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ABSTRACT
Many applications rely on sequence databases and use exten-
sively pattern-matching queries to retrieve data of interest.
This paper extends the traditional pattern-matching expres-
sions to parameterized patterns, featuring variables. Param-
eterized patterns are more expressive and allow to define
concisely regular expressions that would be very complex to
describe without variables. They can also be used to express
additional constraints on patterns’ variables.

We show that they can be evaluated without additional
cost with respect to traditional techniques (e.g., the Knuth-
Morris-Pratt algorithm). We describe an algorithm that en-
joys low memory and CPU time requirements, and provide
experimental results which illustrate the gain of the opti-
mized solution.

Categories and Subject Descriptors
I.5.2 [Computing Methodologies]: Pattern Recognition—
Design Methodology ; H.2.3 [Database Management]: Lan-
guages

General Terms
Performance, Languages

Keywords
Parameterized patterns, Query evaluation

1. INTRODUCTION
The detection of patterns in sequence databases is a com-

mon problem in many applications such as detection of com-
mon behaviors, analysis of stock market prices, search for
sequences of DNA, stream mining, etc. Motivated by these
applications, several models have been recently proposed to
express pattern-based queries and to retrieve efficiently se-
quences that match them [1, 21, 20, 23]. Many languages
proposed in these works extend in some way (querying, ag-
gregation, data mining) the functionalities of SQL with some
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variant of regular expressions, and many query evaluation
techniques build on well-known pattern matching algorithms.

In this paper, we propose an extension of traditional pat-
terns with variables which can be bound to any value of the
underlying discrete domain during query evaluation. For
instance, if a is a value and x is a variable, the parame-
terized pattern @x.a.@x denotes all the subsequences where
a is preceded and followed by the same value. This exten-
sion provides a much more expressive and flexible querying
framework because the presence of variables offers many op-
portunities to match a pattern with a sequence by simply
changing the variables bindings. Moreover the introduction
of variables promote patterns to first-class query objects,
since variables can be used in other parts of a query for ex-
pressing constraints (e.g., @x != c), joins (@x = @y, where
x and y appear in different patterns), output of variable val-
ues, etc.

A potential problem associated to any extension of pattern-
matching queries is the cost of the query evaluation al-
gorithms. In the traditional setting (pattern-matching on
strings) several well-known algorithms have been proposed
to efficiently achieve this search [4, 12, 6]. Our main contri-
bution is to present an extension of the KMP algorithm [12]
to parameterized pattern matching which preserves its linear
time complexity and enjoys low space requirements. More
specifically, it satisfies the two following properties:

1. each symbol of the input sequence is checked only once;

2. the memory space requirement of a query q is propor-
tional to the number of variables in q.

We implemented our algorithm and made evaluations that
confirm our expected results. The experimental evaluation
shows that our algorithm saves of large amount of compu-
tations and therefore decreases the query evaluation time.

Related work
Several studies on sequence databases aim at extending SQL
with pattern-matching operators. In [21], the authors present
a language called SEQUIN based on SQL in order to query
sequences. In [18] sequences are considered as sorted rela-
tions where each tuple is assigned to a number that repre-
sents its position in the sequence. A shift operator using
this number is defined in order to join tuples of the same
sequence. The SQL-TS language of [20, 19] allows to ex-
press sequences of predicates, and covers repetitive patterns,
arbitrary aggregates and disjunctive patterns. The paper
describes an extension of the KMP algorithms to evaluate



matching queries over such sequences of predicates. Some
other papers [11, 10, 14] present algorithms for querying
and mining similar subsequences, as well as event detection
from time series data (i.e., sequences of real numbers). [14]
for instance describes the necessary restrictions of the SQL
language when dealing with streams, focusing on the aggre-
gation problem. In [16] the authors describe a fast mining
algorithm for retrieving spatio-temporal periodic patterns
for objects moving on a partitioned map. It supports the
“undefined” symbol inside a pattern. All these approaches
are significantly different from ours. In particular there is
nothing similar to the concept of parameterized pattern, fea-
turing variables, proposed in our data model.

Other representative papers about string-search are [2, 5,
22]. Some works also deal with the problem of searching
approximate patterns [24, 13]. None of these algorithms
handle variables in patterns. To the best of our knowledge,
the only work that considers patterns with parameters is [3],
but the goal is to match two parameterized strings together
by finding a renaming of the parameters. In [8] we inves-
tigated regular expressions with variables, and described a
class of expressions with limited space requirements. The
model was applied to mobile objects tracking, where trajec-
tories are seen as sequences over a partitioned map. The
present paper can be seen as a further improvement of these
techniques.

In the following we describe first (Section 2) some motivat-
ing applications with sample queries. Section 3 introduces
the data model and Section 4 is devoted to query evalua-
tion algorithms, including our optimized solution. We pro-
vide experimental results in Section 5. Some conclusions are
drawn in Section 6.

2. MOTIVATING EXAMPLES
We provide in this section an illustration of our motiva-

tion with some representative applications. Their common
feature is to store as sequences the evolution of values over
a discrete domain for some information of interest, and to
perform querying and analysis tasks on these sequences.

Protein databases
Applications that deal with DNA or proteins rely on a database
that stores millions of sequences [17]. Consider for instance
a protein sequence database. Basically a protein is com-
posed of between 100 and 200 amino acids. There are 20
distinct amino acids that are commonly denoted by a label
with one letter. Here is the example of lysozyme, composed
of 130 amino acids:

K V F E R C E L A R T L K R L G M D G Y R G I S L
A N W M C L A K W E S G Y N T R A T N Y N A G D
R S T D Y G I F Q I N S R Y W C N D G K T P G A V
N A C H L S C S A L L Q D N I A D A V A C A K R V
V R D P Q G I R A W V A W R N R C Q N R D V R Q

Y V Q G C G V

where for instance N is the standard label to denotes the
amino acid named Asparagine. Beyond classical pattern
matching on such sequences, our language allows to perform
advanced parameterized search. For instance the parameter-
ized pattern Q.@x.L.ε.Q.@x.L matches the sequences where
the substring Q.@x.L is found twice, @x being bound to the
same value in both occurrences (ε denotes any subsequence).

f

e

g
b

a

c

d

Figure 1: A reference map

Although an equivalent pattern can be expressed with a reg-
ular expression that enumerates all the possible bindings, its
size is likely to discourage any user.

Another feature of our language is its ability to express
additional constraints on variables. For instance the pat-
tern Y.A.@x can be combined with the constraint Polar(@x)
where Polar is a predicate which checks whether the in-
stantiation of @x belongs to the Polar class of amino acids.
Along with a fast algorithm for pattern detection, these
functionalities are unmatched by existing sequence query
languages.

User behavior on web sites
Next, consider another application that aims at analyzing
the behavior of web users on a site in order either to im-
prove the ergonomy of the site, or to know where are the
best places for advertisements. Assume that each page is
uniquely referred by an url. The database can thus store the
sequences of page urls – or histories – successively crawled
by a user [9, 15]. A simple query of interest in such a context
is for instance to search for users that came back to page A

after visiting another page. This can be expressed by the
pattern A.@x.A. The value of @x can be output if required
when a match is found (and thus when a value is bound to
@x).

The pattern A.@x.ε.B.@x matches all the sequences where
a page @x is accessed successively from two distinct pages,
respectively A and B. Note that we can combine our pattern
expressions in powerful constructs. If we do not wish to men-
tion explicitely A and B in the previous example, we can relax
the pattern as @y.@x.ε.@z.@x, along with the constraints @x
!= @y and @y != @z. This matches all the sequences where
page @x is accessed successively from two distinct pages,
whatever their urls.

Moving objects
Finally, let us take a spatio-temporal application that will
serve as a support to our examples in the rest of the paper.
As in [16], we consider a partition of a 2D embedding space
such that each zone is uniquely identified with a label from
an alphabet Σ. This partition is the reference map M sup-
porting queries. Figure 1 shows a simplified map of Paris,
divided in arrondissements, with Σ = {a, b, c, d, e, f, g}.

Assume that each object is equipped with a location-aware
device that periodically sends its position. Since each object
moving in the partitioned area crosses a sequence of distinct
zones (we assume at least one event per zone), our patterns
can be used to query such sequences. Here is a sample of
such queries (they will be referred to by Qi, i = 1, · · · , 4 in
the following)



• Q1: which objects went through zone a, then crossed
zone d and moved to zone c?

• Q2: which objects went through zone b, then crossed
c and e and then moved to f?

• Q3: which objects went from f to d crossing another
zone?

• Q4: which objects left one zone to reach a, then came
back to their departure zone before going to another
zone?

In summary our approach aims at providing a flexible,
powerful and efficient pattern-based query language. The
flexibility is brought by the presence of variables. The larger
the number of variables in a pattern, the larger the number
of matches which can be found. Variables can also be seen
as references to some symbols of the sequences, on which
additional constraints can be expressed. Finally we show in
the following that, in spite of this enhanced expressiveness,
we can still rely on efficient pattern matching operations to
evaluate our parameterized patterns.

3. THE MODEL
In our model, an object o (e.g., a protein, a web user, a

moving object) is represented by an identifier together with
a sequence of symbols. All symbols belong to a discrete and
finite domain Σ.

Definition 1 (Representation of an object.). An
object o ∈ O is a pair (oid, seq) where oid denotes the iden-
tifier of the object and seq =< z1.z2. · · · .zn > is a word in
Σ∗.

Example 1. Figure 1 shows two moving objects on the
partitioned map, o1 and o2.

These objects are then represented as follows:

• (o1, f.a.d.c)

• (o2, f.e.d)

Let V be a set of variables such that Σ ∩ V = ∅. In the
following, letters a, b, c, . . . denote symbols from Σ, and @x,
@y, @z, . . . variables.

Definition 2 (Pattern). A pattern is a word t1.t2 . . . tn

in (Σ ∪ V)∗.

In their simplest form, patterns are words in Σ∗ such as,
for instance, Q1 = a.d.c and Q2 = b.c.e.f. The interpre-
tation of a pattern P without variable is natural: a sequence
T matches a pattern P if P is a subsequence of T . For in-
stance, since o1.seq = f.a.d.c = f.Q1 then o1 belongs to
the result of query Q1 whereas neither Q1 nor Q2 are sub-
sequences of o2.seq. Variables are useful to capture more
general sequences where symbols are not explicitly assigned
to specific symbols. Q3 in the moving objects application
for instance refers to another zone and Q4 to one departure
zone. The patterns for these queries are as follows.

• Q3 = f.@x.d

• Q4 = @x.a.@x.@y

The interpretation of patterns (with variables) is an ex-
tension of the subsequence matching semantics previously
given: a sequence T matches a pattern P if one can substi-
tute each variable in P by a symbol from Σ, such that the
resulting pattern is a subsequence of T . More formally:

Definition 3 (Substitution and valuation). A sub-
stitution ν is a finite set of the form {x1/t1, x2/t2, . . . , xn/tn}
where xi ∈ V, i = 1, . . . , n, and each ti is either a variable
in V or a symbol in Σ. ν is a valuation if ti ∈ Σ, for all
i ∈ [1, n]

ν(P ) denotes the pattern obtained from P by replacing,
for each xi/ti ∈ ν, each occurrence of xi in P by ti. Each
element xi/ti is called a binding for xi and the set of variables
{x1, x2, . . . , xn} is denoted by bound(ν). Sometimes, if x is
bound to t, for brevity t will be referred to as ν(x).

If P = a.b.@x.@y.b.@z.b and ν = {@x/c, @z/@x}, then
ν(P ) = a.b.c.@y.b.@x.b. In the following var(P ) denotes
the set of variables in P .

Note that if ν is a valuation and var(P ) ⊆ bound(ν), then
ν(P ) is a word in Σ∗. Hence the definition:

Definition 4 (Interpretation of a pattern). A se-
quence T matches a pattern P iff there exists a valuation ν
such that ν(P ) is a subsequence of T .

Let us now turn our attention to queries. A query is built
from patterns and predicates over the patterns’ variables.
We commonly wish to allow some “holes” into our patterns.
For instance we could try to retrieve all the mobile objects
that went through zone a, then crossed zone d and moved
to zone c, and later went from f to d crossing another zone.
In this example we want to know the objects that satisfied
Q1, then Q2, without any restriction about the different
visited zones during these two subsequences. Consequently
we adopt the following definition for a query.

Definition 5 (Query). A query q is a pair (P, C) such
that

1. P is of the form P1.ε.P2.ε. · · · .ε.Pk, where k > 0,
P1, P2, . . . , Pk are patterns and ε is the “undetermined”
symbol which matches any (possibly empty) subsequence.

2. C = {c1, c2, · · · , cm}, m ≥ 0, is a (possibly empty) set
of predicates over var(P).

Since the successive patterns of P must be matched in
order, the semantics of a query is straightly deduced from
that of a pattern: a sequence satisfies a query iff there exists
a valuation of var(P) which satisfies successively the differ-
ent patterns of the query and the predicates in C . In the
following we focus on the evaluation of patterns. Note that
the predicates are application-dependent i.e., we might have
spatial predicates in a mobile application, or specialized con-
dition on proteins, or url comparisons.

4. QUERY EVALUATION
We present now two algorithms for an evaluation of pa-

rameterized patterns. The first one follows a näıve approach
which repeatedly checks the new read symbols and back-
tracks on the sequence whenever a mismatch occurs. The
second one is our optimized technique. All the symbols used
throughout the paper are listed in Table 1.



Symbol Meaning

P A pattern
m The length of a pattern
l A position within a pattern
e, e1, e2, · · · Edges
ν, σ Resp.: a valuation, a substitution
t1, t2, · · · Symbols or variables from Σ ∪ V
a, b, c, · · · Symbols from Σ
@x,@y, @z, · · · Symbols from V

Table 1: Table of symbols used in the paper

4.1 The naı̈ve approach
The first algorithm is a simple extension of well-known

pattern-matching techniques to patterns with variables and
relies on the following operations:

1. a matching attempt between a pattern P and a se-
quence T at a position i;

2. a shift of P whenever a mismatch occurs.

The Compare operation
A matching attempt compares, one by one, from left to right,
the symbols P [0], P [1], . . . , P [m − 1] of the pattern to the
symbols T [i], T [i+1], . . . , T [i+m−1] of the sequence. Dur-
ing the matching attempt, the variables in var(P ) are pro-
gressively bound to symbols in Σ, and these bindings define
a valuation ν, called the runtime valuation which is initially
empty. If P [j] is a variable @x, the following binding rules
apply:

1. if @x 6∈ bound(ν), the comparison is always successful
and ν := ν ∪ {@x/T[i+j]} i.e., @x is bound to label
T [i + j]. This binding remains in effect until the end
of the matching attempt.

2. else, if @x ∈ bound(ν) the comparison is successful if
and only if T [j] is equal to ν(@x).

Consider the matching attempt for P = a.@x.b.@x and
T = a.c.b. The comparisons are successful for j = 0, 1, 2.
When P [1] = @x is compared to T [1] = c, variable @x is
bound to label c. The valuation ν is, at this point, {@x/c}.
The following comparison P [4] = T [4] can then be successful
only if the next label read in the sequence’s representation
is c, the current instantiation of @x. It follows that we have
to maintain, for each object, the current substitution, i.e. a
list of the current bindings of the query variables.

If all the comparisons are successful, then so is the match-
ing attempt, else there is a failure. In both cases the Shift
operation is performed.

The Shift operation
A Compare operation is performed each time a new label
is read. Whenever a failure occurs (say, at position l, with
0 ≤ l ≤ m−1), Shift shifts the pattern by one position and
a comparison with the l − 1 last labels of the sequence has
to be done. If the matching is successful, one reads the next
label of the sequence, else a new shift is necessary. Figure 2
shows an example.

When the pattern contains variables the algorithm is quite
similar except for the binding of the variables. Whenever a

0 1 2 3 0 1 2 3 0 1 2 3

pattern

sequence a bab

a b a c
shift

a bab

a b a c
shift

bba

a b

a

a c

(a) failure at pos. 3 (b) failure at pos. 0(c) scan a new label of the sequence

Figure 2: Matching attempt for a pattern without

variable

0 1 2 3 0 1 2 3 0 1 2 3

@x b a

bcbasequence

pattern

bcba

b @x a
shift

bcba

@x b @x a
shift

(a) @x bound to a

failure at pos. 2

(b) @x bound to b

failure at pos. 1

(c) scan a new symbol

of the sequence

@x @x

Figure 3: Matching attempt for a pattern with vari-

ables

failure occurs, the current substitution is deleted: all the
bindings are discarded. The pattern is shifted one symbol
to the right. Figure 3 illustrates this algorithm.

This technique is simple but costly since the algorithm to
test the whole sequence runs in O(m × |T |). Each label of
the sequence is potentially checked several times against the
pattern.

4.2 Optimized evaluation
We propose an optimization relying on an extension of the

string-matching algorithm from Knuth, Morris and Pratt
(KMP) [12, 6]. We first briefly sketch the KMP algorithm
before describing its extension.

The KMP algorithm
The KMP algorithm relies on the observation that, in the
case of a failure, several symbols can be skipped. Moreover
the pattern contains all the information needed for determin-
ing the number of symbols to be skipped. This is illustrated
in Figure 4 with the pattern P =a.b.c.a.b.c.b and the
subsequence T = a.b.c.a.b.c.a.

A failure occurs at position 6 of the pattern. We success-
fully superposed P [0]. · · · .P [5] on the lastly read six symbols
of T . A shift of one or two symbols to the right always leads
to a failure. Indeed after a shift of one symbol, P [0] =a is
compared to T [i + 1] =b. Similarly a shift of two symbols
attempts to superpose P [0] =a on T [i + 2] =c.

Nonetheless a shift of three symbols to the right is possible
since P [0]. · · · .P [2] = T [i + 3]. · · · .T [i + 5] (Figure 4(b)). It
turns out that this shift is allowed because P [0]. · · · .P [2] =
P [3]. · · · .P [5]. Therefore it can be determined by examin-
ing the pattern, at compile-time, independently from any
specific sequence.

More generally, for each substring sl = P [0]. · · · .P [l − 1],

?
a b c a cb a

a b c a b c b

a b c a b c a

pattern

sequence

bcacba

1 2 3 4 5 60

(a) a failure occurs at pos. 6

i i + 6

1 2 3 4 5 60

the right and restarts the matching

(b) The KMP shifts 3 symbols to

i i + 6

b

Figure 4: Example of a shift determined by the

KMP algorithm
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Figure 5: Using an edge for determining the appro-

priate shift

?
b baaba @x

a b c a ab c

(a) a failure occurs at pos. 6

@x is bound to c

1 2 3 4 5 60

i i + 6

a b a b a b@x

a b c a b a c

(b) we directly shift 3 symbols to

the right and bind @x to a

1 2 3 4 5 60

i i + 6

Figure 6: A shift for a pattern containing variables

l < m of P , we need to know the longest prefix el of sl which
is also a suffix of sl. Such a string el is called an edge. If the
failure occurs at position l in the pattern, then the shift is
of length l − 1 − |el|. Figure 5 illustrates this.

Note that taking the longest suffix means that the shift is
minimal, and guarantees that the algorithm does not miss
any solution. The edges are precomputed and stored in a
table called the table of edges.

The KMP algorithm can be decomposed into two steps:

• an offline scan of the pattern to detect, for each sub-
string in the pattern, the corresponding edge;

• an online use of the table of edges to apply the appro-
priate shift each time a failure occurs.

Using the table of edges when performing a matching at-
tempt, avoids to check several times an input symbol, and
the number of comparisons is therefore linear in the size of
the sequence. In the following we extend this algorithm for
our patterns with variables and describe an efficient evalua-
tion process.

Extended KMP algorithm
Consider the pattern P = a.b.@x.a.b.a.b with a single
variable @x and the example of figure 6.

When the failure occurs at position 6, @x is bound to c.
If we consider the string a.b.c.a.b.a, the longest prefix
which is also a suffix is a.b. However this shift removes
the binding of @x and we can bind this variable to another
symbol. Actually it is now possible to match the first three
symbols of P [0]. · · · .P [5] with the last three, providing that
@x is bound to a after the shift.

Next, consider a more complex case where the bindings
after the shift depend on the bindings before the failure (Fig-
ure 7). A failure occurs at position 6, @x being bound to c,
@y to a and @z to a. The best shift superposes the last three
symbols of the sequence on the first three of the pattern,
with a new binding of @x to a whereas @y and @z are no
longer instantiated. Note that in that case the new binding
of @x is the former binding of @z. Here again, an analysis of
the pattern at compile-time gives all the needed information
to perform the substitution of values at runtime.

?
a b c a b a

a b @x@y b @z b

a

(a) failure at pos. 6, @x bound to c,

@y to a, and @z to a

6543210

i + 6i

a b @x@y b @z b

babacba

6543210

i i + 6

to a, @y and @z not bound

(b) shift 3 pos. to the right, @x bound

Figure 7: A shift involving a substitution

?
a @x a c @y@x b

a b a c a b c a b a c a b c

a @x a c @y@x b

(b) since @y was bound to a, applying

an edge of length 2 is possible; then

654321 6543210 0

i i + 6 i i + 6

@x is now bound to b

(a) failure at pos. 6, @x bound to b,

y to a since @x is bound to b,

edge of length 4 is not allowed.

Figure 8: A shift that depends on the runtime val-

uation

Finally a last example (Figure 8) shows that the edge
sometimes depends on the binding of variables before the
shift. In Figure 8.a, a failure occurs at position 6. If we
consider an edge of length 4, the suffix a.c.@y.@x may be
superposed on the prefix a.@x.a.c if @x is bound to c prior
to the shift. This is not the case in Figure 8 since @x is
bound to b. If we consider an edge of length 2, the suffix
@y.@x must be superposed on the prefix a.@x. This is only
possible if @y is bound to a. Hence the applicability of an
edge might depend on the current runtime valuation.

The table of edges
As shown by the previous examples, the computation of
edges is strongly related to the variable bindings. Moreover
a shift might determine a substitution of variables values
which depends, partially or totally, on the runtime valua-
tion. We now define the notion of edge for patterns with
variables.

Definition 6 (Edge of a pattern). Let P be a pat-
tern of length m. An edge of P is a triple (length, νmin, σshift),
where νmin is a valuation and σshift a substitution, which
satisfies the following properties:

• νmin(σshift(P [0]. · · · .P [length − 1])) = νmin(P [m −
length]. · · · .P [m − 1])

• there does not exist an edge e′ = (length, ν ′

min, σ′

shift)
with ν′

min ⊆ νmin.

An edge e = (length, νmin, σshift) describes a shift of size
m−length−1. The valuation νmin expresses a necessary and
sufficient condition for applying the shift: given the runtime
substitution ν, the edge e is applicable iff νmin ⊆ ν (we
sometimes say that ν is compatible with νmin). Finally σshift

is the substitution used to bind the edge’s variables after the
shift. Both νmin and σshift are computed at compile time.

Assume that the superposition of a pattern P on a se-
quence T fails at position l of P . If (length, νmin, σshift)
is an edge of P [0]. · · · .P [l − 1] and νmin is a subset of the
runtime valuation ν, then we can shift P of l − length − 1
symbols to the right and restart the matching process at
position length + 1 for P . The new runtime valuation is
ν ◦ σshift. We illustrate these concepts with the following
example.



Example 2. Consider the subpattern @x.b.@y.c.@z.@x.a.
There exists an edge e(3, νmin, σshift) of length 3 with:

• νmin = {@x/b}

• σshift = {@x/@z, @y/a}

This is interpreted as follows. During a shift of size 3, the
subpattern @x.b.@y must be superposed on @z.@x.a. Hence
@x replaces @z, b replaces @x and @y replaces a. This su-
perposition is possible iff the runtime valuation of @x is b,
therefore the minimal valuation is νmin = {@x/b}.

Next, since @x replaces @z, it takes the value assigned to @z

by the runtime valuation. Variable @y takes always the value
a. Therefore the substitution is σshift = {@x/@z, @y/a}. One
easily verifies that:

νmin(σshift(@x.b.@y)) = νmin(@z.@x.a) = @z.b.a

Finally, let the last read labels of a sequence be c.b.a when
the failure occurs. The current runtime valuation is ν =
{@x/b, @z/c}. Since νmin ⊆ ν, the edge is applicable and
the shift of size 3 can be performed. The valuation after the
shift obtained from the substitution: @x = ν(σshift(@x)) =
ν(@z) = c, and @y = ν(σshift(@y)) = a.

The matching attempt is performed by the following Match
algorithm. Match is invoked when a new label s is read
from a sequence T . It takes as inputs s, the runtime valu-
ation ν and the current position l in P . Match attempts
the matching between T and the suffix of pattern P starting
at l. It returns the new runtime valuation ν ′ and the new
position l′ in P .

Match(s, l, ν)
Input: s (sequence label), l (position in P ), ν (runtime valuation)
Output: ν′ (new valuation for P ), l′ (next position in P )
begin

if (P [l] ∈ V and P [l] 6∈ bound(ν)) then

// P [l] is a variable not yet bound
ν′ := ν ∪ {P [l]/s}
l′ := l + 1

else if (P [l] = s or ({P [l]/tl} ∈ ν and tl = s) then

// P [l] is equal to (or already bound to) s
ν′ := ν
l′ := l + 1

else // Mismatch between P [l] and s: use edges
if (l = 0) then

return (∅, 0) // No applicable edge: shift the whole pattern
else

(ν′, l′) := EdgeShift (ν, l)
return Match (s, l′, ν′)

end

endif

// if the last symbol of P was successfully matched,
// the sequence id is added to the resultset
if (l′ = m + 1) then

addSequenceToResultSet()
// shift the pattern to detect a possible occurrence later
(ν′, l′) := EdgeShift (ν′, l′)

endif

return (ν′, l′)
end

If l′ is the size of P , then the pattern has been fully rec-
ognized and the sequence is added to the query result. Oth-
erwise, Match returns a new position l′ < m in P . Upon
reception of a new symbol from T , a matching attempt will
resume between the suffix of pattern P starting at position
l′ and sequence T .

Match calls the procedure EdgeShift which takes the
longest edge e such that the νmin valuation is a subset of ν.
Once e has been found, the shift is performed as follows:

• P is shifted of l − length− 1 symbols to the right and
the current position in P becomes e.length + 1;

• the new runtime valuation ν ′ is ν ◦ σshift.

EdgeShift takes as inputs, the runtime valuation and the
current position in pattern P and returns the new runtime
valuation and a new position in P .

EdgeShift (ν, l)
begin

// Take the edges associated with the current position
// in P , stored in decreasing length order
ν′ = ∅
for each e in edges[l] do

if (e.νmin ⊆ ν) then

// Edge found, possibly the default edge whose length is 0
// Right shift of the pattern
l′ := e.length
// Set the new current substitution
for each {xj/t} in σshift do

if (t ∈ Σ) then ν′ := ν′ ∪ {xj/t}
else ν′ := ν′ ∪ {xj/ν(t)}

endfor

return (ν′, l′)
endif

endfor

end

Consider for instance the pattern P = a.@x.b.a.@x.@y.c.d.
Whenever a failure occurs at position l = 6, we need to con-
sider the following edges for the sub-pattern P [0]. · · · .P [5] =
a.@x.b.a.@x.@y:

• (0, ∅, ∅) the default edge that corresponds to a shift of
the whole pattern;

• (1, {@y/a}, ∅), because if ν is compatible with {@y/a}
(i.e., the latter is a subset of the former), then the
sequence suffix is of the form a.@x.b.a.@x.a, and a
shift of one symbol is possible;

• (2, {@x/a}, {@x/@y}), because if ν is compatible with
{@x/a}, the sequence suffix is of the form a.a.b.a.a.ν(@y).
We can replace a.@y by a.@x, the new binding of @x

being the old binding of @y.

• (3, {@y/b}, {@x/@x}) is an edge, for similar reasons.

We cannot find any edge whose length is either 4 or 5.

Now consider a matching attempt and a failure occurring
at position 5, with ν = {@x/a, @y/c}. The valuation ν is
not compatible with νmin of the edge (3, {@y/b}, {@x/@x}).
However it is compatible with that of the edge (2, {@x/a}, {@x/@y}).
Consequently, using this edge, one shifts two symbols to the
right and initializes a matching attempt at the third position
of the pattern with the new runtime valuation.

5. EXPERIMENTS
We have implemented and compared two algorithms in

Java on a Pentium PIV processor (3GHz) with 1GB of mem-
ory. The first algorithm, Näıve, is the naive one described
in Section 4.1, and the other one is the extended KMP algo-
rithm which uses the table of edges. A simulator generates
synthetic trajectories and parameterized patterns, and the
evaluation of queries is performed and analyzed over this
synthetic dataset.



5.1 Data generation
The chosen territory for vehicle trajectories is a map of

France. We consider several subdivisions of France whose
finest is a partition into 21 administrative regions. Trajec-
tories of a given vehicle are simulated as follows. The depar-
ture region of a vehicle is chosen at random. To simulate the
receipt of GPS positions, time is modeled as a sequence of
time instants. At each time instant, with probability pi, each
vehicle enters region i or stays (with probability 1 −

P

pi)
in its current region. If it leaves a region for a contiguous
region i, then the label corresponding to region i is added
to its trajectory, and this event triggers a next step in the
matching algorithms. The probability of entering (leaving) a
region depends on the region importance (e.g. big cities are
regions with high traffic). The set of the whole trajectories
(i.e., sequences of crossed zones) is stored in the database.

Mobility patterns (queries) are generated as follows. Se-
quences of regions with fixed size are drawn at random. The
regions are chosen contiguous on the map. With a given
probability pv a region symbol in the pattern is replaced by
a variable v drawn with repetitions from a fixed set of vari-
ables. For example if pv = 0.25, one symbol out of 4 in the
pattern on the average is replaced by a variable.
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Näıve
Match

comparisons (×106)

3

2.4

1.8

1.2

0.6

Figure 9: Evolution of the number of comparisons

for different pattern lengths and ratios of variables

5.2 Experiment
The evaluation of the two algorithms is based on the total

number of comparisons between a symbol of the pattern and
a symbol of the trajectory. In the following, the number of
vehicles is 100,000, and the average performance was taken

over a set of 500 queries. We observe the cost and resource
consumption of both algorithms, assuming that the vehicles
moved during 20 time units, and evaluate their performance
with respect to the length of the patterns and the average
ratio of variables in each pattern.

Figure 9 illustrates the impact of the ratio of variables
on the total number of comparisons, when the number of
administrative regions (the size of the labels vocabulary) is
equal to 21. Shorter (resp. longer) patterns capture too
many (resp. too few) vehicles and are therefore not mean-
ingful. The two graphs in Figure 9 display respectively the
results for pattern lengths 4 and 6.

As expected, our extended KPM algorithm always out-
performs the nave one. An interesting feature is that the
ratio of variables has an opposite influence on the perfor-
mance of the algorithms. Whereas the number of compar-
isons decreases in Match when the ratio of variables grows,
it increases for Näıve. Moreover, the larger the ratio of
variables and the smaller the pattern length, the higher the
saving with Match. For instance, with 25% of variables and
a 4-symbols pattern, the saving is 13%. When the pattern
is only composed of variables (ratio = 1) the saving reaches
85%.

The Näıve algorithm blindly shifts the pattern one posi-
tion ahead when a failure occurs, without trying to deter-
mine whether the shift can possibly be successful or not.
When the pattern is highly selective (i.e., has low chances
to match with a trajectory), a failure is likely to occur on
the first or second symbol, and the behavior of Näıve re-
mains close to that of Match because in that case the edges
information does not bring much added value.

The difference evolves with the number of variables be-
cause variables make the pattern more generic, and therefore
more compliant to match, at least partially, with trajecto-
ries. This is where the support of the table of edges brings
much, and where the behaviors of the two algorithms di-
verge. In the case of Näıve, the number of comparisons
is proportional to the size of the partial matching. Indeed,
when a failure occurs at position l, all the possible shifts be-
tween 0 and l must be successively investigated by Näıve,
and each shift repeatedly compares the same trajectory sym-
bols with different parts of the pattern.

On the other hand, Match takes advantage of the table
of edges to limit the number of comparisons. When a failure
occurs at position l, the density of variables in the pattern
favors the existence of one or several edges, and thus makes
it possible to perform the appropriate shift without any ad-
ditional comparison.

Finally, Figure 10 shows that, as expected, the number of
comparisons grows linearly wrt the duration of the obser-
vations (thus, the length of the sequences of moves). The
number of regions is set to 21 and the ratios of variables
are 25%. At each time instant, the system receives on the
average the same number of events for the vehicles, with the
same probability to encounter a failure during the matching
attempt. This justifies the limitation of the duration to 20
time units for our experiment.

6. CONCLUSION
This paper proposes an extension of the standard pattern

matching KMP algorithm [12] to parameterized patterns.
This extended algorithm is suited to query answering in set-
tings where the datasets of sequences is large. As shown
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by our evaluation, our technique provides a significant im-
provement over the näıve approach which merely shifts one
position at-a-time. Indeed, the extended KMP algorithm
avoids the burden of repeated comparisons of the same part
of a sequence.

Potential for other optimizations remains to be explored.
In particular, we aim at taking into account richer relation-
ships among the different symbols of the alphabet to improve
the selectivity of the query evaluation. By considering the
adjacency of regions in the tracking application for instance,
we can detect unsatisfiable patterns, eliminate some incon-
sistent edges, or remove from consideration objects that do
move in a region “covered” by a given pattern.
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