
Immersion of XWindow applications into a 3D workbench

Alexandre Topol
Centre d’Etudes et de Recherche en Informatique

Conservatoire National des Arts et Métiers (CNAM)
292, rue Saint-Martin, 75003 Paris, France

+33 1 40 27 22 47 topol@cnam.fr

ABSTRACT
The coexistence of 3D applications within 2D window
managers is still difficult. We experiment a real-time
immersion of XWindow applications into a 3D scene and
allow minimal interaction with them. We use the Xlib
structures and routines to catch the position size, and
graphical content of the widgets.

Keywords
3D GUI, 3D interaction, X protocol.

INTRODUCTION
There exists since a few years a general concern about the
aging and limitations of the current GUI techniques.
"Escaping flatland" seems among the promising
alternatives. The work of Roberston et al. [6] has shown
that 3D interfaces can improve organization and
information filtering tasks by dynamically linking them to
the navigation of the user. Carefully designed 3D
metaphors could significantly ease the browsing through
large (homogenous) information spaces. Although the
ideal, general purpose, 3D workbench is still beyond reach,
it is expected that it would necessarily coexists with the
huge number of already developed applications using a 2D
GUI. A similar problem occurred for the handling of
keyboard-based applications (such as UNIX shells) when
the XWindow system was developed.
Today's situation is unsatisfactory since flat windows and
3D scenes coexist inside a 2D window manager (possibly
on different displays). The user must then switch back and
forth to entirely different navigation methods. This is a
frequent problem for the users of VRML browsers (fig. a).
In [3], we generated on-the-fly VRML scenes for the walk
through a digital library and we believe that our users will
combine their reading work with consultations of other
WWW-based digital libraries and writing with their
favorite word processor. Other examples are collaborative
VR environments, where the users would certainly base
their interaction on 3D objects with the help of existing
"flat" applications. A possible solution would be to revert
the situation and immerse the flat window applications into
the 3D scene, at user's will. We describe in this paper the

current state of development of such an application, based
on the XWindow system (fig. b).

Related work
Space-scale interfaces like Pad++ [1] have investigated the
use of 2D pans and zoom and demonstrated the importance
of fluid interaction into an information space of
unconstrained dimension. G. Leach et al. experienced a 3D
window manager called MaW3 where 2D windows are
placed inside a "tunnel" [5]. This project remained a
prototype in which windows content stayed still. The tunnel
metaphor constrains the user's navigation and therefore
MaW3 can be considered as a 3D redrawing of the Pad++
interface. It is also uneasy to render additional 3D objects
in this reduced volume. SpIn, a collaborative VR
environment [4], offers a reasonable space to place 3D
objects but the still focus only follows the rendering of a

(a)

(b)

A 3D object in a 2D window (a) and 2D windows
in a 3D workbench (b).

few (two) 2D windows. Our project should then be a
mixture of each approach, offering unconstrained
navigation (as with VRML browsers) within 2D windows
and 3D objects.

A 3D "HACK" FOR THE XWINDOW SYSTEM
Our experiment is based on the XWindow system because
its client/server organization allows the re-routing of the
content of the structures stored by the X server. Client
applications can also be executed on a remote workstation
and this might be a useful feature if one want to use our 3D
"hack" in a collaborative environment.
The first issue we investigated is the real-time capture of
the application windows image (pixmap) and its rendering
in a 3D scene using the Linux, OpenGL based, 3D engine
we have developed in [3]. It is clear that the recovery of the
pixmap itself is not a difficult issue since all screen
grabbers (such as xwd) do so. The time requirement is
however small in order to provide a fluid animation.
Although it might appear to be a surprising method and a
waste of computing power at first glance, one could argue
that AT&T VNC [7], a widely used cross-platform screen
emulator, is based on such method. Another problem is due
to the OpenGL texture format, which requires a 2n * 2m
pixel plane. Two solutions have been considered : get the
window image and then scale it up to the required
dimension, or re-scaling the window size before fetching
the image. The first approach proved to be unrealistic due
to the time cost of the operation, which is repeated for each
frame and each window. The second method is used in the
initialization part of our application. All the children of the
root window are identified with a call to XqueryTree and
then scaled to appropriate dimensions using calls to
XgetGeometry.
Building the 3D scene is the second step of the
initialization phase. Each window in the 3D scene is
represented by a rectangle primitive with a texture retrieved
by a call to XgetImage. No anti-aliasing is yet performed.
It should be mentioned that the 3D windows could be
organized very easily in a 3D scene such as the MaW3
tunnel [5] or the Web Forager [2].
At the time of this writing, we have only considered user
interaction based on the right button mouse clicks which
generate the four events EnterNotify, ButtonPress,
ButtonRelease, LeaveNotify in that order. We first
have to convert the 2D screen coordinates of the cursor into
the 3D coordinate system using gluUnproject which
performs the inverse projection. The closest rectangle is
found using the OpenGL Select Buffer. The 3D click
coordinates are compared with the upper-left corner of the
3D rectangle containing the window. This vector is then
used for the computation of a 2D point by linear projection.
The corresponding 2D widget is found using XqueryTree.
The four Xevents are then sent to the Xserver with proper
location. A minimal window managing is implemented,
allowing windows translation inside the XY-plane and

rotations around the X or Y axis. The camera position is
keyboard controlled.
Our 3D engine refreshes periodically the textures mapped
on each 3D rectangle. When a click occurs in a 3D window
it changes the real window content which is in turn
reflected in the 3D window. Window pixmap are also
captured when the OpenGL rendering engine is idle. This is
useful for animated windows, but the observed refresh rate
was roughly 1 sec. for our hardware configuration and this
should be improved.

FUTURE WORK
We have shown that XWindow applications could be
immersed into 3D scenes with minimal software
development. Although the techniques involved are very
crude, they can be handled by the computational power of
today's workstations and 3D graphic cards. All other
interactions implemented in the XWindow system should
be considered, at least focus and keyboard events. Our
prototypal application is a simple X client application, but
this should evolve into both a window manager (which has
the responsibility for the placement, size and reparenting of
the other windows) and a new Xserver. The window
manager could force a window to meet the OpenGL
requirements for texture sizes. An extended Xserver could
handle all the graphic primitives in 3D coordinates and
share its pixmap store with the OpenGL engine textures.
We shall next be able to implement more sophisticated 3D
interaction techniques and compare inside the same
workbench the effectiveness of the proposals described by
other authors.

REFERENCES
1. Bederson B. Pad++: A Zoomable Graphical Interface, in

Proc. of CHI'94 (Boston, MA, April 24-28, 1994).
2. Card, S., Robertson, G. and York, W. The WebBook and

the Web Forager : an Information Workspace for the
World-Wide-Web, in Proc. of CHI'96 (Vancouver, April
13-18, 1996).

3. Cubaud, P.,Thiria, C. and Topol, A. Experimenting a 3D
Interface for the Access to a Digital Library, in Proc. of
ACM DL’98 (Pittsburgh, June 23-26, 1998).

4. Dumas, C., Saugis, G., Chailloux, C. and Viaud, M-L. A
3D Interface for cooperative work, in Proc. of CVE’98
(Manchester, UK, 17-19 June 1998).

5. Leach, G., Al-Qaimari, G., Grieve, M., Jinks, N. and
McKay, C. Elements of the Graphical User Interface, in
Proc. of INTERACT'97 (Sydney, Australia, July 1997).

6. Robertson, G., Card, S. and Mackinlay, J. Information
Visualization Using 3D Interactive Animation, CACM.
36(4), April 1993, pp. 57-71.

7. VNC : Virtual Network Computing
http://www.uk.research.att.com/vnc/

