds a very important
collection for French history of science and technology), the

research center for history of technology (CDHT) and the
computer science research laboratory (CEDRIC). The editorial
team also includes history of science specialists from other
european institutions. The first digitalization batch has been parts
of the Sartiaux donation, 50 titles about electricity and general
physics from the XVIIth to the XIXth century. This digital library
is accessible online since feb. 2000 with a WWW-based interface
(http://cnum.cnam.fr). The digitalization of Turgan's Grandes
Usines - a very useful source for XIXth century european
technology - and of the first thirty years of the periodical La
Nature will double the total number of digitalized documents
(approx. 60 000 pages) in the forthcoming months. A full
description of the CNum software architecture can be found on the
server.

According to emails sent to the webmasters, this straightforward
WWW service seems to meet users needs. It requires only a low
computational power for the users workstations and the size of the
digitalized books pages is small enough to be downloaded with an
average dial-up internet connectivity. We feel however that this
situation may change in the near future. High bandwidth
infrastructures for the internet are mushrooming between and
within all major universities (where are located most of the CNum
users). Low-cost 3D graphic hardware, combined with high
resolution screens are commonly included in today's personal
computer and will therefore become the dominant configuration
for our users in the next two or three years. New visualization and
interaction methods for on-line digital libraries must therefore be
investigated.

We believe that 3D interaction can provide the three main
functions of an on-line DL user's interface : (a) catalogue
browsing and searching, (b) navigation within the selected
documents, and (c) annotations and bookmarks archiving. Let us
first describe how these three steps are handled within the CNum.
Fig. 1 is a screen-shot of a probable user session, working on
Pascal's arithmetic machine. Browsing through textual lists is the
only method offered to the user for evaluating the DL corpus (fig.
1a). A book content (chapters and plates) is sequentially described
in another window. The user opened multiple digitalized books
pages (fig. 1b). He/she also compared the selected documents with
findings from other related web services (such as the ABU french
texts repository [3], also hosted by our laboratory since 1993 - fig.
1c). No authoring tool is provided and CNum users rely on their
local bookmarking, archiving and word processing facilities (fig.
1d).

Since 1998 we settle down to the job of experimenting 3D
interfaces for each of the previously described functions. Until

now we focussed on the benefits for the two former ones. One of
our main concern was to pass beyond the unnecessary (because
limiting) constraints of the real world (like gravity or buildings).
Furthermore, in the particular case of a 3D interface for accessing
a digital library, a desk is not needed to read books neither shelves
to arrange them. However some real metaphors can give a
precious help when creating a virtual copy of a real library.
Patrons that already know a particular library can use this
knowledge to find quickly books in shelves. This kind of interface
like [7] may not apply for accessing an antiquarian collection
since only the library staff can access to the books kept in a
special reserve.

We feel that such an “hostile” environment for the reader should
greatly benefit from virtual reality techniques. It is widely
acknowledged that libraries patrons can discover interesting
bibliographical information by casual glances to the book
collections. In agreement with A. Manguel [9] who thinks that a
book is distinguishable from others by its cover or shape as much
as its authors or title, we decided to use the pictures of the book’s
back to offer a visual information. In [4], we have experimented
on-the-fly generation of VRML scenes of textured books arranged
in a cylinder or a sphere in order to minimize the navigation. The
re-ordering of the bookshelves in accordance with the request
made by the user proved to be a powerful way for titles selection.
For the reading task itself we rely on the web forager interface
described in a paper that pioneered the study of 3D immersion of
2D document browsers [2]. Focus+context environments like [10]

overtake the common problems of 2D interfaces for visualizing
large data sets. However, only 3D interfaces allow the rotation of
the point of view (which is much more natural than panning) and
the organization of the data in perspective.

In section 2, we present and describe the design choices and the
navigation management. The application’s architecture and
implementation is detailed in section 3. In section 4 we discuss
about some of the problems raised by a Java-extended VRML
world and propose a solution to investigate for solving them.
Section 5 introduces some of the future works this work permits.

2. DESIGN PRINCIPLES
With our VRML-based interface, an user can organize its 3D
environment in two different ways. The first one is based on the
standard navigation functions included in all plugins. The second
method is supplied by the interactions we have allowed in our
prototype. The implementation of those different actions described
below will be discussed in the next section.

Navigating in a 3D content can be difficult for inexperienced or
occasional users. To ease the interaction, users can manipulate the
books of our 3D digital library without moving the point of view.
Compared to real or “virtually real” libraries, no moves are
required to find the shelves containing the books of interest. It
avoids getting lost and/or wasting too much time with hazardous
movements because of the lack of experience with 3D navigation.
We consider that it is useless to faithfully reproduce the various
steps of a book selection. In a virtual world there is no need to

Figure 1 : Screenshot of a working session with CNUM

“walk” to a bookshelf then “turn” to face the books for reading
their titles before choosing one. On the contrary, we chose to
speed this process up by minimizing the moves.

A fixed point of view would have been however too limiting and
frustrating for experienced users. We want to allow them to move
the camera in order to organize their 3D workspace. In [6] the
viewpoint is fixed so that users only have to focus on interaction
tasks and not navigation ones. Even if it is complex to deal with
both tasks, we believe that experienced users are capable of doing
it. The compromise we made was to authorize these users to
navigate with the standard metaphors but without forcing less-
experienced ones to use them. By following this principle of
different interaction levels, we also chose to use container objects
that inherits from 2D interfaces to ease the interaction.

2.1 Plugin Navigation
The most useful navigation metaphors are “walking” or “flying”
forward and backward. They correspond to interactive zoom in
and zoom out allowing users to see books or pages with more or
less details. The other traditional navigation metaphors like “pan”,
“turn”, “study” can be used to organize the 3D environment.
These movements are mostly like switching-tools for moving to
different part of the space where the user can (or has) spread
books. Viewpoints, that are also managed by the VRML plugin,
could also be created and deleted automatically to offer another
switching-tool to each region containing a set of information.

Whatever the metaphors are intended (or used) for, the real-time
aspect of the interaction is of great significance. The zooming
process allows users to link dynamically their navigation with the
filtering of the data. The fluidity of interaction helps the user to
keep working at a perceptive level. On the contrary, when there is
an important elapsed time between two frames, the cognitive
processor is also required to understand and anticipate what is
perceived as jumps. All benefits provided by visual clues can, in
this case, be annihilated. Robertson et al. [11] have described
continuous animation as a manner to provide object constancy and
a way to replace this cognitive effort by a simple perceptual
activity.

2.2 Interactions
Each element in the scene is included in a transparent 3D
traditional window (fig. 2). The two terms “3D” and “traditional”
seem contradictory at first sight, since traditional windows are
known to be 2D shapes. But they express the fact that we are
using 2D windows in a 3D world (therefore manipulated with 3D
interactions). We chose a transparency appearance because it is a
well known clue for depth perception and because it helps for the
retrieval of hidden objects.

A unique window giving access to the entire collection constitutes
the initial scene. Each book in this collection-window is described
as a rectangle textured with the scanned picture of its back. The
size of each IndexedFaceSet geometry is computed to be
proportional to the texture’s size associated. Deformations are

Figure 2 : Screenshot of the 3D prototypal application

therefore avoided and the book’s format is respected. At first
glance one can evaluate the number of volumes available and its
publication date with the binding style. Each book catches events
to deal with the user’s interaction. A roll-over event creates a
tooltip underneath the book giving a short bibliographic data. A
mouse click opens the book in a new window.

In our VRML scene, all graphical elements are basically flat: a
book is represented by a textured rectangle, information is given
by text labels and pages are also rectangular. They all can be
inserted in a 2D container. A flat window offers sufficient
interactions for the manipulation of this kind of content. Any user
should obviously find by himself the possible actions for
managing a 3D window:

- moving it by dragging and dropping it with its title bar
(movements of the mouse are mapped in local coordinates of
the window),

- minimizing it (in our case it is more like putting it away
automatically in perspective than iconifying it),

- maximizing it (by computing the rotation and position of the
window in order to align it with the view frustum and fit it
entirely with a maximum scale),

- using a pin (in some WIMP interfaces like OpenLook when
these pins are active they forbid windows moves. The 3D
generalization is to prohibit the user from moving the
window with its title bar and to annihilate the movements of
the viewpoint for the pinned widows in order to produce an
effect of immobility),

- closing it with a traditional push button.

A window is truly iconified (as opposed to minimized) like those
one can see in the bottom-left corner of the screenshot (fig. 2)
when they do not appear anymore in the view frustum. These
icons have the same appearance than the book objects in the
collection window. This visual clue given by the book’s texture
helps the user to remember which ones are iconified. The user
should also recall how to interact with them since the behaviors
are implemented much like the ones for the books in the collection
window:

- a ToolTip appears when the mouse is over the “icon”,

- when the “icon” is clicked the corresponding window is
maximized.

When a window enters back in the view frustum, its icon is
deleted. These icons help the user to remember which books are
already opened even if they are not in the current view.

A book-window has two distinct and concurrent parts that are
activated with a Switch node. The unique common element in
these two parts is the book texture that helps visually to recall
which book is opened. The first one is the booklet composed with
different 2D elements (that one can see in a window in perspective
on the right-hand side in fig. 2):

- the first label (at the top) gives the name of the author(s),

- the second one (underneath) gives the title,

- the label(s) on the bottom-right corner are “links” (a text
label + a TouchSensor node) to switch to the reading part
of the window. One link is given by volume (four volumes in
this case).

The second part of a book-window is for reading. All booklet
elements are replaced by the reading ones (illustrated in the two
foreground windows of the screenshot in fig. 2):

- the current page of the chosen volume described by a
IndexedFaceSet geometry and textured with the picture
of the scanned page,

- standard buttons (from top to bottom : first page, previous
page, next page, last page) to browse through sequential
documents,

- a “link” to come back to the booklet part.

2.3 Design discussion
Using 3D models instead of 2D components might have been the
best solution for a better visual effect. A real “book” metaphor
could be more practical and comprehensible at first sight.
Interactions with this object should be easier to understand and
could be much more powerful. For example we could provide a
tool for rolling automatically pages like the one given for
interacting with Web books [2]. It would be an intuitive way to
acquire the structure of a book. As with a real book, this could
also be a quick way for finding a page of interest. However, other
interactions around the book (for moving it, closing it…) would
not be as easy for us to implement and for users to understand.
This would require adding widgets near the book (therefore
modifying its real appearance) or to use rotating menus like the
ones described in [12] or included in [6] (that users may not know
how to use).

Interacting with 3D objects could lead to a sophisticated but
powerful interface. We could experiment all sorts of interactions.
However we were aiming at doing the most usable application. So
in this particular context we do believe that using 2D components,
instead of some 3D metaphors, is a valid choice. Every interaction
mechanism is easily understood thanks to previous experiences
acquired in 2D interfaces. Every widget (hence every action
associated) in our prototype is also directly accessible (no
disturbing items are popping up depending on the user’s actions).

3. APPLICATION’S ARCHITECTURE
After presenting the elements of the interface, we now explain in
detail how interactions are implemented. Whatever the purpose of
an interaction is, the same scheme is always used. First a VRML
part describes an object (with maybe different elementary shapes)
and the sensor activated by this object. The sensor recovers user’s
events. The routes to the Script nodes, the attributes of which
are also given in the VRML file, transmit the events. With some
Sensor nodes an object is not required. For example the
ProximitySensor sends events based on the position of the
point of view in the scene.

Most of the interactions we have implemented in our prototype
just modify the VRML scene graph (adding a new transformation
in a Transform node or changing the diffuse color of shape).
Some of them also have to add and delete VRML content in the
scene graph in accordance with the user’s actions. In this case they
also add and delete routes from and to this content if needed by
the application. These particular interactions require the use of
scripts since the VRML specification [14] does not include a
creation mechanism.

Scene Management Window Management

MainClass
 addWindow() {
 group.addChild()
 }
 deleteWindow() {
 group.remove()
 }

MainScript
 initialize() {
 new Window3D
 createVrml(…)
 addWindow(…)
 }

Main.wrl
 ProximitySensor {}
 Transform { … }
 Script {
 url
MainScript.class
}

Window3D
 create() {
 createVrml(…)
 }

Window3DScript
 addWindow()
 deleteWindow()

Book.wrl
 PROTO Book [
 …
] {
 …
 Script {url book-

Script.class}
}

BookScript
 openBook() {
 createVrml(…)
 new Window3D
 }
 readBook()
 viewInfos()

PageScript
 first()
 previous()
 next()
 last()

1

3

2

4

5

6

7

8

Figure 3 : Architecture of the VRML prototype

Book Management

Main.wrl
 DEF PS ProximitySensor
 DEF T Transform
 DEF S Script {
 url MainScript.class

PS
position

orientation

T
translation
rotation

PS
position

orientation

S
translation
rotation

MainScript
 event addWindow
 event deleteWindow
 event translation
 event rotation

to all windows
not pinned

MainClass
 Vector windowList;
 MainClass()
 addWindow()
 deleteWindow()

Figure 4 : Details of the Scene Management Block

ROUTE TO

create
window

As shown in fig. 3, the prototype’s architecture has three different
blocks each one managing a different aspect. We will describe
each block separately and we will tell how the main operations are
implemented. The overall application is mainly constituted with
Java scripts as we can see in table 1. We will discuss the problems
of such ratio (over 93%) of scripts in the next section.

MainScript 71
MainClass 83
Window3D 444
Window3DScript 141
BookScript 614 Main.wrl 37
PageScript 158 Book.wrl 73
Total for script files 1511 Total for VRML files 110

Table 1: number of lines in script and VRML files

3.1 The Scene Management Block
The main VRML file (given as the URL to access this scene) is
only a skeleton for our application. Usually a main file contains
shapes to be rendered and/or external files (Inline node or
EXTERNPROTO’s) to be loaded. In our case, it does not include
geometry nodes in a direct or indirect way. It is only composed of

six nodes with no hierarchy (they are all first level nodes). The
first three ones are bindable nodes that are not even required for
the application to work:

- a WorldInfo node to set some information,

- a Background to set the background color,

- a NavigationInformation node to specify that “fly” as
the default navigation metaphors and to tell that a headlight
must be used.

The three next nodes are more important since they are necessary
for adding shapes to this initially empty scene and for dealing with
the navigation:

- a Transform node in which new objects will be added and
in which objects to be destroyed will be searched,

- a ProximitySensor node with a large size (so it is
always active) to retrieve the movements made by the user,

- a Script node to declare the MainScript script.

Two groups of two routes are also declared for managing the
viewpoint’s position and the orientation changes captured by the
ProximitySensor :

- one group to route to the Transform node in order to
inhibit all user’s moves,

- one group to route to the MainScript script that uses these
movement changes to compute and apply the opposite ones
to every mobile object (i.e. not pinned).

A pinned object (that must remain immobile) will only be
translated and rotated when the viewpoint is changed. The
common manner to make still objects, as shown in fig. 4, is to
route the ProximitySensor ’s events to the main
Transform node of the scene that contains all objects. With this
only mechanism, objects stay still while the user navigates.
However we only want the pinned objects to stand immobile so
the MainScript script computes the opposite movements and
applies them to the main Transform node of each unpinned
window.

The MainScript script also processes the events used for
adding and destroying windows. To add a window it calls on a
method of the static MainClass class. For destroying one it uses
the return value of another method of MainClass as an index
for deleting the right children in the main Transform node. Last
but not least MainScript initializes MainClass in order to

Figure 5 : Details of the Window Management Block

create
window Window3D

 create()
 addbject()

pinTouch
touchTim

Script
pin

ROUTE TO

Switch {
 choice [
...
 Script {
 url “...”
 }
...

Window3DScript
 event pin
 event move
 event minimize
 event maximize
 event close
 event invisible
 event visible
 event set_info

Script
set_pin

pinTimer
startTime

pinTimer
fraction

pinInterp
fraction

pinInterp
value

pin
rotation

barSensor
value

MOVE_T
translatio

set the
interpolator

values

add object
in the

window

...

...

transmit the browser class and its own instance, both needed in
every other Java class to create or destroy some VRML content.

Since MainClass is a static class every public attribute and
method can be accessed directly without instantiation. To keep a
track on all opened windows a Vector utility class is used. This
vector is used whenever we need to loop on each window (to
know which one is out of the view frustum for example or which
one is pinned). The first 3D window (containing the entire
collection) is created in the MainClass constructor. There, is
also set the window counter indispensable for giving a window a
unique identifier. This counter is incremented for every new
window created. Since windows could have been deleted a
window identifier is not necessarily equal to the index at which
the window is in the children field. This is why we need a method
returning the real index of a particular window number so we can
remove it in the children field of the main Transform node.

3.2 The Window Management Block
The Window management block is composed of two Java classes.
The first one is the Window3D class that is responsible for the
creation of the window objects. Window3Dscript , the second
class that inherits from the Script class takes care of all possible
interactions with a window.

The Window3D constructor only assigns to the new instance of a
window its unique identifier held by MainClass . The
constructor does nor create (i.e. show the window). The creation is
effective after calling the create method, which takes 5
parameters: the three coordinates giving the window’s position, its
width and height. To create a new window different operations
must be performed before it is fully operational in the browser:

- the geometry, appearance, sensors and interpolators of its
different elements are given in a VRML expression, which is
parsed with the createVrmlFromString method of the
Browser class. The new nodes are then inserted as a new
children of the main Transform node (in main.wrl)
accessible by the MainClass class,

- the “normal” event routing from sensors to interpolators for
automatic animations are added by telling the browser that
new paths are added (with calls to the addRoute method of
the Browser class),

- the behaviors are defined by routing some events from the
sensors to a script added as a Script node in the generated
VRML expression.

The create method creates an empty decorated window. To add
objects in a window the addObject method is provided. The
other methods in this class are used by MainClass to get the
current state of a window (iconified, pinned on or off).

A Window3D has two different appearances (defined in a
Switch node): one is used when the window is in the volume
frustum and the other one when it is out. When the window is
visible different states can change its appearance: maximized or
minimized, translated with its title bar or not, pinned or not. For
each state we have defined different Transform node to specify
each transformation independently. MainClass uses the first
one to translate and rotate the window if it is not pinned when the
user changes the point of view. The second one holds the
transformations for the minimized or maximized state. And the

third Transform node is reserved for the translation after
dragging and dropping the window’s title bar.

Window3Dscript is the script declared in the generated VRML
expression. Its purpose is to take care of all interactions with the
window, not its contents. Events raised by the sensors are
transmitted to the script by the routes added by the create
method. Two different ways were used to implement interactions
depending on the type of the interaction:

- a direct modification in the scene graph,

- or an eventOut sent to be caught by an element of the
window.

In fig. 5 only the pin interaction is detailed since the overall details
would require too much space. However eight events are
implemented for a window and works basically the same way:

- mouse clicks on the pin are routed by a TouchSensor to
the script which computes :

- the two values of the RotationInterpolator for
the animation (depending on the state of the pin the
rotation is not the same),

- enables or disables the PlaneSensor associated with
the title bar,

- fires the animation with a TimeSensor,

- drag and drop on the title bar (translations) are sent from the
PlaneSensor to affect the translation defined in the
MOVE_Transform node,

- mouse clicks on the minimize, maximize and close buttons
(three different events) are also driven from
TouchSensor ’s to the script which computes animations
and performs the right actions,

- visibility and invisibility events of the script are respectively
activated by the enterTime and the exitTime events of

a VisibilitySensor associated with the window. To
render either one appearance or the other the script sends an
event to assign a new value to the choice field of the
Switch node,

- a set_info event is activated by a TouchSensor to print
the tooltip underneath the iconified book when the mouse is
over it.

3.3 The Book Management Block
The books are created when the collection-window is created. The
books in this window are described using an external VRML
PROTO named Book . The prototype (in book.wrl) builds a
book from basic information:

- its position and size,

- its texture for the appearance,

- its information for the booklet,

- the URL’s to access the pages of each of its volumes.

An empty Transform node is included in the PROTO in order
to add the tooltip when needed. A TouchSensor node and the
BookScript script are also included and events are routed from
the first to the second. The rollover behavior is achieved with the
isOver eventOut of the TouchSensor . The book is opened
when a touchTime eventOut is caught and routed to the script.

When the isOver eventOut is true the script creates the
tooltip if it is not already present (if the Transform node is
empty). When the value changes to false the tooltip is deleted.
This effect is achieved by removing the children in the
Transform node if present. These changes in the VRML scene
graph are immediately reflected on the screen by the VRML

plugin.

When a click occurs on a book the script is aware of it. The
actions performed are: creating a new window, .adding the VRML
expression for this particular book (including PageScript in a
Script node) and creating routes for interactions (from the
content of the book-window to PageScript events). As we said
before a book-window has two different parts but the interactions
for changing from one to the other are pretty simple. The
BookScript script changes the value of the whichChoice
exposedField belonging to the Switch node.

In the booklet part when a mouse click occurs on one of the
volume labels, the value of the whichChoice field is set to 1 in
order to display the reading part. The current page (the first one by
default) of the corresponding volume is loaded by the getPage
method of the PageScript script called by the setVolume
eventIn .

In the reading part two different interactions are provided:

- when a mouse click occurs on a button provided for the
navigation through pages the desired action is performed by
routing a TouchSensor (associated with the label) event to
PageScript ,

- when the mouse click occurs on the booklet label the display
is switched back to the booklet part by assigning 0 to the
whichChoice exposedField .

The getPage method retrieves the URL of the picture of the
desired page by calling a CGI script on the CNUM server. The
URL returned is used in the url field in the ImageTexture
node to load the new page. The filename of the picture in the URL
includes its width and height so the rectangle on which is mapped
can be resized.

4. DISCUSSION
The overall structure of the VRML scene graph is basically
entirely generated by scripts and will look like this:

DEF PS ProximitySensor [...]
DEF T Transform {
 children [
 Switch { # first window
 choice [
 DEF MAIN_Transform Transform {
 children [
 DEF MINMAX_Transform Transform {
 children [
 DEF MOVE_Transform Transform {
 children [# visible app
 Switch {
 choice [
 Group { [...] } # booklet part
 Group { [...] } # reading part
]
 }
]
 }
]
 }
]
 }
 Transform {
 Children [...] # invisible app
 }
]
 }

 Switch { [...] } # second windowFigure 6 : Details of the Book Management Block

 TouchSensor {}
 Transform { … }
 Script {
 url BookScript.class

Book.wrl

Sensor
isOver

Script
Set info

ROUTE TO

 Switch {
 choice [
 ...
 Script {
 url “...”
 }
 ...

BookScript
 event set_info
 event open_book
 event switch

touchTime open_book

Book added
in collection

window

 setPage()
 event setVol_1
 event setVol_2
 ...
 event nextPage
 event firstPage
 ...

PageScript

touchVol1 page
ROUTE TO

touchTime SetVol_1

...

...

touchVol1 book
touchTime switch

touchNext page
touchTime nextPage

touchNext book
touchTime switch

 [...]

]

}

DEF S Script {
 url MainScript.class
}

The lines in bold type are the ones declared in the main.wrl
file. With the ones used from the book prototype, also in VRML
syntax, they only represent 10% of the whole scene graph. The
several scripts generate the other 90%. The Java source code for
those scripts also represents 93% of the coded lines. Those
numbers show that the scripts are the most important part of the
application. Hence, with this kind of interactive scenes the
contribution of VRML as a description language is poor.

This VRML scene can be seen as a Java program using the 3D
engine enclosed in the VRML browser. As if we had used Java3D
to specify a scene graph, our application lies on the VRML scene
graph description to manage 3D contents, based on the user’s
interaction. A powerful aspect that remains a VRML property is
the modularity. We can transform the main.wrl file to declare
the whole scene as a reusable prototype within other scenes.

4.1 Problems Raised
The interactions we have added in our prototypal application are
quite simple. However, the great amount of scripts required to
implement these behaviors is really surprising. Telling that
VRML+Java is a useless couple to create interactive scenes is not
the point. We do believe that every imaginable interaction can be
coded this way, including a collaborative environment like [6].
Thanks to the numerous Java classes, the Java scripts also
authorize programs to deal with operations that are not directly
related to the VRML scene. For example we have implemented
the retrieval of the pages’ URL by sending an HTTP request to the
CNum server. However, considering the number of script lines
required for these simple interactions, one can think that a more
complete and rich system could be unmanageable.

Even if the scripts are used primarily to modify the VRML scene
graph (by inserting or deleting a parsed VRML expression with
the createVrmlFromString method) they can not be
considered as being part of the VRML scene since they can not be
edited. Nevertheless a Java source code can be obtained from a
compiled Java class. For a highly interactive commercial scene
this reverse engineering process is a main problem. The
“intelligence” of such a VRML scene requires a hard and long
work. Authors of the scene would not appreciate that other
programmers use their own code and knowledge. Industries would
undoubtedly use another language to settle this spying problem.
Thereby, only a few highly interactive worlds are downloadable
on the Internet. The one we present in this paper is one of the most
complicated we have found.

To create Java scripts, authors have to understand the object
oriented programming paradigm. Hence creating new behaviors
for VRML objects is only accessible for programmers. Because of
this, graphic designers and artists who create the more interesting
scenes can not use VRML.

4.2 Solution
Because of the many scripts needed to manage complex
interactions, VRML is not the right language for creating online
3D applications. Several propositions to enhance VRML were
proposed but none of them resolve our particular problems. J.-F.
Balaguer recommends to make VRML evolve towards a flexible
run-time environment based on indirect constraints [1]. Basically
he proposes to add scripts directly in the VRML file and to
manage events and routes with constraints. S. Diehl has also
proposed a constraint based enhancement of VRML that deals
with animations and behaviors [5]. With these solutions, the
scripts would be easier to maintain. However this does not solve
the main problems stated above. An interactive scene will still be
hard to implement and the scripts will remain the biggest part of
the application. The scripts will also remain the “intelligent” part
of the scene and even more public (not even compiled).

We agree that object’s behaviors must be included in the scene
graph as well as their appearance and geometry. However we
would prefer a descriptive manner to do that instead of a
computational one. All interaction mechanisms would be hard
coded in the browser. This would be the best solution for all
problems given above. Generic animation and interaction nodes
could be inserted in the scene graph to specify the different
behaviors. Some interactions in our prototype create some VRML
content. A mechanism for updating a scene automatically or on
user’s interaction is also needed. A Post method like the one used
in HTML to send a form could be used to ask the server to deliver
a new part of the scene.

5. FUTURE WORKS
Like with the CNum, we are waiting for users feedback before
enhancing the current prototypal application. In the HCI domain
this kind of spiral approach is often used. Users needs are
collected to build a prototype and the users feedback are used to
enhanced it. For this second phase we should work with designers
to obtain a better look and feel for the interface. Meanwhile we
should be able to determine the important interactions to include
in the application for a better manipulation. We could then
assemble these behaviors in a set of Java classes that could be
used as an API in other VRML-based applications.

More generally, we should work on determining a set of generic
3D behaviors in order to include interaction nodes in the scene
graph. These 3D behaviors should operate on 3D objects but also
on 2D elements. Today’s situation is to render 3D scenes in 2D
windows. We believe that low-cost 3D graphic cards will lead to
full 3D interfaces [13]. However a 3D workbench will necessarily
coexist with the huge number of 2D applications. A similar
problem occurred for the handling of keyboard-based applications
(such as UNIX shells) when 2D interfaces appeared. We think that
the same set of generic 3D behaviors could be used as a toolkit for
specifying 3D interactive interfaces.

Note for readers: the prototypal application described in this
paper is accessible on our web site at the following URL:
http://cnum.cnam.fr/vrml/

6. REFERENCES
[1] Balaguer, J.-F. Less Is More : The Power of Simplicity. In

proc. of VRML’99, Paderborn, Germany, February 23-26,
1999.

[2] Card, S., Robertson W., York W. The WebBook and the
Web Forager : An Information Workspace for the World-
Wide-Web. In proc. of ACM CHI’96. Vancouver, April 13-
18, 1996.

[3] Cubaud, P, Girard, D. ABU : une bibliothèque numérique et
son public. Document numérique, Vol. 2, Hermès, 1998.

[4] Cubaud, P., Thiria C., Topol A. Experimenting a 3D
Interface for the Access to a Digital Library. In proc. of ACM
DL’98, Pittsburg, July 1998.

[5] Diehl, S, Keller, J. VRML with Constraints. In Proceedings
of Web3D/VRML 2000, Monterey, California, ACM Press,
2000.

[6] Dumas, C., Degrange, S., Saugis, G., Chaillou, C., Viaud,
M.-L., Plénacoste, P., Spin : a 3-D Interface for Cooperative
Work. Virtual Reality Society Journal, Springer-Verlag,
1999.

[7] Fox, E., Eaton, J., McMillan, G., Kipp, N., Mather, P.,
McGonigle, T., Schweiker, W. and DeVane, B. Networked
Digital Library of Theses and Dissertations : An International
Effort Unlocking University Resources. D-lib magazine,
September 1997.

http://www.dlib.org/dlib/september97/theses/09fox.html

[8] Lesk, M., Practical digital libraries – Books, Bytes and
Bucks, Morgan-Kaufmann, 1996.

[9] Manguel, A. A History of Reading. Viking Penguin Group,
1996.

[10] Robert, L., Lecolinet, E. Browsing hyperdocuments with
multiple Focus+Context Views. In Hypertext'98. 1998: ACM
Press.

[11] Robertson, G., Card, S., Mackinlay, J. Information
visualization using 3D interactive visualization.
Communications of the ACM, 36(4):56--71, April 1993.

[12] Shaw, C., Green, M. THRED : A Two-Handed Design
System. Multimedia Systems Journal, 5 (2), ACM/Springer
Verlag, 1997.

[13] Topol, A. Immersion of XWindow Applications into a 3D
Workbench. In proc. of ACM CHI’2000, The Hague,
Netherlands, April 2000.

[14] Virtual Reality Modeling Language - International Standard
ISO/IEC 14772-1:1997.
http://www.vrml.org/Specifications/VRML97/

