SD-Rtree: A Scalable Distributed Rtree

Cédric du Mouza Witold Litwin Philippe Rigaux
CEDRIC, CNAM CERIA, Univ. Paris-Dauphine AMSADE, Univ. Paris-Dauphine
Paris, France Paris, France Paris, France
dumouza@cnam.fr witold.litwin@dauphine.fr philippgaux@dauphine.fr
Abstract addresses the servers which are iniitage of the struc-

ture. Some existing servers may not be in the image, due
We propose a scalable distributed data structure (SDDS) to splits unknown from the client. The addressing may then
called SD-Rtree. We intend our structure for point and win- send a query to a server that is different from the one the
dow queries over possibly large spatial datasets distéut query should address. The servers recognize address-
on clusters of interconnected servers. SD-Rtree general-ing errorsand forward the query among themselves, until it
izes the well-known Rtree structure. It uses a distributed reaches the correct one. The client gets then a spéuific
balanced binary spatial tree that scales with insertions to age adjustment message (IAMhis improves the image at
potentially any number of storage servers through splits of least so that the addressing error does not repeat.
the overloaded ones. A user/application manipulates the The addressing is correct if the object fits the actual mbb
structure from a client node. The client addresses the treeof the leaf, otherwise the forwarding traverses some upward
through its image that the splits can make outdated. Thispath in the tree. It may end by reaching the leaf with the
may generate addressing errors, solved by the forwarding mbb including the one of the object. It may conclude alter-
among the servers. Specific messages towards the clientfatively that there is no such server. For a search it is an
incrementally correct the outdated images. unsuccessful termination case. For an insert, next stap is a
enlargement of some internal nodes and leaf mbbs, as usual
in an Rtree. The object is stored there. This may lead to a
1 Introduction split, adding a new node to the SD-Rtree and triggering its
possible rebalancing.

We aim at indexing large datasets of spatial objects, each The nodes communicate only through point-to-point
uniquely identified by ambject id(oid) and approximated messages. The analysis of the access performance shows
by the minimal bounding box (mbb) We generalize the that in general, insert and point query ovérservers cost
Rtree spatial index to Scalable Distributed Data Structure only one message to contact the correct server. If the first
(SDDS)that we call SD-Rtree. Our structure conforms to message isut of range(i.e., the contacted server is not the
the general principles of an SDDS [14]: (i) no central direc- correct one), the cost is in general witl2itog IV, unless an
tory is used for data addressing, (ii) servers are dynatyical infrequent split adds anoth&sg N. The overlapping may
added to the system when needed and (iii) the clients ad-add up toN messages but in practice it is relatively negligi-
dress the structure through a possibly outdated image. ble. The processing of window queries is also efficient, as

An SD-Rtree avoids redundancy of objects references,the maximal message path length to diffuse a window query
like Rtree or R*tree. The general structure is that of a dis- is O(log N).
tributed balanced binary spatial tree where each node car-
ries a mbb. We store an SD-Rtree at interconnesé&zder Related work
nodes, in a storage space usually terrhadket each with Until recently, most of the spatial indexing design efforts
some predefined capacity. The buckets may be entirely inhave been devoted to centralized systems [4] although, for
the distributed RAM, providing potentially for much faster non-spatial data, research devoted to an efficient distribu
access than to disks. If a bucket overflows, a split occurs,tion of large datasets is well-established [3, 13, 2]. Many
moving some data to a dynamically appended bucket. SDDS schemes are hash-based, e.g., variants of LH* [14],

An application addresses an SD-Rtree only through theor use a Distributed Hash Table (DHT) [3]. Some SDDSs
client component. The address calculus requires neither aare range partitioned, starting with RP* based [13], till-BA
centralized component nor multicast messages. A clientTON [8] most recently. There were also proposals for the

k-d partitioning, e.g. k-RP [12] using distributed kd-tseee node, ordata nodestores a subset of the indexed objects,
for points data, or hQT* [10] using quadtrees for the same The tree hasV leaves andV — 1 internal nodes which
purpose. [7] presents a distributed data structure based omre distributed amongy servers. Each servé is uniquely
orthogonal bisection tree (2-d KD tree). Each processor hasdentified by an idi and (except serves) stores exactly a
an image of the tree. The balancing needs to fully rebuild pair (r;, d;), r; being a routing node and} a data node. As
the tree using multicast from all the servers. [11] desaribe a data node, a server acts as an objects repository up to its
an adaptive index method which offers dynamic load bal- maximal capacity. The bounding box of these objects is the
ancing of servers and distributed collaboration. The struc directory rectangleof the server.
ture requires a coordinator which maintains the load of each
server. %
The P-tree [2] is an interesting distributed B+-tree that .. o4e ana The spatia
has a concept similar to our image with a best-effort fix- "ssever coverage
up when updates happen. Each node maintains a possibly
partially inconsistent view of its neighborhood in the dis- 4,
tributed B+-tree. A major difference lies in the correction
which is handled by dedicated processes on each peer in the
P-tree, and by IAMs triggered by inserts in the SD-Rtree.
The work [9] proposes an ambitious framework termed
VBI. The framework is a distributed dynamic binary tree
with nodes at peers. VBI shares this and other principles
with the SD-Rtree. With respect to the differences, first,
SD-Rtree is a data structure worked out to its full extent. It

'S pa”.'y in VBI scope, but fully roots instead in the MOTe " servers and the trem (do, d1) follows the classical Rtree
generic SDDS framework [14]. Next, VBI seems to aim o . .

- .) L . . organization based on rectangle containment. The dingctor
at the efficient manipulation of multi-dimensional points. .)

. rectangle ofr; is a, and the directory rectangles @ and
SD-Rtree rather targets the spatial (non-zero surface) ob- . .
. o d, are respectivelyp andc, with a = mbb(b U c). The
jects, as R-trees specifically. Consequently, an SD-Rtree . Jl
. . . .~ “rectangles, b andc are kept orr; in order to guide insert

enlarges a region synchronously with any insert needing it.

VBI framework advocates instead the storing of the corre- gnd .search operatlons.. If the ser_ée_rmust split in tqrn,
i e i ; its directory rectangle is further divided and the objects
sponding pointinserts in routing nodes, as so-called eiscr

. . distributed amongb; and a new servef, which stores a
data. It seems an open question how far one can apply thlsnew routing node-, and a new data nodé. r, keeps its
facet of VBI to spatial objects. 9 2 - 12 Keep

The rest of the paper presents first (Section 2) the Struc_dlrectory rectangle and the dr of its left and right children,

ture of the SD-Rtree. Section 3 describes the insertion-algo d ande, with ¢ = mbb(d Ue). Each directory rectangle of

. a node is therefore represented exactly twice: on the node,
rithm and the point and window queries. Section 4 shows and on its parent.

tCTSdZZﬂEZrBZBt:rI performance analysis and Section 5 con- A routing node maintains the id of its parent node, and
' links to its left and right children. Aink is a quadruplet
(id,dr, hei ght,type), wherei d is the id of the server
2 The SD-Rtree that stores the referenced node, is the directory rectangle
of the referenced nodagi ght is the height of the subtree

The structure of the SD-Rtree is conceptually similar to rooted at the referenced node arybe is eitherdat a or
that of the classical AVL tree, although the data organiza- " 0Ut i ng. Whenever the type of a link dat a, it refers
tion principles are taken from the Rtree spatial containmen t0 the data node stored on servet, else it refers to the

2.

Figure 1. Basic features of the SD-Rtree

Figure 1 shows a first example with three successive evo-
lutions. Initially (part A) there is one data nodg stored on
server 0. After the first split (part B), a new senfrstores
the pair(r1,d;) wherer; is a routing node and; a data
node. The objects have been distributed among the two

relationship [6]. routing node. Note that a node can be identified by its type
(data or routing) together with the id of the server where it
Kernel structure resides. When no ambiguity arises, we will blur the distinc-
The SD-Rtree is a binary tree, mapped to a set of serverstion between a node id and its server id.
Each internal node, aouting node refers to exactly two The description of a routing node is as follows:

children whose heights differ by at most one. This ensures

that the height of a SD-Rtree is logarithmic in the number of Type: ROUTINGNODE

servers. A routing node maintains also left and ridjng.c- hei ght , dr : description of the routing node
tory rectangleqdr) which are the minimal bounding boxes | ef t,ri ght: links to the left and right children
of, respectively, the left and right subtrees. Finally elaecif par ent _i d: id of the parent routing node

OC. the overlapping coverage moved to the data repository 6f. A new routing nodes.

)) o is stored onS’” and becomes the immediate parent of the
The routing node provides an exact local description of gata nodes respectively stored $mnds’.

the tree. In particular the directory rectangle is alwayes th
geometric union ofl eft. dr andri ght.dr, and the @

height is Max(| eft. hei ght, right.height)+1.
OC, the overlapping coverageto be described next, is an nul
array that contains the part of the directory rectangleeshar
with other servers. The type of a data node is as follows: e
Type: DATANODE Server 0 Server 0 Server 0
dat a: the local dataset CETEE— T TE—
dr : the directory rectangle parent parent
par ent _i d: id of the parent routing node left ¢ \right left "y right
OC.: the overlapping coverage 0 nt?) i)
Server 1 Server 1
Theimage }P . 2
An important concern when designing a distributed tree | . _ . o /) et /\prigm
is the load of the servers that store the routing nodes lo- |routinglink datalink routing node datanode parerjt; | 1 2)
cated at or near the root. These servers are likely to receive Server 2
proportionately much more messages. In the worst case all)))
the messages must be first routed to the root. This is unac- Figure 2. Split operations
ceptable in a scalable data structure which must distribute
evenly the work over all the servers. The management and distribution of routing and data

An application that accesses an SD-Rtree maintains amodes are detailed on Figure 2 for the tree construction of
imageof the distributed tree. This image provides a view Figure 1. Initially (part A), the system consists of a single
which may be partial and/or outdated. During an insertion, Server, with id 0. Every insertion is routed to this server,
the user/application estimates from its image the addifess ountil its capacity is exceeded. After the first split (part B)
the target serverwhich is the most likely to store the ob- the routing node-, stored on server 1, keeps the following
ject. If the image is obsolete, the insertion can be routed information (we ignore the management of the overlapping
to an incorrect server. The structure delivers then tha+inse coverage for the time being):
tion to the correct server using its actual routing node at th)))
servers. The correct server sends back an image adjustment ® thel ef t andri ght fields; both are data links that
message (IAM) to the requester. Point and window queries ~ 'éference respectively servers 0 and 1,
also rely on the image to find quickly a server whose direc-
tory rectangle satisfies the query predicate. A message is
then sent to this server which carries out a local search, and

routes the query to other nodes if necessary. e the parent id of the data nodes 0 and 1 is 1, the id of

Animage is a collection of links, stored locally, and pos- the server that host their common parent routing node.
sibly organized as a local index if necessary. Each time a

servers is visited, the following links can be collected: the ~ Since both thd ef t andri ght links are of typedat a

data link describing the data node®fthe routing link de- |inks, the referenced servers are accessed as data nodes
scribing the routing node of, and the left and right links (leaves) during a tree traversal.

of the routing node. These four links are added to any mes- Continuing with the same example, insertions are now
sage forwarded by. When an operation requires a chain of routed either to server 0 or to server 1, using a Rtree-like

n messages, the links are cumulated so that the applicatiorchooseSUBTREE procedure [6, 1]. When the server 1 be-
finally receives an IAM within links. comes full again, the split generates a new routing nade
Node splitting on the server 2 with the following information:

e its height (equal to 1) and its directory rectangle (equal
to mbb(left.dr, right.dr)),

When a server is overloaded by new insertions in its e itsl eft andri ght data links point respectively to
data repository, a split must be carried out. A new sesVer server 1 and to server 2
is added to the system, and the data stored amdivided
in two approximately equal subsets using a split algorithm e itspar ent _i d field refersto server 1, the former par-
similar to that of the classical Rtree [6, 5]. One subset is ent routing node of the splitted data node.

The right child ofr; becomes the routing noae and the from A, as long as the rectangle intersection remains the

height ofr; must be adjusted to 2. These two modifications same. Figure 3.b shows a split of the serfgerits content
are done during bottom-up traversathat follows any split has been partially moved to the new data nddeand a
operation. At this point the tree is still balanced. new routing node" has been inserted. There is no need to
propagate any update of the OC to the subtree rootdd at
- _ Finally the subtree rooted at may also evolve. Fig-

~We cannot afford the traditional top-down search in a e 3 ¢ shows an extension df such that the intersection
distributed tree because it would overload the nodes nearyiih s no longer empty. However our insertion algorithm

the tree root. Our search operations attempt to find di- garantees that no node can make the decision to enlarge its
rectly, without requiring a top-down traversal, a datandéde oy directory rectangle without referring first to its paten

whose directory rectanglé- satisfies the search predicate. Tperefore the object’s insertion which triggers the exi@ms
However this strategy is not sufficient with spatial struetl ot p nas first been routed td. Becaused knows the space

that permit overlapping, becaugeloes not contaiall the ghared withr, it can transmit this information to its child
objects covered byr. We must therefore be able to for- p along with the insertion request.

ward the query to all the servers that potentially match the Formally, given a node N, let anc(N) =
search predicate. This requires the distributed maintman {N1,Ns,...,N,} be the set of ancestors 6f. Each
of some redundant information regarding the parts of the node N; € anc(N) has two children. One is itself an
indexed area shared by several nodes, callegflapping ancestor ofV or V itself, while its sibling is not an ancestor
coveraggOC) in the present paper. o of N and is called theouter node denotedoutery (N;).

A simple but costly solution would be to maintain, on kg, instance the set of ancestors &f in Figure 1 is
_each (_1ata node, the path fro_md to the root of the tree, {r1,72}. The outer nodeuterg, (r2) is di, the outer node
including the left and right regions referenced by each nodeoutem2 (r1) is do.
on this path. From this information we can deduce, when a The overlapping coveragef N is an arrayOC\y of the
point or window query is sent t@, the subtrees where the {5 [1:0c1,2: 0ca, -, n : 0cy], such thabe; is N.dr N

query must be forwarded. We improve this basic scheme .. (N;).dr. Moreover an entry is represented in the
with two significant optimizations. First, i is an ancestor array only ifoc; +

- . 3 .
of d or ditself, we keep only the part af.dr which overlaps Each node stores its overlapping coverage which is main-
the sibling ofa. This is the sufficient and necessary infor- 2inad as follows. When an objeeltj must be inserted in
matiqn for query forwarding. If thg intersecti.on is empty, 5 subtree rooted av, one first determines with I@0s-
we simply ignore it. Second we trigger a maintenance op- egygTRreE the subtred whereob; must be routedo, the
eration only when this overlapping changes. sibling of I, is therefore the outer node with respect to the
leaf whereobj will be stored. The nodé must possibly

Overlapping coverage

a. Initial tree b. Split of B c. Extension of D A
s be enlarged to accommodai&j and this leads to check
e L T T e whether the intersectiohdr N O.dr has changed as well,
D D L.E.] D | .E] in which case the overlapping coverage must be modified as
L B i i b B F follows:

1. the OC entryO.id : I.dr N O.dr] is added to the in-

Figure 3. Overlapping coverage examples sertion message routed to the child

Figure 3 illustrates the concept. The left part shows a 2. a OC update message, containing the OC dtitry :

two-levels tree rooted at. The overlapping coverage dif I.dr N O.dr], is sent to the child.

andB, A.dr N B.dr, is stored in both nodes. When a query

(say, a point query) is transmitted #, A knows from its The operation is called recursively until a data node is

overlapping coverage that the query must be routefl tb reached.

the point argument belongs tbN B. The cost of the OC maintenance depends both on the
Next, consider the nod®. Its ancestors ard and R. length of the insertion path to the chosen data nédend

However the subtrees which really matter for query for- on the number of enlargements on this path. In the worst
warding areC' and B, called theouter subtreesf, respec- case, the insertion path starts from the root node, andeall th

tively, A and R with respect taD. SinceD.dr N C.dr = 0 overlaps betweed and its outer nodes are modified, which
andD.drN B.dr = (), there is no need to forward any query result at worse inV — 1 messages. However, in practice,
whose argument (point or window) is includediindr. the cost is limited because the insertion algorithm avoids

An important feature is that the content Bf the outer in most cases a full traversal of the tree from the root to a
subtree ofR with respect toA, can evolve independently data nodel, and reduces therefore the number of ancestors

of d that can possibly be enlarged. Our experiments con- The proposition shows that the management of unbal-
firm that the overlapping coverage remains stable when theanced nodes always reduces to a balancing of a rotation pat-
embedding space is fully covered, making the cost of OCterna(b(e(f, g), d), c). The operation is as follows:

maintenance negligible.)
1. b becomes the root of the reorganized subtree,

Balancing
In order to preserve the balance of the tree, a rotation is 2 The routing nod@ becomes the right child db; e
sometimes required during the bottom-up traversal that ad- ~ "eémains the left child ob andc the right child ofa,

justs the heights. The balancing of the SD-Rtree takes ad-
vantage of the absence of order on rectangles which gives
more freedom for reorganizing an unbalanced tree, com-
pared to classical AVL trees. The technique is described

3. One determines which one bf g or d should be the
sibling of ¢ in the new subtree. The chosen node be-
comes the left child od, the other pair constitutes the

with respect to aotation patternwhich is a subtree of the children ofe.
forma(b(e(f, g), d), c) satisfying the following con- The choice of the moved node should be such that the
ditions for somen > 1: overlapping of the directory rectanglesefinda is mini-

e height(c) = height(d) = height(f) =n — 1 mized. Tie-breaking can be done by considering the mini-

mization of the dead space as second criteria. This rotation
mechanism can somehow be compared to the forced rein-
sertion strategy of the R*tree [1], although it is here liit

to the scope of a rotation pattern.

Any pairwise combination of , g, d andc yields a
balanced tree. The three possibilities, respectivelyedall
nove(g), nove(d) andnove(f) are shown on Fig-
ure 4. The choicemove(g) (Figure 4.b) is the best one
for our example. All the information that constitute a rota-
tion pattern is available from tHeef t andri ght links on
the bottom-up adjust path that starts from the splitted node

The balancing can be obtained in exactly 6 messages for
nove(f) andnove(g), and 3 messages fomve(d)
because the subtree rootedearemains in that case the
same. When a node receives an adjust message from its
modified child p in our example), it knows the right link
¢ and gets the links foe, d, f andg which can be main-
tained incrementally in the chain of adjustment messages.
If a detects that it is unbalanced, it takes account of the in-
formation represented in the links to determine the subtree
f, g ord which becomes the sibling af.

e height(g) = max(0,n — 2)

: e ! | The overlapping coverage must also be updated for the
,,,,,,,,,,,,,, K subtrees rooted &t, d, g andc.
d | d ef
c. Choice move(d)=b(e(f,g), a(d.c)) d. Choice move(f)=b(e(g.d), a(f,c)) 3 Al gor ithms
Figure 4. Balancing in the SD-Rtree We present now the algorithms for the insertion, dele-

tion, point and window queries. Recall that all these oper-
ations rely on arimageof the structure in order to remain

as much as possible near the leaves in the tree, avoiding the
root overloading. These operations also adjust the image
through IAMs to better reflect the current structure.

The main SD-Rtree variant considered in what follows
maintains an image on the client component, although we
Proposition 1 Let a be the first unbalanced node met on shall investigate in our experiments another variant that
the adjustment path that follows a split. Then the subtree stores an image on each server component. Initially a client
rooted ata matches a rotation pattern. C knows only itscontact server The IAMs extend this

An example of rotation pattern is shown on Figure 4.
Note thata, b ande are routing nodes. Now, assume that a
split occurs in a balanced SD-Rtree at nedé bottom-up
traversal is necessary to adjust the heights of the ansestor
of s. Unbalanced nodes, if any, will be detected during this
traversal. The following holds:

knowledge and avoid to flood this server with insertions that S, cannot make the decision to inseit becauser.mbb
must be forwarded later on. is not contained ini>.dr. Then S, initiates a bottom-up
traversal of the SD-Rtree until a routing node whose dr cov-

Insertion .) o .
)) . erso is found (nodec on the figure). A classical insertion

In order to insert an object W't_h rectanglembb, C algorithm is performed on the subtree rooted aTheout-
searches its local image as follows: of-range path(ORP) consists of all the servers involved in

1. all the data links in the image are considered first: if a this chain of messages. Their routing and data links consti-

link is found whose directory rectangle containso, tute the IAM which is sent back t6'
it is kept as a candidate; when several candidates are
found, the one with the smallest dr is chosen;

2. if no data link has been found, the list of routing links Client
are considered in turn; among the links whose dr con- | _—">.Image
tains mbb, if any, one chooses those with the mini- | sts2 s3 s4 5 (
mal height (i.e., those which correspondto the smallest #: insertion message

subtrees); if there are still several candidates, the one ‘*"*"*~*'I'*"*"*"*':*"*"*"*"*"*"*'?"*"*"*”*"*"*‘
.) mage Adjustment Message
with the smallest dr is kept;

The rationale for these choices is that one aims at finding Figure 5. The insertion algorithm
the data node which can staravithout any enlargement. If

it happens that several choices are possible, the one with th Initially the image ofC' is empty. The first insertion

minimal coverage is chosen because it can be estimated t%uery issued by is sent to the contact server. More than
be the most accurate one. If the above investigations do noﬁikely this first query is out of range and the contact server

find a link thaF coversnbb, the data link whose dr i§ the must initiate a path in the distributed tree through a subset
closest tanbb is chosen. Indeed one can expect to find the o the servers. The client will get back in its 1AM the links
correct data node in the neighborhoodipénd thereforein ¢ i subset which serve to construct its initial image.

the local part of the SD-Rtree. AN i b bsolet lit d
If the selected link is of typelat a, C' addresses a mes- N image becomes ObsOlele as Spils occur and new
servers join the structure. One expects that the out-ajean

sage NSERFIN-LEAFto S; else the link refers to a routing . _
node and” sends a message$ERTIN-SUBTREEO . path remains local and involves only the part of the tree that
changed with respect to the clientimage.

° (I NSERT-I N-LEAF message)s*_receives the message; In the worst case a clier sends to a serve¥ an out-
if the directory rectangle of its data nodg covers of-range message which triggers a chain of unsuccessful
actually o.mbb, S can take the decision to insest |NSERFIN-SUBTREE messages fron$ to the root of the

in its local repository; there is no need to make any SD-Rtree. This costeg N messages. Then another set of
other modification in the distributed tree (if no splitoc- log N messages is necessary to find the correct data node.
curs); else the messageaist of range and a message Finally, if a split occurs, another bottom-up traversal hiig
INSERTIN-SUBTREEIS routed to the parerft’ of d; be required to adjust the heights along the path to the root.
The worst-case results thus@n3 log N) messages. How-
ever, if the image is reasonably accurate, the insertion is
routed to the part of the tree which should host the inserted
object. This results in a short out-of-range path with few
messages. The strategy reduces the workload of the root
that is accessed only for objects that fall outside the beund
aries of the most-upper directory rectangles.

e (INSERTIN-SUBTREE message) when a servgf re-
ceives such a message, it first consults its routing node
rg to check whether its directory rectangle covers
if no the message is forwarded to the parent until a sat-
isfying subtree is found (in the worst case one reaches
the root); if yes the insertion is carried out frorg
using the classical Rtree top-down insertion algorithm.
During the top-down traversal, the directory rectangles peletion

of the routing nodes may have to be enlarged. S]
Deletion is similar to that in an R-Tree [6]. A serv&r

If the insertion could not be performed in one hop, the from which an object has been deleted may adjust covering

server that finally inserts sends an acknowledgmentdg rectangles on the path to the root. It may also eliminate
along with an 1AM containing all the links collected from the node if it has too few objects. The SD-Rtree relocates
the visited servers”' can then refresh its image. then the remaining objects to its siblirgf in the binary

The insertion process is shown on Figure 5. The client tree. NodeS’ becomes the child of its grandparent. An
chooses to send the insertion messagé;toAssume that adjustment of the height is propagated upward as necessary,

perhaps requiring a rotation.
Point queries

The point query algorithm uses a basic routine, PQ-
TRAVERSAL, which is the classical point-query algorithm
for Rtree. At each node, one checks whether the point ar-

gumentP belongs to the left (resp. right) child’s directory
rectangle. If so the routine is called recursively for thi le

node := the node referred to byurget Link;

while (W € node.dr and node is not the root) // out of range
node := parent(node)

endwhile

/I Now node containsi¥, or node is the root

if (node is a data node)
Search the local data repositatyde.data

else

/I Perform a window traversal fromode
WQTRAVERSAL (node, W)
end
/I Always scan theC array, and forward
for each (7, oc;) in node.OC do
if (W Noc; #0) then
WQTRAVERSAL (outerpode (i), W)

(resp. right) child node.

First, the client searches its image for a data ndde
whose directory rectangle contaifs according to its im-
age. A point query message is sent to the sefyefor to
its contact server if the image is empty). Two cases occur.
(i) The data node rectangle on the target server confains

Then the point query applies locally to the data repository. endif
PQTRAVERSAL must also be routed to the outer nodes end for
the overlapping coverage arrdyOC whose rectangle con- end

tains P as well. (ii) An out-of-range occurs (the data node
on serverS; does not contairP). The SD-Rtree is then

scanned bottom-up froi$i; until a routing node- that con- on the size of’. Once a node that contaifi& is found,

tainsP is found. A PQ-RAYERSAL is then app“ed fronm, the WQTRAVERSAL is broadcast towards these data nodes.
and from the outer nodes in the overlapping coverage array. . .

. . The maximal length of each of these message paths is
r.OC whose directory rectangle contaifs

In this way all the parts of the SD-Rtree which may con- O(log N). The requests are forwarded in parallel, and result

. 7 ; . - eachin an IAM when a data node is finally reached.
tain P are visited. The overlapping coverage information
stored at each node usually avoids to traverse the whole path
starting at the root as it will appear.

With an up-to-date client image, the target server is cor-
rect. The number of PQIAVERSALs performed depends We performed experiments evaluating the behavior of an
on the amount of overlapping with the leaf ancestors. In SD-Rtree over large datasets of 2-dimensional rectangles.
general 1 message sent to the correct server should suffic¥Ve use a simulator written in C. Our datasets are produced
for the accurate image, ari@(log N') messages for an out- by the GSTD generator [15]. The study involved the fol-
dated one. lowing variants of the SD-Rtree:

. . BAsic. This variant is implemented for comparison pur-
Window queries poses, since the high load of the root levels makes it unsuit-

Given a windowlV, the client searches its image for a aple as a SDDS. It does not use images neither on the client
link to a node that containd’. A query message is sentto nor on the servers. Each request is forwarded to the server
the server that hosts the node. An out-of-range may occurthat maintains the root node. The top-down traversal of the
because of image inaccuracy, in which case a bottom-uptree to reach the adequate server follows.
traversal is initiated. When a routing nodehat actually IMCLIENT. This is the variant described above. Each
coversi is found, the subtree rooted atas well as the client builds an image, and maintains it according to the
overlapping coverage of, allow the navigation to the ap- |AMs. We recall that the servers forward the operations
propriate data nodes. The algorithm is given below. It ap- through their routing nodes.
plies also, with minimal changes, to point queries. The rou-
tine WQTRAVERSAL is the classical Rtree window query
algorithm adapted to our distributed context.

The number of data nodes which interséétdepends

Experimental evaluation

IMSERVER. There is an image on each server component,
instead of on the client one. This correspondsto an architec
ture for many light-memory clientse(g, PDA) addressing
gueriesto a cluster of interconnected servers. We simitlate
by choosing randomly, for each request (insertion or query)
a contact server playing the role of a services provider.

We studied the behavior of the different variants for in-
sertions ranging from 50,000 to 500,000 objects (rectan-
gles). We also executed against the structure 0-3,000 point
and window queries. We measured the number of messages

WINDOWQUERY (W : rectangle)
Input: a windowW
Output: the set of objects whosebb intersectd?”
begin
/l Find the target server
target Link := CHOOSEFROMIMAGE(Client.image, W)
/I Check that this is the correct server. Else move up the tree

exchanged. The size of the messages remained, as expecteaijt to be out-of-range. Using th&t BERVERvariant and the
negligible (at most a few hundreds of bytes). The data nodesame number of insertions, a server will get offlyinser-
on each server was stored as a main memory R-tree. Wedions requests/ being the number of servers), and much
fixed the capacity of each server to 3,000 objects. less adjustment messages. Its image is therefore moreg likel
Insertions to be outdat_ed. Our resylts show that tReCILIENT variant

_ _ ~leads to a direct match in 99.9% of the cases.
_ For the three variants we study the behavior after an ini- a6 1 summarizes the characteristics of the SDR-tree
tialization of the SD-Rtree with 50,000 objects. This a\mld. variants, initialized as above, for a large number of inser-

parl'uallly the measures d|stort|qn dge to th_e cost of the ini- i,ng With a uniform distribution, the tree grows regwarl
tialization step which affects primarily the first serverse and its height follows the rulgheisht—1 < N < gheight,

comparisons between the different techniques are based ORhe average load factor is arout(@s, i.e., around the well-

the total number of messages received by the servers, ang,,n typicalin 2 value. The B:sic variant requires a few
on the load ba;:ancmﬁ betwleen sirver?. for more messages than the height of the tree, because of height
. Figure 6, shows t qtota number or messages for Inser'adjustment and overlapping coverage maintenance. On the
tions of objects foIIov_vmg a umform dlstrlbutpn. It illus average, the number of messages per insertion is equal to
trates the role of the images. While\BIC requires on av- 4 fina| height of the tree. WithMSERVER the number
erage 8 messages when the number of insertions is 500,00yt yessages is lower. First a few forwarding messages are

9 BN o .
IMSERVER needs 6 messages on average, thus a 25% gaing ticient if the contacted node has split, in which case the
The cost of each insertion for theaBIC variant is approx- . .ract server can be found locally.

imately the length of a path from the root to the leaf. The
final, maximal, height of the tree is here 8. Additional mes-

i 8 | nbobjects nbserv. | height | load(%) Basic IMSERV IMCL
sages are necessary for height adjustment and for OC main-—50,000 58 6 575 6 3 5
H H 100,000 64 6 78.1 6 3 3
tenance, but their number remains low. 150,000 108 7 617 6 3 3
200,000 125 7 66.7 7 4 3
50108 : . 250,000 127 7 78.7 7 4 3
o — 300,000 166 8 70.3 7 4 3
ImClient -------- 350,000 207 8 64.4 8 5 3
devoe g 400,000 233 8 64.4 8 5 3
8 450,000 240 8 69.4 8 5 3
8 seros |- 500,000 243 8 75.4 8 5 3
€ o
5 . .
3 e 8 Table 1. Number of messages per insertion
10406 |- 4
..... Second if no information regarding the correct server

] 1008

O oy fo0000 sa000¢ can be found in the image, an out-of-range path is nec-
essary. The length of an out-of-range path should be the
Figure 6. Number of messages for insertion height of the tree on the average. But the heuristics that con

sists in choosing the “closest” server in the image, (the

With IMSERVER, each client routes its insertions to its ©ne with the smallest necessary directory rectangle esdarg
contact server. When the contact server has an up-to-datéent) turns out to be quite effective by reducing in most
image of the structure, the correct target server can becases the navigation in the SD-Rtree to a local subtree. Ta-
reached in 2 messages. Otherwise, an out-of-range occurle 1 shows for instance that with a tree of height 7 with 127
and some forwarding messages are necessary along with afervers, only 4 additional messages are necessary to reach
IAM. We experimentally find that the average number of the correct server (2 bottom-up, and 2 top-down messages).
additional messages after an out-of-range is for instance 5 Finally, the average number of messages foCLIENT
with 252 servers and 500,000 insertions. The gain of 25%does not depend on the height of the tree. After a short
is significant compared to theaBIc variant, but even more acquisition step (see the analysis on the image convergence
importantly this greatly reduces the unbalanced load on thebelow), the client has collected enough information in its
servers (see below). image to contact either directly the correct server, oragtle

Maintaining an image on the client ensures a drastic im- a close one. The difference in the number of messages with
provement. The average number of messages to contact ththe IMSERVERVersion lies in the quality of the image, since
correct server decreases to 1 message on average. The coa<lient quickly knows almost all the servers.
vergence of the image is naturally much faster than with Figure 7 analyzes the distribution of messages with re-
IMSERVER because a client that issues insertions will spect to the position of a node in the tree. Using the B
get an IAM for the part of these: insertions which turns sic variant, the servers that store the root or other high-

T T T
14 | basic == | 12 T 2

ImServer paasssn basic
ImClient m— ImServer —--———-

12 - m R 10k ImClient -------- i

number of messages
o
T
I

percentage of the number of messages received

2
L H..mmﬂan ik
3 4 5 6 7

] 1 2

I I I I I
height of the node 0 500 1000 1500 2000 2500 300
number of aueries

Figure 7. Messages distribution for insertions Figure 8. Cost of query answering

) necessary for maintaining the height (640 instead of 440 for
level internal nodes have much more work than the oth- 544 g0 insertions) and additional messages are required t
ers. Baspally a server storing a routing node at leves- _ balance the tree (310). Nonetheless on average, only 1 mes-
ceives twice more messages than a server storing a rOUt'”%age per 500 insertions is necessary for maintaining tee tre

node at leveh — 1. This is confirmed by the experiments, (in the worst caséog(nbservers)) and for balancing since
e.g, the server that manages the root handles 12.67% ofy, reorganization remains local

the messages, while the servers that manage its children re-
ceived 6.38%. Figure 7 shows that maintaining an image Queries

(either with IMSERVER or IMCLIENT) not only allows to We first created the SD-Rtree accomodating 200,000 ob-

save messages, but also distributes much more evenly thgacts, uniformly distributed. The tree grew to 107 servers

workload. with a maximal height of 7. Then we evaluated up to 3,000
The distribution depends actually on the quality of the queries.

image. With MSERVER, each servef is contacted with Figure 8 shows the gain of the image-aware variants

equal probability. If the image of' is accurate enough, compared to the Bsic one. Since the tree remains stable

S will forward the message to the correct sengéwhich (no insertions), we need on average a constant number of

stores the object. Since all the servers have on average thﬁnessages to retrieve the answer ixsBc. Without overlap,
same number of objects, it is expected that each server rethjs number could be predicted to be 7, the height of the tree.
ceives approximatively the same number of messages. Atrhe overlap costs here 2 additional messages on average.
this point, for a uniform distribution of objects, the load Ag expected the variants which rely on an image outper-
is equally distributed over the server. The probability of form Basic. The number of messages per query decreases
having to contact a routing nodé decreases exponentially ith the number of queries, as the server or the client, de-
with the distance between the initially contacted data nOdepending on the variant, acquires a more faithful image and
andN. The initial insertion of 50,000 objects results in a thys contacts more and more frequently the correct sejver(s
tree whose depth is 5, hence the lower number of messagegjrectly. The convergence is faster fon CLIENT than for
for the nodes with height 1, 2 or 3, since they are newer. |y Server. IMCLIENT appears very efficient even for a
With IMCLIENT, since a client acquires quickly a com- small number of queries. After 3,000 queries, the search
plete image, it can contact in most case the correct serverwith both variants become almost three times faster than
The same remark holds for nodes whose level is 1, 2 or 3 aswith BASIC.
above. Window queries experiments give similar results. The
There is a low overhead due to the balancing of the dis- higher cost reported, for all variants, is due to the overlap
tributed tree. We perform several experiments to evaluatebetween the window and the dr of the servers.
this overhead. With our 3000-objects capacity and 500,000 Figure 9 shows the ratio of correct matches when an im-
insertions of uniformly distributed data for instance, we age is used for a point query. WitiwBERVER, after 1500
need only 440 messages for updating the heights of the subfresp. 2500) queries, every server has an image that per-
trees and O for rotations, to maintain the tree balaniced, mits a correct match in 80% (resp. 95%) of the cases. For
around 1 message for every 1000 insertions. IMCLIENT, only 600 queries are necessary, and with 200
Experiments with skewed data (not reported here due toqueries the structure ensures a correct match for 80% of the
space limitations) show a similar behavior of the structure queries. This graph confirms the results of Figure 8. The
The only noticeable difference is that more messages argesults are especially good fomCLIENT even when the

T T
ImServer
ImClient —-—--

100 |-
80 -

60

|
40 |}
|

percentage of good matches

I I I I I
] 500 1000 1500 2000 2500 3000
number of queries [1]

Figure 9. Good matches for point queries
[2]

number of queries is low.

T T
14 b basic —= [3]
ImServer paasssn
ImClient m—
12 - —

of : [

ol] (5]
i] (6]

| i .

] 1 2 3 4 5 6 7 8
height of the node

percentage of the number of messages received

Figure 10. Messages distribution for queries (8]

Finally, Figure 10 confirms that using an image serves [9]
a satisfying load balancing, for the same reasons already
given for the insertion algorithm.

5 Conclusion [10]

The SD-Rtree provides the Rtree capabilities for large [11]
spatial data sets stored over interconnected servers.ighe d
tributed addressing and specific management of the nodes
with the overlapping coverage avoid the centralized calcu- [12
lus. The analysis, including the experiments, confirmed the
efficiency of our design choices. The scheme should fit the
needs of new applications of spatial data, using endlessly[ls]
larger datasets.

Future work on SDR-tree should include other spatial
operations: KNN queries, distance queries and spatiad.join [14]
One should study also more in depth the concurrent dis-
tributed query processing. As for other well-known data
structures, additions to the scheme may perhaps increase th [15]
efficiency in this context. A final issue relates to the fanout
of our structure. The binary choice advocated in the present
paper favors an even distribution of both data and opera-
tions over the servers. A larger fanout would reduce the
tree height, at the expense of a more sophisticated mapping

scheme. The practicality of the related trade-offs rem@ins
be determined.

Acknowledgment: The CERIA work was partly sup-
ported by MS Research Grant and by CEE eGov-Bus
project IST 26727STP. We thank Nick Roussopoulos and
anonymous referees for helpful suggestions.

References

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
R*tree : An Efficient and Robust Access Method for Points
and Rectangles. ISIGMOD, pages 322-331, 1990.

A. Crainiceanu, P. Linga, J. Gehrke, andShanmugasun-
daram. Querying Peer-to-Peer Networks Using P-Trees. In
Proc. Intl. Workshop on the Web and Databases (WebDB)
pages 25-30, 2004.

R. Devine. Design and Implementation of DDH: A Dis-
tributed Dynamic Hashing Algorithm. IRoundations of
Data Organization and Algorithms (FOD(Q}993.

V. Gaede and O. Guenther. Multidimensional Access Meth-
ods. ACM Computing Survey80(2), 1998.

Y. Garcia, M. Lopez, and S. Leutenegger. On Optimal Node
Splitting for R-trees. I'WLDB, 1998.

A. Guttman. R-trees : A Dynamic Index Structure for Spa-
tial Searching. IrSIGMOD, pages 45-57, 1984.

S. E. Hambrusch and A. A. Khokhar. Maintaining Spatial
Data Sets in Distributed-Memory Machines. Pmoc. Intl.
Parallel Processing Symposium (IPR$997.

H. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A Balanced
Tree Structure for Peer-to-Peer Networks.VIinDB, pages
661-672, 2005.

H. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou.
VBI-Tree: A Peer-to-Peer Framework for Supporting Multi-
Dimensional Indexing Schemes.Rmoc. Intl. Conf. on Data
Engineering (ICDE)2006.

J. S. Karlsson. hQT*: A Scalable Distributed Data Stuue

for High-Performance Spatial Accesses. Hsundations of
Data Organization and Algorithms (FOD(Q}998.

V. Kriakov, A. Delis, and G. Kollios. Management of Hilgh
Dynamic Multidimensional Data in a Cluster of Worksta-
tions. INEDBT, pages 748—764, 2004.

] W. Litwin and M.-A. Neimat. k-RP*S: A Scalable

Distributed Data Structure for High-Performance Multi-
Attribute Access. IrProc. Intl. Conf. on Parallel and Dis-
tributed Inf. Systems (PDI)ages 120-131, 1996.

W. Litwin, M.-A. Neimat, and D. A. Schneider. RP*. A
Family of Order Preserving Scalable Distributed Data Struc
tures. INVLDB, pages 342-353, 1994.

W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* -
A Scalable, Distributed Data StructureACM Trans. on
Database System21(4):480-525, 1996.

Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On
the Generation of Spatiotemporal Datasets. Ptoc. Intl.
Conf. on Large Spatial Databases (SSD999.

