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1 Introduction

Given a graph G = (V, E) and a set P = {po, p1, . . . , ps} of integers 0 ≤ po <
p1 < . . . < ps ≤ b|V |/2c, we want to color a subset R ⊆ E of edges of G, say in
red, in such a way that for any i (0 ≤ i ≤ s) G contains a maximum matching
Mi with exactly pi red edges, i.e., |Mi ∩ R| = pi. We shall in particular be
interested in finding a smallest subset R for which the required maximum
matchings do exist.

A subset R will be P − feasible for G if for every pi in P there is a
maximum matching Mi in G with |Mi∩R| = pi. Notice that for some P there
may be no P-feasible set R (take P = {0, 1, 2} in G = K2,2).

2 Regular bipartite graphs

We will state some basic results concerning P-feasible sets in regular bipartite
graphs.

Proposition 2.1 In a 4-regular bipartite graph G for any P with |P| ≤ 4
there exists a P-feasible set R.
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This follows from the fact that the edge set of G can be partitioned into
4 perfect (and hence maximum) matchings (König theorem).

Let us now briefly consider a special case for a 4-regular bipartite graph.

Theorem 2.2 Let G = (X, Y, E) with |X| = |Y | = n be a 4-regular bipar-
tite graph and let P = {p, q} with 1 ≤ p < q ≤ n. The minimum cardinality
of a P-feasible set R is given by |R| = q + max{0, p− n + |C|/2} where C is a
collection of node disjoint cycles which are alternating with respect to a perfect
matching and which have a minimum total length |C| satisfying |C|/2 ≥ q− p.

Notice that if p ≥ q− 2, we can use a single alternating cycle C instead of
the family C since in any alternating cycle C we have |C|/2 ≥ 2 ≥ q − p.

Corollary 2.3 Let G = (X, Y, E) with |X| = |Y | = n be a 4-regular bipartite
graph and let P = {q − a, q} with 1 ≤ q ≤ n and 1 ≤ a ≤ 2. The minimum
cardinality of a P-feasible set R is given by

min |R| = q + max{0, q − n + |C|/2− a}

where C is a shortest cycle which is alternating with respect to some maximum
matching in G.

Surprisingly the complexity of finding in a graph G a shortest possible
alternating cycle with respect to some maximum matching (not given) is un-
known even if G is a 3-regular bipartite graph. For reference purposes, this
problem will be called the SAC problem (Shortest Alternating Cycle); it is
formally defined as follows :

INSTANCE : a graph G = (V, E) and a positive integer L ≤ |V |
QUESTION : is there a maximum matching M and a cycle C with |C| ≤ L

and |C ∩M | = 1
2
|C| ?

Notice that the problem is easy if either a cycle C or a perfect matching
M is given.

We give a sufficient condition for a regular graph G = (X, Y, E) with |X| =
|Y | = n to have a P-feasible set R with |R| = n + 1 for P = {0, 1, . . . , n}.

Theorem 2.4 Let G = (X,Y, E) be a 4-regular simple bipartite graph with
|X| = |Y | = n ≥ 4 and 4 ≥ 1

2
(n + 2dn

4
e + 1). Let P = {0, 1, . . . , n}; then

there exists a P-feasible set R with |R| = n + 1.

A tedious but not difficult enumeration of cases shows the following:

Theorem 2.5 For a 3-regular bipartite graph G = (X, Y, E) with |X| = |Y | =
n ≤ 7, there exists a set R ⊆ E with |R| ≤ n + 2 which is P-feasible for



P = {0, 1, . . . , n}.

This result is best possible in the sense that there exists a bipartite 3-
regular graph on 2n = 14 nodes for which the minimum value of |R| is
n + 2 = 9; this is the so-called Heawood graph (or (3, 6)-cage).

In 3-regular bipartite graphs G = (X, Y, E) with |X| = |Y | = n ≥ 8 the
minimum cardinality of a P-feasible set R for P = {0, 1, . . . , n} is not known.

Finally if we restrict P to {0, 1, . . . , p} with p ≤ 4, we can state the fol-
lowing:

Theorem 2.6 For p ≤ 4 and for a 3-regular bipartite graph G = (X, Y, E),
with |X| = |Y | = n ≥ 2(p− 1) there exists a set R ⊆ E with |R| = p which is
P-feasible for P = {0, 1, . . . , p}.

3 The interval property (IP)

We consider the case where P is a set of consecutive integers and we will
characterize graphs which have a property related to such a P . We will denote
by ν(G) the cardinality of a maximum matching in G.

A cactus is a graph where any two (elementary) cycles have at most one
common node. A cactus is odd if all its (elementary) cycles are odd. Notice
that a tree is a special (odd) cactus.

We shall say that G has property IP (interval property) if whenever there
are maximum matchings Mk, Mν in G with |Mk ∩Mν | = k < ν = ν(G), there
are also maximum matchings Mi with |Mi∩Mν | = i for i = k, k +1, . . . , ν. In
other words, when G has property IP and there is some k and two maximum
matchings Mk, Mν with |Mk ∩ Mν | = k ≤ ν(G), then R = Mν is P-feasible
for P = {k, k + 1, . . . , ν = ν(G)} and clearly R has minimum cardinality. We
define a IP-perfect graph G as a graph in which every partial subgraph has
property IP.

Theorem 3.1 G is an odd cactus ⇔ G is IP-perfect

It follows that if we want to find the largest sequence of consecutive integers
P = {po, p1, . . . , ps} such that a set R = Mν is P-feasible for an odd cactus G,
we have to find in G two maximum matchings Mk, Mν such that |Mk ∩ Mν |
is minimum. Let us examine first the case of bipartite graphs (that include
trees but not odd cacti).



Theorem 3.2 If G = (X, Y, E) is a bipartite graph, there exists a polynomial
time algorithm to construct two maximum matchings M, M

′
with a minimum

value of |M ∩M
′|.

Notice that in the case of trees we can design a more efficient algorithm
(linear time). From Theorems 3.1 and 3.2 we can deduce.

Theorem 3.3 If G = (V, E) is a forest, we can determine in polynomial
time a minimum k and a minimum set R of edges to be colored in red in such
a way that for i = k, k + 1, . . . , ν(G) G has a maximum matching Mi with
|Mi ∩R| = i.

Remark 3.4 In a graph G with the IP property, there exists a set R with
|R| = ν(G) such that for i = 0, 1, . . . , ν(G) G has a maximum matching Mi

with |Mi ∩R| = i if and only if G has two disjoint maximum matchings.

It should be noticed that finding in a graph two maximum matchings that
are as disjoint as possible is NP-complete. This is an immediate consequence
of the NP-completeness of deciding whether a 3-regular graph has an edge
3-coloring.

D. Hartvigsen has developed an algorithm for constructing in a graph a
partial graph H with dH(v) ≤ 2 for each node v, which contains no triangle
and which has a maximum number of edges. Such an algorithm can be used
in graphs where the only odd cycles are triangles, so called line-perfect graphs.
We obtain the following:

Theorem 3.5 If G is a line-perfect graph, one can determine in polynomial
time whether G contains two disjoint maximum matchings.

From Theorems 3.1 and 3.5 we obtain:

Corollary 3.6 If G is a cactus where all cycles are triangles, one can deter-
mine in polynomial time whether there exists a minimum set R of edges that
is P-feasible for P = {0, 1, . . . , ν(G)}.

4 Conclusion

We have examined the problem of finding a minimum subset R of edges for
which there exist maximum matchings Mi with |Mi ∩ R| = pi for some given
values of pi. Partial results have been obtained for some classes of graphs
(regular bipartite graphs, trees, odd cacti with triangles only,...). Our prob-
lem requires the determination of a shortest alternating cycle (SAC problem)



whose complexity status is open. Further research is needed to extend our
results to other classes.
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