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ABSTRACT

In this paper, we are interested in the fast retrieval, in a large collection of points in high-dimensional space, of
points close to a set of m query points (a multiple query): we want to efficiently find the sequence Ai,i∈{1,m}
where Ai is the set of points within a sphere of center query point pi,i∈{1,m} and radius ε (a sphere query). It has
been argued that beyond a rather small dimension (d ≥ 10) for such sphere queries as well as for other similarity
queries, sequentially scanning the collection of points is faster than crossing a tree structure indexing the collection
(the so-called curse of dimensionality phenomenon). Our first contribution is to experimentally assess whether
the curse of dimensionality is reached with various points distributions. We compare the performance of a single
sphere query when the collection is indexed by a tree structure (an SR-tree in our experiments) to that of a
sequential scan. The second objective of this paper is to propose and evaluate several algorithms for multiple
queries in a collection of points indexed by a tree structure. We compare the performance of these algorithms to
that of a naive one consisting in sequentially running the m queries. This study is applied to content-based image
retrieval where images are described by local descriptors based on points of interest. Such descriptors involve
a relatively small dimension (8 to 30) justifying that the collection of points be indexed by a tree structure;
similarity search with local descriptors implies multiple sphere queries that are usually time expensive, justifying
the proposal of new strategies.
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1. INTRODUCTION

During the last decade, similarity search has drawn considerable attention in multimedia systems, decision
support and data mining. In these systems, there is the need to find a small set of objects which are similar to a
given query object. Content based image retrieval is one example application where the objects to be retrieved
are images, videos or parts of images. Usually, similarity is not measured on the objects themselves but on
object abstractions called features which are points in some high-dimensional space. The number of dimensions
may vary from moderate (8 to 30) to large (64 to 300) or over 900 in some applications such as astronomy. The
more pertinent the object abstraction or description, the better the estimation of the similarity of two objects
by the similarity of the features extracted from the objects. The similarity of two features (points) is a function
of their distance in the high-dimensional space. Efficient similarity search is supported by a multidimensional
index structure.

In this paper we are interested in the fast retrieval, in a large collection of points in a high-dimensional
space, of points close to a set of m query points (a multiple query). We want to efficiently find the sequence
Ai,i∈{1,m} where Ai is the set of points within a sphere of center query point pi,i∈{1,m} and radius ε (ε-sphere).
It has been argued that beyond a rather small dimension (d ≥ 10) for such sphere queries as well as for k-NN
queries, sequentially scanning the collection of points is faster than crossing the tree-structured multidimensional
index (curse of dimensionality1). The more uniform the point distribution in space, the smaller such a threshold
dimension. The first contribution of this paper is to experimentally assess whether the curse of dimensionality is
reached with various points distributions when the number of dimensions is moderate. Considerable attention has
been devoted to data structures that delay the curse of dimensionality but surprisingly no study experimentally
evaluates until which dimension a tree structure is still appropriate. We compare the performance of a single
sphere query when the collection is indexed by a tree structure (an SR-tree in our experiments) to that of a



sequential scan. For this we take as an example of real data, the points obtained by the description of the visual
content of images. We compare the performance to that obtained with various synthetic distributions.

The second and main objective of this paper is to evaluate several algorithms for multiple queries in a
collection of points indexed by a tree structure. We compare their performance to that of a naive one consisting
in sequentially running the m queries (sequentially finding the Ai sets of answer points). Similarity search in
a collection of images where each image (as well as each query) is described by a set of local descriptors is one
example of application characterized by a moderate dimension (8 to 30) justifying that the collection of points be
indexed by a tree structure. The first improvement aims at saving I/O by avoiding scanning a node several times
for different queries points. The second improvement attempts to save CPU time by avoiding some distance
computations. This solution uses the triangle inequality applicable to a metric space. We rely on five lemmas
among which three are novel contributions.

Related work

To our knowledge, Braunmüller et al.2 were the first to study multiple similarity queries for mining in metric
databases. They propose a general framework for answering simultaneously a set of similarity queries (k-NN and
sphere queries) and give algorithms both for reducing I/O cost and CPU time. An experiment is provided for
multiple k-NN queries that evaluates the speed-up for a linear scan of the collection of points as well as for an
X-tree traversal. It is shown that parallelization yields an additional significant speed up. They propose some
CPU saving by using the triangle inequality and two lemmas. For the X-tree, the saving is said to be of the order
of 2 for two databases. Our work uses similar ideas for reducing I/O cost and CPU time but is applied to sphere
queries instead of k-NN queries. For improving CPU time we also use the distance triangle inequality relying
on the lemmas proposed by Braunmüller and al.2 as well on three other novel lemmas. However, our extensive
evaluation of the impact of applying the triangle inequality on the saving of expensive distance computations,
does not lead to the same conclusions (see section 4.2). Last while Braunmüller et al.2 propose an incremental
processing of a multiple query that allows to provide partial answers to the user at an early stage of the evaluation,
our algorithm performs the usual single depth first traversal of the tree. Each relevant node is accessed only
once in both algorithms.

The rest of this paper is organized as follows: sections 2 and 3 respectively describe the feature extraction and
the algorithms for single and multiple sphere queries. A database of images is taken as an example of real data
and the description of images by content with emphasis on image description with local descriptors is studied
(see section 2). Several tree structures have been proposed in the past decade as an improvement of the R*tree
for multidimensional indexing.3 Section 3, justifies our choice of the SR-tree,4 and gives an algorithm for the
sphere query. Then section 3.2 presents several strategies for multiple sphere queries. Section 4 describes our
experiments and provides some evaluation results for I/O and CPU time saving.

2. IMAGE RETRIEVAL WITH LOCAL DESCRIPTORS

Content-based image descriptors mainly depend on the applications and datasets of images of interest. When
considering global or approximate image retrieval, most of the descriptors are based on the global color, texture
and shape of the image. Object or sub-image retrieval involves local descriptors (see figure 1 for an example of
object retrieval). In this paper, we focus on such descriptors, because similarity search with local descriptors
implies multiple sphere queries that are usually time consuming, justifying our study.

Local descriptors are usually based on points of interest extraction and local characterization. Such an
approach allows to gain robustness against occlusions and cluttering since only a local description of the patch of
interest is involved. Many techniques of points of interest5–7 and performance evaluations8 have been proposed
in the literature of Computer Vision and CBIR. They depend on the application and more precisely on the image
transformations authorized.

Image retrieval based on local descriptors follows a classical computation flow: first a robust salient feature
detector is designed. Such a detector determines the location of salient points in the image, plus the support
regions around them where the local descriptor is to be computed. Second, a rich and compact descriptor is
computed for each salient point, by analyzing the signal within the support region exhibited.



(a) Query support (b) Responses

Figure 1. Example of object retrieval using local descriptors. (a) is the query support presented with extracted points of
interest (in white). The query is a sunflower that has been manually determined by the user (bounding rectangle). (b)
shows the 16 first retrieved images from a data set of generic images, presented by decreasing order of similarity. These
results were obtained with IKONA, the CBIR platform developed at INRIA (http://www-rocq.inria.fr/imedia/ikona.html).

A typology of feature spaces

When considering similarity search, local approaches dif-
Descriptors Category Size Dim.

Color histogram global 1 >200

Gabor filters global 1 ∼48

Regions of interest local 4-20 ∼20

Points of interest local 100-500 8-30

Table 1. Examples of image descriptors.

fer from global ones by the dimensionality of the feature
space involved: the content of the image is represented by
several vectors in a relatively low-dimensional (moderate)
feature space, usually having between 8 and 30 dimensions∗.
In comparison, global descriptors involve only one vector in
a high-dimensional space. Characteristics of feature spaces
for some global and local descriptors are resumed in table 1.
The size (number of vectors per image) and the dimension given are representative of the descriptors considered.

The voting algorithm

Image retrieval with local descriptors implies a specific algorithm that proceeds in several steps:

1. For each query point pi,i∈{1,m}, find in the feature space a set of neighbors points called N(pi);

2. For each image Ij of the database, compute a vote vj , that is a function of the number of neighbors
retrieved and belonging to Ij and of their associated distances. A similar image is associated with a vote
large enough that expresses that it contains a lot of points close to most of the query points;

3. Finally, the images are usually sorted by decreasing order of their vote, as illustrated in figure 1.

Finding the nearest neighbors N(pi) of step #1 can be done according to two strategies.9 Either a k-NN
search; the advantage is that k can be easy to determine but the drawback is that some of the retrieved images
may not be similar to the query image. Or an ε-sphere query, where ε can be estimated of fixed by the user;
generally here the difficulty lies in determining ε.

∗Except the SIFT descriptor6 that involves 128 components, invariant to several image transformations.



Algorithm 1: S(T,q)

Input : T a tree root, q a sphere query (sphere with center p and radius ε)
Output: V a set of answers.
// Computes the set V of vectors of tree with rootpage T inside the sphere q

V:= empty;
readpage T;
if T is not a leaf then

for each child C in T do
if C.R intersects q and C.S intersects q then

// C.R (C.S) minimum bounding rectangle (sphere) of C

V+= {S(C, q)};

else
for each point t in T do

if t in q then then V+={t};
return V;

With local descriptors, the strategy usually follows an ε-sphere query. The k-NN strategy is not well suited
because k may be very different for each query point pi and not easy to determine intuitively as for global
descriptors. If ε is known or estimated, the set N(pi) is defined by: N(pi) = {nk ∈ Vd / dist(pi, nk) < ε} where
dist is the similarity measure associated with the feature space. Traditionally for local descriptors, the similarity
measure associated is L2 or more generally the Mahalanobis distance δ2. In the rest of the paper, qi will represent
the sphere query of center pi and radius ε, and dpipj the distance between two points pi and pj .

3. STRATEGIES FOR SIMILARITY SEARCH

We want to check that the gain of a tree traversal over a sequential scan is important for the applications we have
in mind: in other words, we want to check that the performance does not suffer from the curse of dimensionality
phenomenon .1 Several index structures have been proposed in the literature of databases, see for example the
survey proposed by Böhm and al..9 We have chosen the SR-tree,4 because its code† was available on the line
at the time when the experiment started. On top of this code, we developed code for sphere queries. Although
some other tree-structures such as the X-tree10 or the Pyramid-tree11 might slightly outperform the SR-tree, the
latter scheme performance is by far better than that of the regular R*tree.3

In the next section, we give the algorithm for single sphere queries with an SR-tree. In section 3.2, we present
several strategies for multiple sphere queries. The proposed or customized strategies have been implemented
with an SR-tree, but are easily adaptable to other tree structures.

3.1. SR-Tree for single sphere queries

The structure of the SR-tree is a mixture of that of the R*tree3 and that of the SS-tree .12 It uses bounding
regions wich are specified by the intersection of spheres and rectangles. For a detailed construction of the tree,
see Katayama and Satoh’s paper.4

We have adapted the SR-tree code for sphere queries. The approach, denoted by S(T, q), is described in
Algorithm 1. T is the tree root page and q is a sphere query (a sphere with center p and radius ε). Similar to
the R*tree one, it consists of a straightforward depth-first traversal of the tree.

†http : //research.nii.ac.jp/ katayama/homepage/research/srtree/



Algorithm 2: SM(T,Q)

Input : T a tree root, Q a set of sphere queries < q1, q2, ..., qm >

Output: V a sequence of sets of vectors < V1, V2, ..., Vm >

for i in 1..m do Vi:= S(T,qi);
return V;

Algorithm 3: SM(T,Q)

Input : T a tree root, Q a set of sphere queries
Output: V a set of vectors < V1, V2, ..., Vm >

readpage T;
if T is not a leaf then

for each child C in T do
Qc:= empty;
for each q in Q do

if C.R intersects q and C.S intersects q then Qc+= {q};
if Qc not empty then V+= {SM(C, Qc)};

else
for each point t in T do

for each q in Q do
if t in q then Vq+={t};

return V;

3.2. Multiple sphere queries

Let T be a tree structure, and Q = {q1, q2, ..., qm} be a multiple sphere query (a set of sphere queries). The
algorithm for a multiple sphere query, called SM(T,Q), returns a sequence of answers < V1, V2, ..., Vm >, where
Vi is the set of points, answer to S(T, qi).

We give three strategies for answering such a query and evaluate their performance in the three following
sections. In our experiments, T is an SR-tree structure, but it is important to note that the proposed or
customized strategies are easily adaptable to other tree structures.

3.2.1. Strategy #1

The first and simplest strategy consists in sequentially evaluating Algorithm 1 for each of the queries in Q. It is
described in Algorithm 2.

3.2.2. Strategy #2

The second strategy (see Algorithm 3) saves I/O time by reading a single page (node or leaf of the tree) only once
for the whole set of queries. Sphere (rectangle) to sphere intersection tests as well as point in sphere inclusion
test imply time consuming distance computations, where the distance function is the one of section 2.

3.2.3. Strategy #3

The third strategy is described in Algorithm 4. It attempts to save CPU time by avoiding distance computations
as much as possible in applying the distance triangle inequality. It supposes that, prior to the sphere query,
the distances dpipj between any two points pi and pj , in query Q, have been precomputed. Such a strategy is
motivated by the fact that tests implied by the triangle inequality are significantly cheaper than computing a
distance.



Algorithm 4: SM(T,Q)

Input : T a tree root, Q a set of sphere queries
Output: V = < V1, V2, ..., Vm >

readpage T;
if T is not a leaf then

for each child C in T do
Qc:= empty;
Q’:= empty;
for each q in Q do

if Avoidable (q, Q’, C) = 0 then
if C.R intersects q and C.S intersects q then

Qc+= {q}; Q’+={q};
else if Avoidable (q, Q’, C) = 3 then Qc+= {q};
if Qc not empty then V+= {SM(C, Qc)};

else
for each point t in T do

Q’:= empty;
for each q in Q do

if Avoidable (q, Q’, t) = 0 then
if t in q then

Vq+={t}; Q’+={q};
else if Avoidable (q, Q’, t) = 3 then Vq+={t};

return V;

Function Avoidable(q, Q’, o)

Input : q a sphere query, Q’ a set of sphere queries, o a region or a point
Output: if lemma i is satisfied by q’ of Q’ then return i, otherwise return 0
for each q’ in Q’ do

if lemma1(q’, q, o) then return 1;
else if lemma2(q’, q, o) then return 2;
else if lemma3(q’, q, o) then return 3;

return 0;

One of the following 5 lemmas can be used for this third strategy. Algorithm 4 simultaneously uses the three
first lemmas. Lemmas 1 and 2 were already proposed by Braunmüller and al.2 Lemmas 2a, 3 and 3a are new
contributions. Here, q1 and q2 are two queries (of centers p1 and p2) and o represents a node or a point in a leaf.

Lemma 1 (see Braunmüller and al.’s paper 2 and Figure 2)

If dminop1 > dp1p2 + ε holds, then dminop2 > ε holds.

where dp1p2 is the distance between p1 and p2 (see section 2). For an SR-tree, the distance dmin between
a region o and a point pi is defined as the maximum of (1) the minimal distance between pi and the bounding
sphere of o and (2) the minimal distance between pi and the bounding rectangle of o. If o is a point, dmin
represents the distance inter-points.

Lemma 2 (see Braunmüller and al.’s paper 2 and Figure 2)

If dp1p2 > dmaxop1 + ε holds, then dminop2 > ε holds.



Here, if o is an SR-tree region, dmax stands for the maximum

Lemmas 1 and 2

Lemma 3

Figure 2. Illustration of lemmas 1, 2 and
3. Lemma 1 is satisfied when objects (o1)
are outside sphere S1. Lemma 2 is satis-
fied with objects (o2) inside sphere S2 while
lemma 3 defines objects inside sphere S3.

distance between pi and the bounding sphere of o, i.e. the distance
to the sphere center plus the sphere radius. If o is a point, dmax
represents the distance inter-points.

Lemma 3 (see Figure 2)

If dminop1 ≤ ε− dp1p2 holds then dminop2 ≤ ε.
Proof: immediate.

Function Avoidable in algorithm 4 checks whether for a couple of
query points (q1,q2), an object (a point or an tree region) lies in a
given region. Algorithm 4 can be improved (Algorithm 4a not shown
here) by using the following lemmas 2a and 3a, in addition to the other
lemmas. Lemma 2a (lemma 3a) takes advantage of a successful test
with lemma 2 (lemma 3) on a couple (q1,q2), for other couples (q1,q3)
(for loop inside function Avoidable).

Lemma 2a

Let q1, q2, q3 be three query points and o a region (point).

If (dp1p2 > dmaxop1 +ε) (lemma 2 holds for q2 wrt q1) and (dp1p2 ≤
dp1p3) holds, then dminop3 > ε holds.
Proof: From dp1p2 ≤ dp1p3 and lemma 2 premise, by transitivity we
have dp1p3 > dmaxop1 + ε. Then by lemma 2, we have dminop3 > ε.

Lemma 3a

If (dminop1 ≤ ε− dp1p2) (lemma 3 holds for q2 wrt to q1) and (dp1p2 ≥ dp1p3) holds then dminop3 ≤ ε holds.
Proof: similar to that of lemma 2a.

4. EXPERIMENTATIONS

We performed an extensive experimental evaluation to evaluate first the performance of SR-trees for single sphere
queries with local descriptors, second to compare the various strategies for multiple queries, using synthetic and
real data as well as synthetic and real query samples. The tested distributions are presented in the first subsection.
All experiments were performed on an Intel Pentium (3.2 GHz) based workstation running Linux with 1Gbytes
of main memory. The algorithms and data structures were implemented in C++.

We used the SR-tree code version 2.0 beta 5 provided by the authors and retained the default parameters.
The tree is built dynamically and we stress that the index as well as the data are not loaded in main memory:
each index node is read from the disk, when necessary.

Tested datasets

The experiments were done over 15 different datasets, split into three categories. For each dataset, approximately
218000 points were generated for three different dimensions, respectively 8, 17 and 29 that are representative of
local descriptors (see Table 1). More precisely:

• The first category (DR) corresponds to real points of interest, extracted from the well-known database of
images COIL-100 .13 This database contains 7200 color images representing 100 objects displayed under 72
different viewpoints. Each extracted point is characterized with three different local descriptors, providing
three feature spaces of dimensions 8, 17 and 29 (resp. D8

R, D17
R , D29

R );

• In the second category (DU ), synthetic point coordinates are uniformly generated in the interval [0, 1].
Three datasets were obtained for the same dimensions (D8

U , D17
U , D29

U );



• The last category represents synthetic clustered datasets obtained for the same three dimensions with
different shapes. Each one has 312 clusters of 700 points each, with a randomly generated center in [0, 1]d.
Points in a cluster follow a gaussian distribution with respective values of σ = 0.01 (D8

C1, D17
C1 and D29

C1),
σ = 0.05 (D8

C2, D17
C2 and D29

C2) and σ = 0.2 (D8
C3, D17

C3 and D29
C3).

In the following experiments, only the results associated with the first 100 neighbors for DR, 700 neighbors
for DC2 and the complete dataset for DU are presented, because in the real dataset each point of interest can
have at most 72 neighbors (each object is viewed according to 72 viewpoints). For DC2, 700 is the number of
points in each cluster; the results of the other clustered distributions are not shown, because of space limitations,
but we briefly discuss differences with DC2 if any.

4.1. Single sphere queries

In this section, we present the speed up obtained with an SR-tree for single queries. For each dataset, a sample
of 500 points was randomly chosen among the points in the data set. For the COIL-100 set, the 500 points
correspond to different images. Each performance measure that will be presented corresponds to an average over
this sample.

Speed-up SR-tree/Sequential

This experiment compares the performance of sphere queries with an SR-tree to that of a sequential scan and is
illustrated in Figure 3. We plot the ratio of the sequential scan CPU time over the CPU time obtained by the
SR-tree traversal versus the number of neighbors for DR and DC2.
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Figure 3. Sequential scan/SR-Tree gain versus the number of neighbors for the datasets DR and DC2.

Clearly, for the real dataset as well as for the clustered distribution, the curse of dimensionality is not reached!
The speed up for dimension d = 29 is significant even for large values of the number of neighbors. In contrast,
with the uniform data set (not shown here), there is already no gain from two retrieved neighbors and a dimension
of d = 17. This trend is confirmed by the study of the ratio of nodes acceded during the tree traversal. This
ratio remains small (≤ 27%) for the DR and DC2 distributions.

4.2. Multiple sphere queries

This section evaluates the strategies for multiple queries presented in section 3.2.

To have a realistic idea of the number m of multiple sphere queries Q = {q1, ..., qm}, we made queries on
heterogeneous databases where images have been indexed with roughly 300 local descriptors. Objects of interest
were manually chosen via a CBIR interface (as in Figure 1). For 50 queries on very different objects or sub-images
providing good retrieval results, we have observed that the average size m is 36.56, with a standard deviation of
17.25. According to these considerations, m is chosen in the set {20, 50, 80} for all the experiments.



4.2.1. I/O reduction

Here, we evaluate strategy #2 presented in section 3.2.2, by comparing it to the sequential strategy #1 (section
3.2.1). The I/O cost is estimated by the number of nodes acceded upon the tree traversal. The queries are
generated over the sample of 500 points and the average is taken over 500/m multiple queries each of them
having m points.

In Figure 4, we plot the gain g in acceded nodes versus the number of neighbors found for various sizes m.
g is the ratio of the average number of nodes acceded for a single query times m (algorithm 2) over the average
number of nodes acceded by algorithm 3. Note that for all values of m, the larger the dimension, the higher the
gain. We restrict our experiment report to the real dataset, the clustered distributions yield similar results.
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4.2.2. CPU time saving

In this section, we evaluate strategy #3 presented in section 3.2.3. The objective is to assess whether one can
save some CPU time by avoiding some distance computations in adding the triangular inequality tests presented
in section 3.2.3 (algorithm 4 with lemmas 1, 2, 3 and algorithm 4a with lemmas 1, 2a, 3a).

Tested queries

In contrast to single point queries, we generate clustered samples : three multiple queries samples Q1, Q2 and Q3

are generated with different values of the gaussian standard deviation (0.01, 0.05 and 0.2). Here, the idea is to
generate sets of query points in which there is some redundancy, simulated by the clusters. Applied to content-
based image retrieval, we think such sets of queries are representative of queries like objects involving textures
or patterns. See for example the query of figure 1: each point of interest extracted on the sunflower carries an
information which is not independent of the other ones. We expect that for such queries, the application of
lemmas yields some CPU time improvement. These queries are synthetically generated in order to get a set large
enough for an extensive evaluation, but in the last section (see Figure 11), we validate the approach on a set of
real queries.

The performance measures were evaluated for ε in the interval [0,1]. Indeed for ε ≤ 1 over 100 neighbors are
found. All the graphs presented are associated with the query set Q1. We discuss the results obtained with Q2

and Q3 whenever their behaviors differ. All the results associated with CPU time include the pre-computation
of the distances between query points that are exploited by the triangular inequality. For example, for d = 8
and m = 20 this cost is negligible in comparison to the time consumed by the similarity search itself, since it
represents an average of 4.96 × 10−5s. Although increasing with m and d, this cost keeps very small. We first
apply lemmas 1, 2 and 3 as described in algorithm 4, then we study the impact of each lemma separately.



Impact of the query size

Figure 5 studies the impact of m on the number of successful tests for dimension 8. A test is a call of function
Avoidable (algorithm 4). It is successful if it avoids some distance computation: it returns 1, 2 or 3. Although,
the larger m, the smaller the percentage of successful tests, it is interesting to note that for our sample of queries,
this percentage is high: it is larger than 80% and even reaches almost 95% for m = 20. The impact of lemmas 1
and 3 is strong when points are close to each other, whereas lemma 2 is helpful for distant points. This behavior
becomes more noticeable with sample Q2 and more particularly with Q3 where the points are more scattered.

Impact of the dimension

Because of space limitations, only results for m = 20 are displayed. The same trends are observed for larger m.
Figure 6 displays the ratio of successful tests versus ε, again with the use of lemmas 1, 2, 3 used jointly for each
dimension. Clearly the lemmas are useful for avoiding distance computations. The denser the cluster the better
the success.

Impact on time of lemmas 1, 2 and 3 used jointly

Figure 7 displays the CPU time measured with and without lemmas application (resp. algorithm 4 and algo-
rithm 3) for the three dimensions, versus ε. As expected by the results on percentage of successful tests, the
lemmas application improves CPU time. The improvement is small for d = 8 but significant for higher dimen-
sions. It even reaches 25 % for ε = 1. One may wonder why the CPU saving is small while the percentage of
successful tests is high. It is perhaps due to the number of calls of function Avoidable which in the worst case
is quadratic in the number of point queries and the number of objects (regions/points) tested.
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Contribution of each lemma 1,2,3 used alone

To see which of the lemmas was prominent for the CPU time reduction, we run a variant of algorithm 4 in which
only one lemma out of the three is tested. Figure 8 displays CPU time versus ε, for m = 20 and for the three
dimensions. For each dimension, two curves are plotted: (i) no lemma application (algorithm 3) and (ii) lemma
application. It shows that applying lemma 2 alone does not provide any improvement in time while we found
indeed a very significant number of successful tests. In contrast, lemma 1 reduces CPU time. Used alone, lemma
3 does not reduce CPU time except for large values of ε (ε > 5).

Impact of lemmas 2a and 3a

Here we evaluate the improvement carried by the versions 2a and 3a of the lemmas 2 and 3. Used alone, lemmas
3a does not reduce CPU time for this sample (Q1) but it improves lemma 3 for Q2 and Q3; the corresponding
curves are not presented here. But since lemma 2a improves CPU time (see Figure 9.a) we use a variant of
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Figure 8. Time Average versus ε with and without lemma 1 and 2 used alone.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
om

pa
rin

g 
C

P
U

 T
im

e 
S

1

Epsilon

with lemma 2a dimension 8
with lemma 2a dimension 17
with lemma 2a dimension 29

with lemma 2 dimension 8
with lemma 2 dimension 17
with lemma 2 dimension 29

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
om

pa
rin

g 
C

P
U

 T
im

e 
S

1

Epsilon

with ameliorated lemmas dimension 8
with ameliorated lemmas dimension 17
with ameliorated lemmas dimension 29

SR multiple dimension 8
SR multiple dimension 17
SR multiple dimension 29

(a) Lemma 2a compared to lemma 2 (b) With and without Lemmas 1, 2a and 3

Figure 9. Time Average versus ε when exploiting lemma 2a.

algorithm 4 with lemmas 1, 2a and 3 (see Figure 9.b) which indeed exhibits a slight improvement in time with
respect to regular algorithm 4 (Figure 7).

Finally, we check whether this is still true when the database size increases. This is confirmed by Figure 10,
where the database contains 1M of points.

Evaluation on real queries samples

The last experiment consists in validating the proposed strategies on real queries. A database of 800 heteroge-
neous images was indexed with roughly 300 local descriptors per image. As queries, 50 areas involving objects
of interest were manually determined by a user via a CBIR interface. The selected area involving a sunflower
in Figure 1 is one of these query samples. Figure 11 shows the average CPU time retrieval over these samples,
without using the triangle inequality (strategy #2) and using it (strategy #3). These results show that the
application of the lemmas slightly improves the computing time. While the time is divided by two for small
values of ε, for ε = 0.3 (corresponding to an average of 41 neighbors per query point) the improvement is 6.9%.

5. CONCLUSION

This paper was devoted to the study of similarity search in a collection of points in high-dimensional space. We
focused on sphere queries and on SR-trees as a structure for accelerating sphere queries. Our first contribution
was to experimentally show that when the dimension of the space is moderate, i.e. between 8 and 30, the tree
structure indeed performs well: it exhibits a significant gain wrt to sequential scan even in a 29-dimensional
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Figure 10. Time average on 1M points with lem-
mas 1, 2a and 3 used jointly.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

C
P

U
 T

im
e

Epsilon

without lemmas, dimension 8
with lemmas, dimension 8

Figure 11. Time average on real multiple
queries samples with and without the lemmas.

space. Our second and main focus was on the improvement of multiple sphere queries. The latter are useful in
a large number of data mining applications as well as for image retrieval by content. As shown by Braunmüller
and al.2 for X-trees and k-NN queries, we showed that for sphere queries on an SR-tree, I/O cost is significantly
reduced by processing simultaneously all queries and accessing only once each relevant node tree for all queries.
Last, and this is our main contribution, an extensive performance evaluation showed that when the points in
the multiple query are clustered, then CPU time can be saved as well, in processing all queries simultaneously,
by avoiding distance computations. For this we enlarged the set of lemmas based on the triangle inequality
proposed by Braunmüller and al..2 Our performance study relied on a real data collection drawn from a content
based image search application as well as on four synthetic data sets. These trends were confirmed by querying
a database of images with queries on objects of interest.
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