
Extending Quasar with dynamic tasks

computation

C. Pajault

Technical Report CEDRIC No695

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

pajault c@auditeur.cnam.fr

Abstract. The inclusion of dynamic tasks modelisation in Quasar, a
tool for automatic analysis of concurrent programs, extends its applica-
tive usefulness. However this extension leads to large size models whose
processing has to face combinatory explosion of modeling states. This
article is an extension of the paper ”Dynamic tasks verification with
QUASAR” accepted for publication in the 10th International Confer-
ence on Reliable Software Technologies Ada-Europe 2005. It gives some
insight into the impact of the way used to name dynamic task in term
of state space size by comparing different solutions on several examples.

1 Introduction

As a program structuring entity as well as a distribution support, multi-threading
is becoming significantly important in application programs design. Its use is thus
being developed in applications which need a high level of integrity and which
have to be verified and validated. Nevertheless, interleaving and indeterminism
induced by multi-threading introduce a high degree of combinatory that human
brain cannot always master. Moreover, concurrent programs are more sensitive
to this phenomenon when objects are dynamically created at run time. Using
automatic analysis and validation tools is becoming mandatory to obtain reliable
concurrent software.

Two years ago, we proposed a tool named Quasar [EKPPR03] meant to
analyze concurrent Ada programs automatically. This first version of Quasar

is relevant to validate critical applications which take care of safety by using a
fixed number of tasks and banishing dynamic allocation. This cautious design
strategy avoids the explosion of state number and eases certification as well as
validation. For this use, Quasar provides a lot of language constructions related
to concurrency such as static tasks declaration, interaction between tasks by
means of rendez-vous, protected objects or shared variables.

As an increasing number of concurrent applications programs use dynamic
task allocation and object-oriented-programming (which relies on object dy-
namic allocation), we decided to augment Quasar usability by allowing it mod-
eling dynamic task allocation, even if this extension may involve the risk to

generate a large number of application states and to have to face combinatory
explosion. However we were confident in the Quasar approach in so far as it
reduces the application state numbers as soon as possible in the verification
process.

Compared to other works in the domain [MSS89], [SMBT90], [NM94], [BW99],
[BWB+00], [BBS00], our approach is fully automatic. The analysis of concurrent
programs is performed in four steps.

First, the original source code of the program is automatically sliced in or-
der to extract the part of the program that is relevant to the property the user
wants to check. Safety properties of concurrent programs concern the absence of
deadlock or of livelock, the coherence of shared variable, the respect of mutual
exclusion when using some shared resource. Liveness properties concern the ab-
sence of starvation, the guarantee that some service will eventually be done for
a given client.

Second, the sliced program is translated into a colored Petri net using a
library of patterns. A pattern is a meta-net corresponding to a declaration,
a statement or an expression. Each pattern definition is recursive in the way
that its definition may contain one or several others patterns. For example, the
loop pattern contains a meta-net corresponding to the pattern of sequence of
statements. The target model mapping the whole sliced program is obtained by
replacing each meta-net by its corresponding concrete sub-nets and by merging
all sub-nets.

In the third step Quasar checks the required property on the Petri net,
using successively graph reduction and structural techniques or state based enu-
meration techniques (model-checking).

At last, if the required property is not verified, the user is provided with a
report demonstrating a sequence invalidating the property.

A detailed description of this process can be found in [EKPPR03], [EKPPR04]
or at the url quasar.cnam.fr.

This paper describes the new feature that makes Quasar suitable for auto-
matic analysis of dynamic concurrent programs and is organized as follows.

Section 2 presents briefly Ada dynamic tasks semantic and their synchro-
nization constraints at elaboration and completion stages.

Section 3 presents the choices that we made to model the dynamic tasks
together with the static tasks in Quasar and describes the Petri nets library
patterns corresponding to dynamic allocation and to operations on pointers. We
justify our choices regarding the solution by evaluating the consequences on the
analysis step.

At last, Section 4 highlights this new feature by analyzing two significant
Ada programs that use dynamic tasks, and by displaying the state number of
each model. This shows that the state explosion has been limited by our design
choices and that automatically validating significant concurrent programs using
dynamic allocation is a feasible enterprise.

2

2 Ada Tasks

In Ada the unit of parallelism, the sequential process, is named a task. Concur-
rency between tasks may be achieved via task rendez-vous, via protected objects
or via global variables (possibly further qualified with volatile and atomic prag-
mas). As these features belong to the language, and have a precise semantic
definition, the tasks behavior control is not dependent on compiler or operating
system choices as it is the case with application programmer’s interfaces (even
if standardized as POSIX API).

In order to analyze concurrent programs, QUASAR models the tasks behav-
ior and their interactions. As we assume that the concurrent programs have been
designed following the Ada 95 Reference Manual [Int95] and are free of compiling
errors, QUASAR can focus on the regular states reached by Ada tasks during
their lifetime.

In this section, we will briefly describe task declaration and task lifetime. A
more detailed description can be found in [BW95], [Dil93], [Dil97], and naturally
in the Ada Reference Manual [Int95].

2.1 Task Declaration

A task declaration has two parts : the interface (or specification part) and the
body.

The body corresponds to the code executed by the task at run-time. The
interface is the visible part of a task and is used to specify the entries of the
task.

A task entry can be remotely called by other tasks to synchronize, to send
informations, or to communicate with the task owning the called entry. The
calling task and the called task cooperate by rendez-vous.

2.2 Task creation

Tasks can be created in two ways. The first way is static creation : one can
declare a task type describing the task and then declare a variable of this type.
The other way is dynamic creation : it uses access types (pointers).

The program Figure 1 illustrates the two ways of creating tasks :

– line 2 shows a task type declaration ;
– line 20 shows a static instance declaration; such a task is called a static or

an elaborated task ;
– line 10 shows a dynamic instance creation of a given type ; the access type is

declared at line 3 and the pointer is declared at line 7 ; such a task is called
a dynamic or an allocated task ; the new clause refers to a generic storage
allocator used for the creation of the task.

This paper discusses how Quasar copes with dynamic task instantiation.

3

1 procedure ALLOC i s

2 task type TT;
3 type OUTT i s access TT;
4
5 procedure P i s

6 type INTT i s access TT;
7 O : OUTT;
8 I : INTT;
9 begin −− bo d y o f P

10 O := new TT; −− a l l o c a t e d / dy namic t a s k
11 I := new TT; −− a l l o c a t e d / dy namic t a s k
12 . . .
13 −− p r o c e d u r e P c o m p l e t i o n
14 end P;
15
16 task body TT i s

17 . . .
18 end TT;
19
20 T : TT; −− e l a b o r a t e / s t a t i c t a s k
21
22 begin −− b od y o f ALLOC
23 P ; −− c a l l P
24 . . .
25 −− ALLOC c o m p l e t i o n
26 end ALLOC;

Fig. 1. Ada program with task declarations and creations

2.3 Task hierarchy

Ada is a block structured language in which blocks may be nested within blocks.
Ada distinguishes between declarations and statements. At compile time, the
declaration of an entity declares the entity. At run time, the declarations are
elaborated and this elaboration creates the declared entities.

A task can be declared in any block and this creates a task hierarchy. A task
which is directly responsible for creating another task is the parent of the task
and the created task is called the child.

The creation and termination of tasks within a hierarchy affect the behavior
of other tasks in the hierarchy.

The parent of a child task is responsible for the creation of that task. The
master of a dependant task must wait for that task to terminate before it can
itself terminate. The parent of a task is often the master of that task, however
with dynamic task creation the master is not the parent task but the task that
contains the declaration of the access type.

More precisely [Dil97], every task instance in program state, except the root
instance created for the main procedure, has exactly one direct master and pos-
sible indirect masters, as described by the three following rules:

[Master 1.] The parent of an elaborated task instance is also the direct master
of the elaborated task instance.

[Master 2.] The instance that declares the access type of an allocator expres-
sion is the direct master of all allocated tasks instances that are created by
evaluating the expression.

[Indirect Master.] An instance is an indirect master of a task instance if
either (1) it invokes (directly or indirectly) a master of the task instance, or
(2) it is a master of a master of the task instance.

4

To illustrate this notion, let’s consider Figure 1. The first rule implies that
the parent of task T elaborated at line 20 is also its master. As the parent of this
task is the procedure ALLOC, it is also its master. The second rule implies that,
even if the pointer O is allocated by the procedure P at line 10, since the access
type OUTT is declared by the procedure ALLOC, this procedure is the master of
the task created line 10. The third rule implies that ALLOC is an indirect master
of the task I, since it invokes P which is a direct master of I.

2.4 Task activation, execution, finalization and termination

Using these rules we can now present the synchronizations induced by these
dependences at each stage of a task lifetime.

– Activation. This state corresponds to the elaboration of the declarative part
of a task, the creation and initialization of the local variables of the task.
A task cannot achieve its activation phase as long as all tasks declared in
its declarative part have not finished their own activation phase. This is the
first synchronization point. A child activation starts at the end of its parent
task elaboration and proceeds concurrently with its parent task.
Note that in the case of a dynamic task, this task is activated as the last
step of its creation and the parent of an allocated instance is blocked during
the call of the task allocator until the instance finishes activating.
Note that a task entry can be called before the task has been activated.

– Execution. This state corresponds to the execution of the task body. No
synchronization is induced by task dependences.

– Completion. This state corresponds to the state of a task in which all the
statements of its body have been executed. A task cannot leave this state and
start its termination step if the tasks depending on it have not yet finished
their termination. This is the second and last synchronization point.
Note that during completion, entries of the task can be called.

– Termination. This state corresponds to the destruction process of the task.
No synchronization is induced by task dependences. According to the second
and last synchronization point defined above, a task instance enters this state
when it is completed and all of its dependent tasks are terminated.

We have presented the definitions of Master and of different dependence rules
for tasks, but they apply also for procedures, functions and any kind of blocks.

3 Modeling tasks

We consider now how to map an Ada task into a colored Petri net. The generic
pattern modeling a component that includes both declarations and statements
(e.g. a sub-program, a task, or a block statements) is composed of four “meta-
transitions” (i.e. abstract transitions that will be replaced by more concrete
ones) and by five intermediate states (places C.Begin, C.Ready, . . ., C.End). It
is depicted Figure 2.

5

<id, ...>

<id, ...>

<id, ...>

<id, ...>

<id, ...>

<id, ...>

<id, ...>

<id, ...>

<id, ...>

C.End

C.Terminate

C.Complete

C.Ready

C.Begin

Elaboration of the declarations
of component C and synchronisation
before starting execution

Execution of the
statements of component C

Synchronisation
before termination

Termination of
component C

Fig. 2. Component model in Quasar

In order to analyze concurrent programs including dynamic tasks we have to
take into account the dependences existing between a “spawned” task and its
master. Several difficulties have to be solved : the dynamic naming of a task, the
dynamic referencing of the master, the dependence synchronizations modeling.

3.1 Dynamic id computation

In order to model tasks and specially their synchronization, a unique model
id must be assigned to each task of a program execution being analyzed by
Quasar .

When all tasks are elaborated in the program, the number of tasks is constant
and is known at compile time. Thus, an id can be assigned statically and it is
the same for all possible executions of the program.

When the number of tasks is variable and may vary from one execution to
another, task modeling must generate ids dynamically and this implies that
a task id may vary from an execution to another. Having to care of it adds
complexity to the model. The challenge is then to find a way of generating ids

which change as little as possible (and ideally that does not change) from one
execution to another.

Three solutions were considered. They are depicted in the next three parts.
To illustrate these solutions, we use a small example presented figure 17.

Global id server The first solution is to manage a “global id server” such that
each created task (elaborated or allocated) is given an id by the “id server”. The
main drawback of this solution is the combinatory implied by the global server.

6

Indeed, for different executions of a program, a task can get different ids. As
all the possible executions are considered at the verification step, this leads to
combinatory explosion.

To illustrate this, Figure 3 presents a colored Petri net representing a part of
the translation of the program of figure 17. This net is simplified as we only want
to focus on the dynamic identification. Tasks elaborated at line 25, 26 and 27 of
the program are represented by tokens in the places T1.BEGIN and T2.BEGIN.
The first value in the token is the id of the task, the second value represents the
values present in each task token. With this simple topography, we can assume
that the combinatory generated will be high.

<1,A>
<2,B> <3,C>

<Y> <Y>

<Y+1>

<X,Z>

<X,Z>

<X,Z>

<X,Z>

<X,Z>

<X,Z>

<X,Z>

<X,Z>

<X,Z>

T1.BEGIN

T1.END
T3.END

T3.BEGIN

T2.BEGIN

T2.END

<X,Z>

<Y+1>

<Y,Z> <Y,Z>

GLOBAL.SERVER

<4>

T1 T2

Fig. 3. Part of the net generated for the program of figure 17. We use the global id

server as identification mecanism.

When modeling the example program, this solution has to cope with six
different ids for each dynamic task. As recorded Table 1, the corresponding
model generates a large number of states in the accessibility graph.

Local id server A second possibility is to use “local id servers”. A local server
is associated with each statement in the program that may spawn tasks. As the
number of statements that spawn tasks in the program is known, we are able to
give each local server a unique and statically determined id. Each local server
thus has a statically determined unique id and assigns a new id to tasks spawned
by its corresponding statement in the program. Task identification is therefore
done with two values : the id of the local server and the value this server gives to
the task. This solution allows to consider the combinations at a local level and
highly reduces combinatory as compared to the global server. This is a solution
similar to the known ”divide and conquer” strategy for program complexity
reduction.

To illustrate this, let’s consider the program presented Figure 17. In this pro-
gram, five statements at lines 15, 22, 25, 26 and 27 are statements or declarations
that spawn tasks. So the generated net will contain five local servers. If we focus

7

on the tasks T1, T2 and T3, the generated net will look like the net presented
in Figure 4. The first local server is for the new statement of line 15, the second
one is for the new statement of line 22. The first value of the task token is the
id of the local server that gives the task its id, the second value is the id given
by this local server and the last value represent the different values of the task.

<1,1,A>
<1,2,B>

T1.BEGIN

T1.END
T3.END

T3.BEGIN

T2.BEGIN

T2.END

<X,Y,Z> <X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<V,W> <V,W>

<V,W,Z> <V,W,Z>
<V,W+1> <V,W+1>

<...>
<...>

<...>

<3,1> <4,1>

LOCAL.SERVER.1 LOCAL.SERVER.2

T1 T2

<2,1,C>

Fig. 4. Part of the net generated for the program of figure 17. We use the local id

server as identification mecanims.

When modeling the example program, this solution has to cope only with
two different ids for each dynamic task. As shown Table 1, combinatory is highly
reduced comparing to the global server solution.

One-to-one function A third choice is to use a one-to-one mapping. For each
task, we keep a value n that is modified at each task creation (using for instance
the number of created tasks, or the id of the last created task). The id of a
spawned task is then computed using a hashing function. For example, a unique
id is computed using the id of the father and the current father’s value of n. Each
assigned id in use is kept in a special place. In case of collision we choose the
first id greater than the one computed (thus we obtain a one-to-one mapping).
In the absence of collision, the id assigned to a task is not dependent of the
interleaving, and thus, no combinatory is induced by the dynamic task internal
naming.

We have chosen to implement this last solution since it is the one that mini-
mizes combinatory in practice as we can see in table 1.

To find a good hashing function, that is a function that avoids collisions, we
can distinguish different cases:

– if all tasks are spawned by a single block, a one-to-one function is defined
by:

f :
�

×
�

→
�

f(id,n) = id + n + 1

8

T1.BEGIN

T1.END
T3.END

T3.BEGIN

T2.BEGIN

T2.END

<X,Y,Z> <X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<X,Y,Z>

<...>
<...>

<...>

<X,Y,Z>

<f(X,Y),0,Z> <f(X,Y),0,Z>
<X,Y+1,Z> <X,Y+1,Z>

T1 T2

<1,0,A>

<2,0,B> <3,0,C>

Fig. 5. Part of the net generated for the program of figure 17. We use the one-to-one
function as identification mecanims.

id allocation mecanims Number of generated

states

Number of different

name sequences

Global id server 493 6

Local id server 205 2

One-to-one function 125 1

Table 1. Combinatory evaluation for the three different id allocation mecanims for
the nets presented on figures 3, 4 and 5.

where id is the id of the parent task and n is the number of tasks already
spawned by the parent task.

– if the number of tasks that the program may spawn can be raised, we are able
to find a unique identification function that avoids collisions. This function
is defined by:

f :
�

×
�

→
�

f(id,n) = id + n + max

where id is the id of the parent task (and id≥1), n is the id of the last task
created by the parent and max is the maximum number of tasks that may
be spawned by the program (max ∈

�
).

– if a program does not fit into one of these models, we have to write a specific
one-to-one function.

3.2 Referencing the master of a task

For the sake of simplicity we have decided to implement differently allocated
and elaborated tasks and to generate one net for the task type and one net for
each access type. For instance, the model corresponding to the program depicted
Figure 1 will contain three different nets issued from type TT : one for the type
itself, one for the type INTT and one for the type OUTT.

9

In order to retrieve the master of a task we have to store partially the task
hierarchy. This hierarchy is specific to every block that declares an access task
type. Two different ways of modeling this hierarchy may be used, either using
specific places or using a more complex token for the task.

Modeling a part of the task hierarchy with places First, we can store
the master of an allocated task in a specific place for each block declaring an
access task type. This place will contain tokens 〈 id, id master 〉 where id is the
identifier of an allocated or an elaborated task and id master is the identifier of
the master of the corresponding block. Then, each time an allocated task ends
it can use this place to retrieve its master id.

For the program Figure 1 we have to define two places : one for the block
Alloc (we denote it pA) and one for the procedure P (we denote it pP). When a
task id0 (may be the main task) calls procedure Alloc it puts a token 〈 id0, id0 〉
in pA. The declaration of T leads to put a token 〈 id T, id0 〉 in the place pA

(where id T is the id assigned to T); so T may allocate tasks of type OUTT and
give them the correct master. When id0 calls P , it puts a token 〈 id0, id0 〉 in pP .
The allocation of O puts the token 〈 id O, id0 〉 in both places pA and pP since
these two blocks declare access task type visible from O. The same operation
occurs when allocating I.

The advantage of this solution is to simplify the task token and this may
optimize the firing rule and the memory used to store the state space when the
model is analyzed. The drawback is that this solution may complicate synchro-
nization patterns and then may result in a less efficient reduction ratio in the
reduction step (occurring before the analysis).

Modeling a part of the task hierarchy in the task token The second
solution consists in adding an id table in task tokens and in giving a part of the
execution history to created tasks so that they can find their master. The table
size is fixed at compile time and is set to the number of blocks that declares
access types on task types in the whole program. For each one of these blocks
which is a possible master of some allocated tasks, a specific entry is added in
the table.

In the net, when a block declares an access type, it puts its id in the cor-
responding entry of the table. When a block spawns a new task or calls a new
block, it gives it its id table. The idea is to propagate the table so that when
an allocated task has to find its master, it just has to catch the id at the corre-
sponding entry of the table.

To illustrate this, let’s consider the example presented on Figure 1. Procedure
ALLOC declares the access type OUTT, so an entry is added to the table. Procedure
P declares the access type INTT, so a second entry is added. As there is no more
access type declaration in the program, table size is two: the first entry is for
procedure ALLOC id and the second one for procedure P id. In the generated net,
when procedure ALLOC calls procedure P at line 27, it gives it its table value
(that is, [alloc id,null]). Then, when P declares its access type at line 6, it adds

10

its id in the corresponding entry. When P spawns O and I, it gives them its table
([alloc id,p id]). As the master of O is procedure ALLOC, O has just to catch the
right id in the corresponding entry of the table (that is, the first entry) and as
the master of I is procedure P, I just has to catch the id in the corresponding
entry (that is, the second one).

The main drawback of this solution is that all tokens have to keep this table
even if they will not use it. Moreover, if many access types are declared in many
different blocks, the size of the table will be large and state representation will
need more memory. A good way to limit this increase is to group the access type
declarations in a single block as much as possible. By this way, the table size
will remain small, leading to a better efficiency of Quasar .

3.3 Tasks management patterns with hierarchy in places

An allocated task depends on its master which is not necessarily its father but is
always an ascendant. In order to manage this dependence we introduce a place in
the generic model of blocks containing an access task type declaration, the place
C.Id_Master. This place is meant to contain tokens that are pair of identifier
〈 id, id master 〉 where id master denotes the master of the task id. The second
place we introduce is the place Task_Type_Name.Dependences which notes the
number of allocated tasks that the master has to wait for when it’s ending.
There is one place for each access task type model. This place contains tokens
〈 id master, cpt 〉 where id master is the process identifier of the task that has
elaborated the block containing the declaration of the access type and cpt counts
the number of tasks of this type which is being active at a given stage.

When a task id (may be the principal one) elaborates a component C con-
taining the definition of a task access type (see Figure 12, transition t1) a
token 〈 id, 0 〉 is produced in the place Task_Type_Name.Dependences where
Task_Type_Name is the name of the type. This transition initializes the counter
associated with this type by noting that, at this stage, C does not depend of
any task. This firing is also used to record that the task id is the master of this
type by putting a token 〈 id, id 〉 in the place C_Name.Id_Master. The task that
has elaborated the component C cannot reach the state C.Terminate until the
number of active task depending on it equals zero (transition t2).

When a task is created (with an allocation or a declaration) it has to be
aware of the master of each visible access task type (we know them at the
net generation). For doing that we use the following pattern that prepares the
allocation or the declaration (see Figure 7). Its role is twofold : first it computes
a new identifier for this child (id_child, transition t1). Second (transition t2), it
notes that this new task can allocate tasks of every visible access task type. So,
a token 〈 id, idi 〉 is put in each place Ci.Id_Master where Ci denotes a block
declaring access task type which is visible from the created task. The master of
this component is known by the token 〈 id, idi 〉 present initially in this place.

Conversely, at task end, all tokens put in places Ci.Id_Master during the
creation preparation have to be removed. It’s the role of the following pattern
(see Figure 8).

11

Synchronisation
before termination

Task.Dependence
t1

<id, ...>

<id, ...>

Task.End

Access Task type model

<id, ...>

C.Ready

<id, ...>

t2

C.Terminate

A termination part

<id, id>

<id, 0>

C.Id_Master

<id, 0.>

An elaboration part

the type declaration
Component C containing

of the Task and synchronisation
before starting execution

Task.Ready

Task.Begin

<id, ...>

<id, ...>

Elaboration of the declarations

Fig. 6. Elaboration of a component containing an access task type definition

<id, id_child, ...>

t1

t2

<id, id_child, ...>

<id, ...>

<id, id_child, ...>

<id_child, id_m2>
<id_child, id_m1>

<id_child, id_mn>

C1.Id_Master

C2.Id_Master
Cn.Id_Master

<id, id_m1>

<id, id_m2>
<id, id_mn>

Fig. 7. Preparation of a dynamic task creation

For the allocation of a new task (see Figure13) we first have to prepare
the creation (using the pattern described before in figure 7). Then (transition
t1), the number of tasks on which the block that elaborated the type of the
allocated task (by the execution of the task id master) depends is incremented
by modifying the token 〈 id master, cpt 〉 into the token 〈 id master, cpt + 1 〉.
Then (transition t2), the new task is started by putting a token 〈 id, id child 〉
in the place T.Begin. At last (transition t3) the creating task has to wait until
the allocated task has finished its elaboration.

The termination of an allocated task (see Figure10) consists in preparing this
termination (using a previously depicted pattern) and then in decrementing the
counter associated with the access task type.

The creation of a task by the evaluation of a declaration follows the pattern
depicted Figure 14. First, the creation is prepared as previously. Second, the cre-
ated task is activated and the creating task waits until the end of its elaboration.

12

C1.Id_Master

C2.Id_Master
Cn.Id_Master

t1 <id, id_m1> <id, id_m2> <id, id_mn>

<id, ...>

<id, idm...>

Fig. 8. Preparation of a task termination

<id, id_child, ...>

<id, id_child, ...>

<id, id_child, ...>

<id, id_child, ...>

<id_child>

<id_child, ...>

<id, id_child, ...>

<id, ...>

<id, id_child, ...>

Access task type modelAllocation model

<id_master, cpt> T.Dependence

T.Id_Master

T.Begin

T.Ready
<id_child>

Preparing creation

<id_master, cpt+1>

<id, id_master>

t4

t2

t3

T.End_Elaboration

Fig. 9. Evaluation of a task allocator

At the end of the created task, this one signals its end by putting a token in the
place T.End_Execution. This token allows the task that declared it to continue
(transition t2).

3.4 Tasks management patterns with hierarchy in task token

We now define the patterns that we use to generate colored nets for Ada programs
that contain dynamic tasks creation. The first pattern concerns the elaboration
of a block containing a definition of an access task type and is depicted Figure 12.
It acts as follows : when a task id (may be the main one) elaborates a component
containing the definition of an access task type, a token 〈 id, 0 〉 is produced in the
place Task_Type_Name.Dependenceswhere Task_Type_Name is the name of the
type. This transition initializes the counter associated with this type by noting
that, at this state, C does not depend of any task. The task that has elaborated
the component C cannot reach the state C.Terminate until the number of active
task depending on it equals zero (transition t2).

13

<id_master, cpt>

<id_master, cpt−1>

Task.Dependence <id, id_master, ...>

t1
<id, ...>

Task.Complete

<id, ...>

Preparing the termination

Fig. 10. Termination of an allocated task

Component containing
the variable declaration

Task.End

Task type model

Task.Ready

Task.Begin

Preparing creation

<id, ...>

<id, id_child, ...>

<id, id_child, ...>

t2

<id, id_child><id, id_child><id, id_child, ...>

<id, id_child, ...>

<id, id_child, ...>

<id, id_child, ...>

Synchronisation before termination

Elaborations of the declarations

<id, id_child, ...>

<id, id_child, ...>

<id, id_child><id, ...> <id, id_child>

A termination part

T.End_Execution

An elaboration part

T.End_Elaboration

Fig. 11. Creation of a task by the evaluation of a declaration

For the allocation of a new task we use the pattern depicted Figure 13. First
we increment the number of tasks on which the block that elaborated the type
of the allocated task depends and therefore modify the token 〈 id master, cpt 〉
into the token 〈 id master, cpt + 1 〉 in the place Task.Dependence.

Then, with transition t2, we start the new task by putting a token 〈 id, id child 〉
in the place T.Begin (the identifier of this new task is computed as described in
a previous section). At last, at transition t3, the task waits until the allocated
task has finished its elaboration. The place V.V ar is used to store that task
id allocate task id child and to synchronize the termination of a task with its
father.

The creation of a task by the evaluation of a declaration is done according
to the pattern depicted Figure 14. The created task is activated and the father
waits until the end of its elaboration. At the end of the created task, this one
signals that it has finished by putting a token in the place T.End_Execution.
This token allows the task that declared it to continue (transition t2).

14

Synchronisation
before termination

Task.Dependence
t1

<id, ...>

<id, ...>

Task.End

Access Task type model

<id, ...>

C.Ready

<id, ...>

t2

C.Terminate

<id, 0>

<id, 0.>

Elaboration of the declarations
of the Task and synchronisation
before starting execution

Task.Ready

Task.Begin

<id, ...>

<id, ...>

A termination part

An elaboration part

the type declaration
Component C containing

Fig. 12. Elaboration of a component containing an access task type definition

<id, [id_master, ...], ...>

<id, [id_master, ...], ...>

<id, [id_master, ...], ...>

<id, [id_master, ...], ...>

<id, [id_master, ...], ...>

<id, [id_master, ...], ...>

<id, [id_master, ...], ...>

Access task type modelAllocation model

<id_master, cpt> T.Dependence

T.End_Elaboration

<id_child>

t3

t1

t2

<id, id_child, ...>

<id, id_child, ...>

<id_master, cpt+1>

<id_child, ...>

V.Var

T.Begin

T.Ready

<id_child>

Fig. 13. Evaluation of a task allocator

3.5 Evaluation

We evaluated the two different ways of modeling a part of the task hierarchy.
We checked the two ways using the sieve of Eratosthene (Figure 15). Results are
presented Table 2.

Results could be partially explained by the termination preparation of the
places version. Compared to the token solution, the place version adds another
transition in the model, and this generates additional combinatory.

15

Component containing
the variable declaration

Task.End

Task type model

Task.Ready

Task.Begin
<id_child, ...>

T.End_Ellaboration

Synchronisation before termination

<id_child, ...>

<id_child, ...>

<id_child, ...>

<id_child, ...>

<id_child, ...>

<id_child, ...>

<id_child, ...>

<id, [id_master, ...], ...>

<id, id_master> <id_child, ...>

T.End_Execution

t2

A termination part

<id, [id_master, ...], ...>

<id_child, ...>

<id, id_master>

V.Var

<id, id_master>

<id, id_master>

Elaboration of the declarations
An elaboration part

<id, [id_master, ...], ...>

<id, [id_master, ...], ...>

Fig. 14. Creation of a task by the evaluation of a declaration

Token version of Quasar Places version of Quasar

Clients States without

reductions

States with

Reductions

States without

reductions

States with

Reductions

1 2 549 247 2 699 246

2 438 913 9 499 536 335 12 357

3 – 735 767 – 1 347 009

Table 2. Evaluation of the two methods for modeling dependences on the client/server
program presented in Figure 16.

4 Cases studies

4.1 The sieve of Eratosthene

The sieve of Eratosthene is used to find all primes inferior to a number N. It
considers each number between 2 and N and eliminates all the multiples of each
considered number. We have implemented a concurrent version of it.

For each prime number, a new task is spawned. The program can be viewed
as a dynamic task pipeline, as a task can be added dynamically to the pipe. Each
stage of the pipeline is a task with a prime and represents a part of the sieve.
The algorithm is presented Figure 15. The main procedure is a loop which calls
the entry of the first Prime task of the pipeline with each number to sift. At the
end of the loop, it sends the termination message to the pipeline. Prime task
program is a loop which iterates until the termination message is received. The
task waits on its entry Test Primality, stores the received number in a buffer
and ends the entry call. Then, it checks the primality of the received number;
if the task has not stored any prime number yet, it keeps the received number
as its prime and waits for another call on its entry. If the task already stores a

16

prime number, it checks whether it can divide it, if not, it creates another Prime
task (if it does not already exists) by calling the function Create Prime and
send it the number to be tested. In this example, we don’t collect the primes
since we are interested in the dynamic tasks creation and termination only.

Results of our experimentations are presented Figure 3. Given N , we indicate

N Running tasks States without reductions States with reductions Reduction factor

3 3 1 556 294 5

6 4 19 160 1 784 11

10 5 224 102 10 047 22

12 6 2 810 870 65 645 43

Table 3. Evaluation for the sieve of Eratosthene

the number of running tasks and we calculate the number of states generated
by the model both with and without reductions. Evaluation data were obtained
with our model-checker Helena [Eva04].

4.2 A Client/Server example

The program presented Figure 16 in the Appendix is a simple client/server pro-
gram example. The main loop spawns clients of the task server. For each calling
client, the task server creates a Thread task by allocating an Access Thread

pointer and by returning the pointer to the client. The client thus calls the entry
of this Thread task which accesses the protected object managing the data. For
different numbers of clients, we calculate the number of generated states both
with and without reductions and also the number of states relevant to the dead-
lock free property after slicing and reductions. Results are presented on table 4.

Clients Running

tasks

States without

reductions

States with

reductions

Slicing & reductions

1 4 2 549 247 221

2 6 438 913 9 499 5 939

3 8 – 735 767 239 723

4 10 – – 12 847 017

Table 4. Evaluation for the Client/Server program

17

Results show that even when the integration of dynamic tasks and synchro-
nization mechanisms implies a great combinatory, Quasar is able to reduce
highly the generated model via slicing mechanisms and structural reductions of
the Petri net.

4.3 Further remarks

Let us now modify the previous program so that it contains run time errors and
let us show that these errors can be easily detected by Quasar . In an execution
without deadlocks, each task token reaches the place END of its Petri net model.
So, if in a terminal state, a task token is in another place, this means that there
exists an execution leading to a terminal state which corresponds either to a
deadlock or to a run-time error.

In Quasar , when a task calls an entry, it puts a token with its id and the
id of the “server” task in an entry call place and gets the results from an entry
return place. The “server” task takes the token in the call place, gets the client’s
id and notifies it in the return place when it has finished the call. Then the client
can continue its execution and reach its place END.

Suppose that the task Task Server loops from 1 to MAX CLIENT-1 only, the
server task will never take the token of the last client in the call place. So, this
client will be blocked and will never reach the place END. The detection of such
a deadlock is very easy in Quasar .

Imagine now a second case of error when the variable The Task Server is of
access type. Suppose that this access variable is allocated by the main procedure.
When a client calls the entry of this dynamic task, two cases are possible: in the
first one, the client calls the entry of The Task Server before this dynamic task
has been allocated and it is blocked; this leads to a deadlock. In the second case,
the client calls the entry after the allocation and the entry call is accepted.

The behavior of such a program depends on the order in which alloca-
tions are performed and this kind of error is not detected by the compiler. As
Quasar enumerates each possible execution, it points out this kind of behavior.
When an access variable is declared, it gets a special initialization value set to
the null value. Then, if the client calls the entry before the variable has been
allocated, it is blocked in the entry call place because of a wrong id for the vari-
able The Task Server. Its entry call is never accepted and it never reaches its
END place. This causes a deadlock which is detected by Quasar .

5 Conclusion and Future works

This paper shows that dynamic allocation can be modeled by tools that make use
of Petri nets. The use of both this modeling and the Quasar techniques allow
to limit the model states explosion, making automatic validation of dynamic
concurrent programs feasible. Moreover it has been shown that Quasar is able
to detect synchronization errors which occurrence depends on the dynamic task
allocation order and which is not detected at compile time.

18

The scope of application programs that can be verified by Quasar can still be
extended, and in particular to object oriented programming as it is approached
for Java programs in [NAC99], [CDH+00], [BR01], [FLL+02], or for other con-
current languages as in [AQR+04] or in [HRD04].

Integrating these concepts involves a high level of combinatory. We are now
considering this problem : on the one hand, we are already working on Helena
[Eva04], a new model checker which allows colored Petri nets reductions and on
the other hand we will further increase the analysis power by studying parallel
and distributed model checking algorithms.

References

[AQR+04] T. Andrews, S. Qadeer, J. Rehof, S.K. Rajamani, and Y. Xie. Zing: Ex-
ploiting program structure for model checking concurrent software. In
Proceedings of the 15th International Conference on Concurrency Theory,
2004.

[BBS00] J. Blieberger, B. Burgstaller, and B. Scholz. Symbolic Data Flow Anal-
ysis for Detecting Deadlocks in Ada Tasking Programs. In Proc. of the

Ada-Europe International Conference on Reliable Software Technologies,
Potsdam, Germany, 2000.

[BR01] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system
for race-free java programs. SIGPLAN Not., 36(11):56–69, 2001.

[BW95] A. Burns and A. Wellings. Concurrency in Ada, chapter 6.11, pages 134–
137. Cambridge University Press, 1995.

[BW99] A. Burns and A. J. Wellings. How to verify concurrent Ada programs: the
application of model checking. ACM SIGADA Ada Letters, 19(2):78–83,
1999.

[BWB+00] A. Burns, A. J. Wellings, F. Burns, A. M. Koelmans, M. Koutny, A. Ro-
manovsky, and A. Yakovlev. Towards modelling and verification of concur-
rent ada programs using petri nets. In Pezzé, M. and Shatz, M., editors,
DAIMI PB: Workshop Proceedings Software Engineering and Petri Nets,
pages 115–134, 2000.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting
finite-state models from java source code. In International Conference on

Software Engineering, pages 439–448, 2000.
[Dil93] Laura K. Dillon. A visual execution model for ada tasking. ACM Trans.

Softw. Eng. Methodol., 2(4):311–345, 1993.
[Dil97] Laura K. Dillon. Task dependence and termination in ada. ACM Trans.

Softw. Eng. Methodol., 6(1):80–110, 1997.
[EKPPR03] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Quasar:

a new tool for analysing concurrent programs. In Reliable Software Tech-

nologies - Ada-Europe 2003, volume 2655 of LNCS. Springer-Verlag, 2003.
[EKPPR04] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Verifying

linear time temporal logic properties of concurrent ada programs with
quasar. Ada Lett., XXIV(1):17–24, 2004.

[Eva04] S. Evangelista. Helena, an efficient high level Petri nets analyser. Technical
report, CEDRIC, CNAM, Paris, 2004.

19

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for java.
In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

language design and implementation, pages 234–245. ACM Press, 2002.
[HRD04] John Hatcliff, Robby, and Matthew B. Dwyer. Verifying atomicity speci-

fications for concurrent object-oriented software using model-checking. In
Proceedings of the International Conference on Verification, Model Check-

ing and Abstract Interpretation, 2004.
[Int95] Intermetrics Inc. Ada 95 Rationale, 1995.
[MSS89] T. Murata, B. Shenker, and S.M. Shatz. Detection of Ada static deadlocks

using Petri nets invariants. IEEE Transactions on Software Engineering,
Vol. 15(No. 3):314–326, March 1989.

[NAC99] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. Data flow anal-
ysis for checking properties of concurrent java programs. In Proceedings of

the 21st international conference on Software engineering, pages 399–410.
IEEE Computer Society Press, 1999.

[NM94] M. Notomi and T. Murata. Hierarchical reachability graph of bounded
Petri nets for concurrent-software analysis. IEEE Transactions on Software

Engineering, Vol. 20(No. 5):325–336, May 1994.
[SMBT90] S.M. Shatz, K. Mai, C. Black, and S. Tu. Design and implementation of

a petri net based toolkit for ada tasking analysis. IEEE Transactions on

Parallel and Distributed Systems, Vol. 1(No. 4):424–441, 1990.

20

Appendix

1 procedure Dynamic Eratho i s

2
3 task type Prime i s

4 entry Test Pr imar i ty (Number : in In t e g e r) ;
5 end Prime ;
6
7 type Access Prime i s access Prime ;
8
9 procedure Create Prime (New Prime : out Access Prime) i s

10 begin

11 New Prime := new Prime ;
12 end Create Prime ;
13
14 task body Prime i s

15 My Number : In t e g e r := 0 ;
16 Temp : In t e g e r := 0 ;
17 My Next : Access Prime := null ;
18 Termination : Boolean := False ;
19 begin

20 while not (Termination) loop

21 accept Test Pr imar i ty (Number : in In t e g e r) do

22 Temp := Number ;
23 end Test Pr imar i ty ;
24 i f (Temp = 0) then

25 −− T e rm i n a t i o n me s s a g e
26 Termination := True ;
27 i f (My Next /= null) then

28 −− P r o p a g a t e t h e t e r m i n a t i o n mes s a g e
29 My Next . Test Pr imar i ty (0) ;
30 end i f ;
31 else

32 i f (My Number = 0) then

33 −− S t o r e t h e p r im e number
34 My Number := Temp;
35 else

36 −− Te s t t h e p r i m a r i t y
37 i f ((Temp mod My Number) /= 0) then

38 i f (My Next = null) then

39 −− I f no n e i g h b o r , c r e a t e one
40 Create Prime (My Next) ;
41 end i f ;
42 −− Te s t t h e p r i m a r i t y on t h e n e i g h b o r
43 My Next . Test Pr imar i ty (Temp) ;
44 end i f ;
45 end i f ;
46 end i f ;
47 end loop ;
48 end Prime ;
49
50 My Prime : Prime ;
51
52 begin

53 for Number in 2 . . 5 loop

54 My Prime . Test Pr imar i ty (Number) ;
55 end loop ;
56 −− Send t h e t e r m i n a t i o n me s s a g e
57 My Prime . Test Pr imar i ty (0) ;
58 end Dynamic Eratho ;

Fig. 15. Sieve of Eratosthene

21

1 procedure Server i s

2 Max Client : I nt e g e r := 5 ;
3
4 protected Data i s −− The a c c e s s e d d a t a
5 procedure Get Value (Value : out In t e g e r) ;
6 private

7 Data Value : In t e g e r := 0 ;
8 end Data ;
9

10 protected body Data i s

11 procedure Get Value (Value : out In t e g e r) i s

12 begin

13 Data Value := Data Value + 1 ;
14 Value := Data Value ;
15 end Get Value ;
16 end Data ;
17
18 task type Thread i s −− On l y t h e t h r e a d s can a c c e s s t h e d a t a
19 entry Get Value (Param : out I nt e g e r) ;
20 end Thread ;
21 type Access Thread i s access Thread ;
22
23 task body Thread i s

24 begin

25 accept Get Value (Param : out I nt e g e r) do

26 Data . Get Value (Param) ;
27 end Get Value ;
28 end Thread ;
29
30 task type Task Server i s

31 −− The t a s k s e r v e r , c r e a t e a t h r e a d f o r ea c h c l i e n t ’ s r e q u e s t
32 entry Get Thread (Id : out Access Thread) ;
33 end Task Server ;
34
35 task body Task Server i s

36 begin

37 for I in 1 . . Max Client loop

38 accept Get Thread (Id : out Access Thread) do

39 Id := new Thread ;
40 end Get Thread ;
41 end loop ;
42 end Task Server ;
43
44 The Task Server : Task Server ; −− The t a s k s e r v e r
45
46 task type Cl ient ; −− C l i e n t o f t h e t a s k s e r v e r
47 type Acce ss Cl i en t i s access Cl ien t ;
48
49 task body Cl ient i s

50 Id : Access Thread ;
51 Value : I n t e g e r ;
52 begin

53 The Task Server . Get Thread (Id) ; −− Get t h e t h r e a d
54 Id . Get Value (Value) ; −− Get t h e v a l u e o f t h e d a t a
55 end ;
56
57 A Client : Ac ce s s Cl i ent ;
58
59 begin

60 for I in 1 . . Max Client loop −− main l o o p , c r e a t e s c l i e n t s
61 A Client := new Cl ien t ;
62 end loop ;
63 end Server ;

Fig. 16. A client/Server program

22

1 procedure I d e n t i f i c a t i o n i s

2
3 task type T3 ;
4 task body T3 i s

5 begin

6 null ;
7 end T3 ;
8
9 type Access T3 i s access T3 ;

10
11 task type T1 ;
12 task body T1 i s

13 O : Access T3 ;
14 begin

15 O := new T3 ;
16 end T1 ;
17
18 task type T2 ;
19 task body T2 i s

20 P : Access T3 ;
21 begin

22 P := new T3 ;
23 end T2 ;
24
25 T1 1 : T1 ;
26 T1 2 : T1 ;
27 T2 1 : T2 ;
28
29 begin

30 null ;
31 end I d e n t i f i c a t i o n ;

Fig. 17. A basic Ada program.

23

