Bicolored matchings in some classes of graphs

M.-C. Costa ${ }^{\mathrm{a}, 1}$, D. de Werra ${ }^{\mathrm{b}, 2}$, C. Picouleau ${ }^{\mathrm{a}, 1}$ and B. Ries ${ }^{\mathrm{b}, 2}$

${ }^{\text {a }}$ CEDRIC CNAM, 292 rue Saint Martin, 75003 Paris, France
${ }^{\mathrm{b}}$ Ecole Polytechnique Fédérale de Lausanne

1 Introduction

Given a graph $G=(V, E)$ and a set $\mathcal{P}=\left\{p_{o}, p_{1}, \ldots, p_{s}\right\}$ of integers $0 \leq p_{o}<$ $p_{1}<\ldots<p_{s} \leq\lfloor|V| / 2\rfloor$, we want to color a subset $R \subseteq E$ of edges of G, say in red, in such a way that for any $i(0 \leq i \leq s) G$ contains a maximum matching M_{i} with exactly p_{i} red edges, i.e., $\left|M_{i} \cap R\right|=p_{i}$. We shall in particular be interested in finding a smallest subset R for which the required maximum matchings do exist.

A subset R will be $\mathcal{P}-$ feasible for G if for every p_{i} in \mathcal{P} there is a maximum matching M_{i} in G with $\left|M_{i} \cap R\right|=p_{i}$. Notice that for some \mathcal{P} there may be no \mathcal{P}-feasible set R (take $P=\{0,1,2\}$ in $G=K_{2,2}$).

2 Regular bipartite graphs

We will state some basic results concerning \mathcal{P}-feasible sets in regular bipartite graphs.

Proposition 2.1 In a \triangle-regular bipartite graph G for any \mathcal{P} with $|\mathcal{P}| \leq \triangle$ there exists a \mathcal{P}-feasible set R.

[^0]This follows from the fact that the edge set of G can be partitioned into \triangle perfect (and hence maximum) matchings (König theorem).

Let us now briefly consider a special case for a \triangle-regular bipartite graph.
Theorem 2.2 Let $G=(X, Y, E)$ with $|X|=|Y|=n$ be a \triangle-regular bipartite graph and let $\mathcal{P}=\{p, q\}$ with $1 \leq p<q \leq n$. The minimum cardinality of a \mathcal{P}-feasible set R is given by $|R|=q+\max \{0, p-n+|\mathcal{C}| / 2\}$ where \mathcal{C} is a collection of node disjoint cycles which are alternating with respect to a perfect matching and which have a minimum total length $|\mathcal{C}|$ satisfying $|\mathcal{C}| / 2 \geq q-p$.

Notice that if $p \geq q-2$, we can use a single alternating cycle C instead of the family \mathcal{C} since in any alternating cycle C we have $|C| / 2 \geq 2 \geq q-p$.

Corollary 2.3 Let $G=(X, Y, E)$ with $|X|=|Y|=n$ be a \triangle-regular bipartite graph and let $\mathcal{P}=\{q-a, q\}$ with $1 \leq q \leq n$ and $1 \leq a \leq 2$. The minimum cardinality of a \mathcal{P}-feasible set R is given by

$$
\min |R|=q+\max \{0, q-n+|C| / 2-a\}
$$

where C is a shortest cycle which is alternating with respect to some maximum matching in G.

Surprisingly the complexity of finding in a graph G a shortest possible alternating cycle with respect to some maximum matching (not given) is unknown even if G is a 3 -regular bipartite graph. For reference purposes, this problem will be called the SAC problem (Shortest Alternating Cycle); it is formally defined as follows :

INSTANCE : a graph $G=(V, E)$ and a positive integer $L \leq|V|$
QUESTION : is there a maximum matching M and a cycle C with $|C| \leq L$ and $|C \cap M|=\frac{1}{2}|C|$?

Notice that the problem is easy if either a cycle C or a perfect matching M is given.

We give a sufficient condition for a regular graph $G=(X, Y, E)$ with $|X|=$ $|Y|=n$ to have a \mathcal{P}-feasible set R with $|R|=n+1$ for $\mathcal{P}=\{0,1, \ldots, n\}$.

Theorem 2.4 Let $G=(X, Y, E)$ be a \triangle-regular simple bipartite graph with $|X|=|Y|=n \geq 4$ and $\triangle \geq \frac{1}{2}\left(n+2\left\lceil\frac{n}{4}\right\rceil+1\right)$. Let $\mathcal{P}=\{0,1, \ldots, n\}$; then there exists a \mathcal{P}-feasible set R with $|R|=n+1$.

A tedious but not difficult enumeration of cases shows the following:
Theorem 2.5 For a 3-regular bipartite graph $G=(X, Y, E)$ with $|X|=|Y|=$ $n \leq 7$, there exists a set $R \subseteq E$ with $|R| \leq n+2$ which is \mathcal{P}-feasible for
$\mathcal{P}=\{0,1, \ldots, n\}$.
This result is best possible in the sense that there exists a bipartite 3 regular graph on $2 n=14$ nodes for which the minimum value of $|R|$ is $n+2=9$; this is the so-called Heawood graph (or (3,6)-cage).

In 3-regular bipartite graphs $G=(X, Y, E)$ with $|X|=|Y|=n \geq 8$ the minimum cardinality of a \mathcal{P}-feasible set R for $\mathcal{P}=\{0,1, \ldots, n\}$ is not known.

Finally if we restrict \mathcal{P} to $\{0,1, \ldots, p\}$ with $p \leq 4$, we can state the following:

Theorem 2.6 For $p \leq 4$ and for a 3-regular bipartite graph $G=(X, Y, E)$, with $|X|=|Y|=n \geq 2(p-1)$ there exists a set $R \subseteq E$ with $|R|=p$ which is \mathcal{P}-feasible for $\mathcal{P}=\{0,1, \ldots, p\}$.

3 The interval property (IP)

We consider the case where \mathcal{P} is a set of consecutive integers and we will characterize graphs which have a property related to such a \mathcal{P}. We will denote by $\nu(G)$ the cardinality of a maximum matching in G.

A cactus is a graph where any two (elementary) cycles have at most one common node. A cactus is odd if all its (elementary) cycles are odd. Notice that a tree is a special (odd) cactus.

We shall say that G has property IP (interval property) if whenever there are maximum matchings M_{k}, M_{ν} in G with $\left|M_{k} \cap M_{\nu}\right|=k<\nu=\nu(G)$, there are also maximum matchings M_{i} with $\left|M_{i} \cap M_{\nu}\right|=i$ for $i=k, k+1, \ldots, \nu$. In other words, when G has property IP and there is some k and two maximum matchings M_{k}, M_{ν} with $\left|M_{k} \cap M_{\nu}\right|=k \leq \nu(G)$, then $R=M_{\nu}$ is \mathcal{P}-feasible for $\mathcal{P}=\{k, k+1, \ldots, \nu=\nu(G)\}$ and clearly R has minimum cardinality. We define a $I P$-perfect graph G as a graph in which every partial subgraph has property IP.

Theorem 3.1 G is an odd cactus $\Leftrightarrow G$ is IP-perfect
It follows that if we want to find the largest sequence of consecutive integers $\mathcal{P}=\left\{p_{o}, p_{1}, \ldots, p_{s}\right\}$ such that a set $R=M_{\nu}$ is \mathcal{P}-feasible for an odd cactus G, we have to find in G two maximum matchings M_{k}, M_{ν} such that $\left|M_{k} \cap M_{\nu}\right|$ is minimum. Let us examine first the case of bipartite graphs (that include trees but not odd cacti).

Theorem 3.2 If $G=(X, Y, E)$ is a bipartite graph, there exists a polynomial time algorithm to construct two maximum matchings M, M^{\prime} with a minimum value of $\left|M \cap M^{\prime}\right|$.

Notice that in the case of trees we can design a more efficient algorithm (linear time). From Theorems 3.1 and 3.2 we can deduce.

Theorem 3.3 If $G=(V, E)$ is a forest, we can determine in polynomial time a minimum k and a minimum set R of edges to be colored in red in such a way that for $i=k, k+1, \ldots, \nu(G) G$ has a maximum matching M_{i} with $\left|M_{i} \cap R\right|=i$.

Remark 3.4 In a graph G with the IP property, there exists a set R with $|R|=\nu(G)$ such that for $i=0,1, \ldots, \nu(G) G$ has a maximum matching M_{i} with $\left|M_{i} \cap R\right|=i$ if and only if G has two disjoint maximum matchings.

It should be noticed that finding in a graph two maximum matchings that are as disjoint as possible is NP-complete. This is an immediate consequence of the NP-completeness of deciding whether a 3 -regular graph has an edge 3 -coloring.
D. Hartvigsen has developed an algorithm for constructing in a graph a partial graph H with $d_{H}(v) \leq 2$ for each node v, which contains no triangle and which has a maximum number of edges. Such an algorithm can be used in graphs where the only odd cycles are triangles, so called line-perfect graphs. We obtain the following:

Theorem 3.5 If G is a line-perfect graph, one can determine in polynomial time whether G contains two disjoint maximum matchings.

From Theorems 3.1 and 3.5 we obtain:
Corollary 3.6 If G is a cactus where all cycles are triangles, one can determine in polynomial time whether there exists a minimum set R of edges that is \mathcal{P}-feasible for $\mathcal{P}=\{0,1, \ldots, \nu(G)\}$.

4 Conclusion

We have examined the problem of finding a minimum subset R of edges for which there exist maximum matchings M_{i} with $\left|M_{i} \cap R\right|=p_{i}$ for some given values of p_{i}. Partial results have been obtained for some classes of graphs (regular bipartite graphs, trees, odd cacti with triangles only,...). Our problem requires the determination of a shortest alternating cycle (SAC problem)
whose complexity status is open. Further research is needed to extend our results to other classes.

References

[1] Asratian, A.S., T.M.J. Denley, and R. Häggkvist, "Bipartite graphs and their applications," Cambridge University Press, Cambridge (UK), 1998.
[2] Berge, C. , "Graphes", Gauthier-Villars, Paris, 1983.
[3] de Werra, D., On line-perfect graphs, Mathematical programming 15 (1978), 236-238.
[4] Hartvigsen, D., "Extensions of matching theory," Ph.D. thesis, Carnegie-Mellon University, 1984.
[5] Holyer, I., The NP-completeness of edge-coloring, SIAM Journal on Computing 10 (1981), 718-720.
[6] Lovasz, L., and M. D. Plummer, Matching Theory, Annals of Discrete Mathematics 29, 1986.
[7] Trotter, L.E. , Line-perfect graphs, Mathematical Programming 12 (1977), 255259.
[8] Yi, T. , K. G. Murty, and C. Spera, Matchings in colored bipartite networks, Discrete Applied Math. 121 (2002), 261-277.

[^0]: $\overline{1}$ Email: $\{$ costalchp\}@cnam.fr
 ${ }^{2}$ Email: \{dewerra.ima|bernard.ries\}@epfl.ch

