
Mobility Patterns

Cédric du Mouza Philippe Rigaux

lab. CEDRIC LRI
CNAM - Paris Orsay - Paris Sud

FRANCE FRANCE
dumouza@cnam.fr rigaux@lri.fr

Abstract

We present a data model for tracking mobile
objects and reporting the result of continuous
queries. The model relies on a discrete view of
the spatio-temporal space, where the 2D space
and the time axis are respectively partitioned in
a finite set of user-defined areas and in constant-
size intervals. We define a query language to
retrieve objects that match mobility patterns de-
scribing a sequence of moves and discuss evalua-
tion techniques to maintain incrementally the re-
sult of queries.

1 Introduction
In the database community, several data models have been
proposed to enable novel querying facilities over collec-
tions of moving objects. A common feature of most of
these models is the strong focus on the geometric properties
of trajectories. Indeed, in most cases, the data representa-
tion and the query language are considered as extensions
of some existing data model previously designed for (and
limited to) 2D geometric data handling. The modeling of
moving objects has been therefore strongly influenced by
the existing spatial models, and relies usually on a set of
data structures providing support for geometric operations
(e.g., geometric intersection) [21, 10, 8, 9].

An assumption commonly adopted by all the above
mentioned models is to consider a dense embedding space
and to model trajectories as continuous functions in this
space. While this property allows several suitable computa-
tions (for instance the position of an object can be obtained
at any instant), it is not well adapted to some common re-
quests. Let us consider the tracking of objects with contin-
uous queries, i.e., queries whose result must be maintained

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

during a given (and possibly unbounded) period of time.
When asking, for instance, for all the objects that belong to
a given rectangle R during the next 3 days, the initial re-
sult is subject to vary by considering the objects that leave
of enter R. Managing incrementally the evolutions of the
result (i.e., without recomputing periodically the entire re-
sult) is a hard task with a geometric-based query language
because the dense-space assumption of the data model of-
ten contradicts with the discrete nature of the observation.

In the present work we investigate an alternative ap-
proach, namely the management of continuous queries as
a discrete process relying on events related to the moves
of objects over the underlying space. Intuitive examples of
events are, for instance, an object enters a zone, an object
stays in a zone, and an object leaves a zone. A query in
such a setting is a sequence of primitive events which can
be specified either by explicitely referring to the zones of
interest (“Give all the objects currently in a which arrived
5 minutes ago, coming from b”), or by more generic pat-
terns of mobility such as, for instance, “Give these objects
that moved from a to another zone and came back to a”.

We propose in the current paper a data model for rep-
resenting trajectories as sequences of moves in a discrete
spatio-temporal space, and study the languages to query
such sequences of events. Essentially, the languages that
we consider allow to construct expressions, or mobility pat-
terns, to express search operations. We focus specifically
on the family of patterns that satisfy the following prop-
erties (i) we do not need the past moves of an object o to
determine whether o matches or not a given pattern and
(ii) the amount of memory required to maintain a query
result is small. These properties are essential in the con-
text of continuous queries since they guarantee that a large
amount of queries can be evaluated efficiently with limited
resources by just considering the last event associated to
an object. We define a class of queries which provides an
appropriate balance between expressiveness and the fulfill-
ment of these requirements.

Related work

Expressing sequences of moves as proposed in the present
paper is close in spirit to the area of sequence databases [20,

15, 18, 22]. The SQL-TS language of [18] and [19] allows
to express sequences of conditions and describes an effi-
cient algorithm for query evaluation. The idea of represent-
ing temporal sequences as strings and to rely on pattern-
matching algorithms is also present in [6] and [5]. In [17]
sequences are considered as sorted relations, and each tu-
ple gets a number that represents its position in the se-
quence. All these approaches are significantly different
from ours. In particular there is nothing similar to the con-
cept of mobility pattern, featuring variables, proposed in
our data model.

The notion of continuous queries, described as queries
that are issued once and run continuously, is first proposed
in [24]. The approach considers append-only databases
and relies on an incremental evaluation on delta relations.
Availability of massive amounts of data on the Internet has
considerably increased the interest in systems providing
event notification across the network. Some representative
works are the Active Views system [1], the NiagaraCQ sys-
tem [4], and the prototypes described in [14, 7]. In the area
of spatio-temporal databases, the problem is explicitely ad-
dressed in several works [16, 3, 13, 23, 11, 25]. [3] for in-
stance describes a web-based architecture for reducing the
volume and frequency of data transmissions between the
client and the server. [13] presents a system that indexes
queries in order to recompute periodically the whole result
of each query. This is in contrast with the incremental com-
putation advocated in the current paper.

In the rest of this paper we first develop an informal pre-
sentation of our work (Section 2) with examples of mobility
patterns that illustrate the intuition behind the model and
its practical interest from the user’s point of view. The data
model is presented in Section 3. Finally Section 4 con-
cludes the paper and discusses future work. A long version
is available at http://www.lri.fr/̃ rigaux/DOC/MR04b.pdf.

2 Introduction to mobility patterns

Figure 1 shows a map partitioned in several zones identi-
fied with simple labels (a, b, c, ...). Over this map
we consider a set of mobile objects, each of them coupled
with a localization device which periodically provides their
position. The minimal period between two events related to
the same object defines the time unit. For the sake of con-
creteness we shall assume in the following that objects are
tracked by a GPS system giving the location of an object,
and that the time unit is 1 (one) minute.

Consider now a traffic monitoring application support-
ing tracking of the mobile objects, and the following
queries:

1. Give all the objects that traveled from a to f, stayed
more than 10 minutes in f and then traveled from f to
c.

2. Give all the objects traveling from f to d or c through
another, third, zone of the map.

3. Give all the objects that left a given zone, went to c
and came back to the first zone.

The common feature of these examples is a specifica-
tion of the successive zones an object belongs to during its
travel, along with temporal constraints. We call mobility
pattern this specification. The geometric-based approach
used in most of the spatio-temporal data models so far is
not really adapted for expressing queries based on mobility
patterns. Actually we do no longer need an interpolation or
extrapolation mechanism to infer the position of an object
at each instant since the discrete succession of events pro-
vided by the GPS server is naturally suitable to serve as a
support for evaluating these patterns.

Each GPS event provides the position of an object, and
this suffices to compute the zone where the object resides
when the event is received. It is therefore quite easy to con-
struct a discrete representation of the trajectory of an ob-
ject as a sequence of the form l1{T1}.l2{T2}. · · · .ln{Tn}
featuring the list l1, l2, . . . , ln of successive zone labels as
well as the time spent in each zone. For instance the tra-
jectory of o1 in Figure 1, assuming that o1 spent 2 min-
utes in f, 4 minutes in a, 3 minutes in d and 6 min-
utes in c, will be represented in our model as a sequence
[f{2}.a{4}.d{3}.c{6}]. Note that each new event ei-
ther increments the time component of the last label if the
object remains in the same zone, or appends a new label to
the trajectory’s representation.

Let us now turn to mobility patterns. Basically, they
constitute a specific kind of regular expression, featuring
variables which can be instantiated to any of the labels of
the map. As a first example, assume that we want to re-
trieve all the objects that started from a or b, moved to e,
crossing one of the zones c, d, or f (see Figure 1), and fi-
nally went back from e to a via the same zone. This class
of trajectories is represented by the following mobility pat-
tern:

(a|b).@x+.e+.@x+.a

In a pattern, a zone is represented either by its label (here
a, b, e) or by a variable (here @x) if it is left undetermined
by the user. A variable is here necessary to represent the
zone where an object moved after leaving a or b, and ex-
pressing that the object must come back to a via the same
zone. Each occurrence of a variable in a pattern must be in-
stantiated to the same value. Labels or variables can be con-
catenated (for instance @x.a in our example) to describe a
path, or grouped in sets (for instance (a|b)) to describe a
union of zones. The “+” operator expresses the fact that the
object can stay an undetermined time in a given zone, but
at least one time unit. Alternatively, one can associate to
each label simple temporal constraints of the form {min,
max} where min and max denote respectively the minimal
and maximal number of time units spent in the zone.

Intuitively, an object o matches a pattern P if the fol-
lowing conditions hold:

1. one can find a word in the language L(P) which is

a

b

c

d

e

f
o1

o2

Figure 1: Objects moving over a partitioned map

equal to a suffix of the trajectory of o, modulo an as-
signment of the variables in P .

2. the time spent in each zone complies with the temporal
constraint expressed in the pattern.

For instance an object whose trajectory is represented
by the sequence [f.d.c.b.a.d.e.d.a] (we omit the
temporal information for simplicity) matches the pattern
above where the value of the variable @x is set to the la-
bel d. The suffix in boldface is then a word in the language
denoted by the pattern.

The suffix represents here the most recent part of the tra-
jectory received from the continuous stream of GPS events.
It determines whether an object belongs or not to the result
set of a query. Note also that, since the trajectory repre-
sentation evolves as new events are received, the matching
must be evaluated periodically – almost continuously. Our
goal is to perform this evaluation with minimal space and
time consumption.

Patterns can easily be introduced in a SQL-like query
language, as illustrated by the following examples which
will be used throughout the rest of the paper. The syntax of
regular expression is that of the Perl language [26].

• Q1. Give all the objects that traveled from a to f,
stayed at least 2 minutes in f and then traveled from
f to c.

SELECT *
FROM Mob
WHERE matches(traj,’a.f{2,}.c’)

The matches function checks whether a suffix of the
spatio-temporal attribute traj matches the mobility
pattern a.f.c. An additional temporal constraint
states that the object must spend at least 2 time units
(e.g., 2 minutes) in f.

• Q2. Give all the objects that stay in a or b all the
time except for one minute when they were in another,
third, zone.

SELECT *
FROM Mob
WHERE matches (traj,’(a|b)+.@x.(a|b)+’)
AND @x != ’a’ AND @x != ’b’

This example requires a variable @x which expresses
a move not assigned to a specific label but instantiated
to the choice of a moving object when it leaves a or b.
It is possible to express additional constraints on the

instantiations allowed for a variable, using equalities
or inequalities. The user requires in this example the
object to leave a or b for a third, distinct, area.

• Q3. Give all the objects that went throughf to another
zone then went to d or c, and came back to f using
the same zone.

SELECT *
FROM Mob
WHERE matches (traj,’f.@x+.(d|c)+.@x+.f’)
AND @x != ’f’

Let us turn now to the query evaluation process, and in
particular to the continuous evaluation which maintains a
result by adding or removing objects. We consider two es-
sential criteria for measuring the easiness and efficiency of
this evaluation:

1. Do we need to consider the past moves of an object to
evaluate a query?

2. What is the amount of memory required to maintain a
query result?

Consider first the case of patterns without variable.
Evaluating a pattern P is then a standard operation which
simply requires to build the Finite State Automata (FA) that
recognizes the language Σ∗.LP , where LP is the regular
language denoted by P and Σ is the set of labels of the
map.

In the general case, the FA associated to a regular ex-
pression is non-deterministic. Then an object o might be
associated to several states at a given time instant, and we
must record the list of current states for o. This list can be
represented as a mask of bits, one bit for each state of the
FA. The value 1 (resp. 0) for a bit means that o is (resp.
is not) in the associated state. This gives a rather compact
structure: for a pattern with 8 symbols, a mask of 8 bits
(one byte) must be recorded for each object. One can track
a database of one million objects with only one megabyte
in main memory.

The pseudo-code of the procedure HandleEvent(q, id, x,
y) summarizes how to actualize the result of a query q when
a GPS event is received, giving a new location (x, y) for the
object o. The reference map is a set of zones denoted by M .

HandleEvent (q, o, x, y)
begin

// Compute the current zone, z
z = PointInPolygon(M, x, y)

// Get the label of z
l = label(z)
// For each bit set to 1 in the status of o,
// compute the transition l
for each bit i with value 1 in statuso

Compute sj = δ(FAq , si, l)
Set the bit j to 1 and the bit i to 0 in statuso

end for
end

The result set of q can then be updated according to the
new status of object o. Essentially, if at least one of the new
states is an accepting one, o will be in the result set, else it
will be out of this result set. In this simple case we obtain
a direct answer to the two questions above:

1. It is not required to maintain historical information
on a trajectory, since, it suffices to know the current
state(s) of the FA, reached by taking account of the
events received so far.

2. The space required to maintain a query result is, in the
worst case, the set of all states in the FA (which might
be non-deterministic) and is therefore proportional to
the size of the query1.

If we consider now patterns with variables, the language
is much more expressive, but some care is required for ex-
ecuting queries. Take for instance the example Q3 above.
Each time an object leaves the zone f for another one, a
new label is bound to the variable @x. One must then store
this value in order to check for the consistency of any fur-
ther occurrence of @x.

The next section is devoted to the data model, and fo-
cuses on the evaluation of queries with variables. We show
that we can still avoid to rely on historical information on
trajectories, and study more specifically the memory re-
quirements for several classes of queries.

3 The model
We consider an embedding space partitioned in a finite set
of zones, each zone being uniquely labeled with a symbol
from a finite alphabet Σ. The time axis is divided in con-
stant size units. For concreteness we still assume in the
following that the time unit is 1 minute. We also assume
a set V of variables with Σ ∩ V = ∅ and denote as Γ the
union Σ ∪ V . In the following, letters a, b, c, . . . will de-
note symbols from Σ, and @x, @y, @z, . . . variables. We
assume the reader familiar with the basic notions of regular
expressions and regular languages, as found in [12].

3.1 Data representation and query language

We adopt a standard extended relational framework for the
database, with O denoting the relation of moving objects,
and o.traj the trajectory of an object o. The representation
of trajectories is then defined as follows:

1It is possible, for any regular expression E, to construct a FA whose
number of states is equal to the number of symbols in E.

Definition 1 (Representation of trajectories) A trajec-
tory is represented by an expression of the form

s1{T1}.s2{T2}. · · · .sn{Tn}

where si, i = 1, . . . , n are symbols from Σ and Ti repre-
sents the number of time units spent in the zone si.

Hereafter, we shall use the term “trajectory” to mean its
representation. For convenience, we shall often omit the
temporal components and use a simplified representation
of a trajectory as a word [s1.s2. · · · .sn] in Σ∗.

A natural choice is to build mobility patterns as regular
expressions on Γ = Σ ∪ V , and to search for the suffix
of trajectories that match the expression for some value of
the variables. Consider for example the regular expression
E =a.@x+.b+.@x. The trajectory t =f.d.a.c.b.c
matches E because we can find a word w = a.@x.b.@x
in the language denoted by E (w is called a witness in the
following) and an instantiation ν : {@x := c} such that
ν(w) is a suffix of t. However this approach raises some
ambiguities regarding the role of variables. Consider the
following examples:

1. Let E be the regular expression b.(a|@x)+.c.
Then the trajectory b.a.c has two witnesses in the
regular language denoted by E: b.@x.c and b.a.c.
In the first case @xmust be instantiated to a, but in the
second case any value of @x is acceptable.

2. Let E be the regular expression
a.(@x|@y).b.(@x|@y). The variables @x
and @y can be used interchangeably, which makes the
role of variables undetermined.

As shown by the previous examples, if we build mo-
bility patterns with unrestricted regular expressions over
Γ, the assignment of variables is non deterministic, and
sometimes meaningless. For safety reasons, when read-
ing a word w and checking whether w matches a mobility
pattern P , we require each variable in P to be explicitely
bound to one of the symbols in w. We thus adopt a more
rigorous definition of the language by considering only un-
ambiguous regular expressions on Γ such that each variable
always plays a role in the evaluation of the query. We need
first to introduce marked regular expressions.

Definition 2 (Marked expressions [2]) Let E be a regu-
lar expression over the alphabet Γ. We define the marking
of E as the regular expression E ′ where each symbol of Γ
is marked by a subscript over N, representing the position
of the symbol in the expression.

For instance the marking of the regular expression
a∗.@x.((b.a)|(c.b)).c.@x∗.a is the expression
a∗

1.x2.((b3.a4)|(c5.b6)).c7.@x8.a9. We can
now define mobility patterns as the class of regular expres-
sions that satisfy the following property:

Definition 3 (Mobility patterns) A mobility pattern is a
regular expression P over Γ such that each variable of P ′

appears in each word of the language L(P ′).

This property ensures that each variable in any pattern
is always assigned to a relevant label during query evalu-
ation. The expression P = (a|b)+.@x.(a|b)+ is for
instance a mobility pattern because @x appears in all the
words of the language L(P). Any successful matching of
P with a trajectory t results therefore in an assignment of
@x to one of the symbols of t. It can be tested whether a
regular expression matches the required condition, and thus
can be used as a mobility pattern.

Proposition 1 There exists an algorithm to check whether
a regular expression is a mobility pattern.

In the following we shall denote as var(P) the set of
variables in a pattern P . The query language and its se-
mantics are now defined as follows.

Definition 4 (Syntax of queries) A query is a pair (P, C)
where P is a mobility pattern and C is a set of constraints
of the form s1 6= s2, for s1, s2 ∈ Σ ∪ var(P)

Let q = (L, {C1, . . . Cl}) be a query. The answer to
of q over O , denoted ans(q), is a subset of O defined as
follows:

Definition 5 (Semantics of queries) An object o ∈ O be-
longs to ans(q) if there exists a mapping ν : V → Σ, called
a valuation, with the following properties:

1. ν satisfies all the constraints Ci, i = 1, . . . , l

2. o.traj belongs to Σ∗.L(ν(P)).

The constraints in a query can be used to forbid ex-
plicitely a variable to take a value (e.g., @x 6= a). The
domain of a variable @x for a given query q, denoted
domq(@x), represents the set of possible values for @x
given the constraints of q.

Example 1 The following queries correspond to the 3 ex-
amples given in Section 2.

1. q1 = (a.f{2, }.c, ∅)

2. q2 = ((a|b)+.@x.(a|b)+, {@x 6= a, @x 6= b})

3. q3 = (f.@x+.(c|d)+.@x+.f, {@x 6= f})

3.2 Query evaluation

We describe now an algorithm for evaluating a query q.
First we show how to obtain an automaton which, given a
mobility pattern P , accepts the trajectories that match P .
This automaton also provides the valuation of variables in
P . In a second step we explain how the automaton can
be used at run time, and discuss the size of the memory
used to store the relevant information. For simplicity, we

consider the automata that accept the language L(P): their
extension to automata that accept Σ∗.L(P) is trivial and
can be found in any specialized textbook.

Since a mobility pattern P is a regular expression over
the alphabet Γ, we can build a non-deterministic finite state
automaton (NFA) NΓ that accepts the language of Γ∗ de-
noted by P . Starting from NΓ we can build a new automa-
ton, NΣ, which checks whether a trajectory t of Σ∗ belongs
to ν(L(P)), and delivers the valuation ν.

Essentially, NΣ is NΓ with a management of variable
bindings based on the following extensions: (i) a transition
labeled with a variable @x on a symbol α sets the value of
@x to α if @x was not yet bound and (ii) with each state
one maintains the bindings of the variables met so far. The
definition of NΣ is as follows.

• The set of states of NΣ, states(NΣ), is states(NΓ)×
Σ|var(P)|, i.e., all the possible associations of a state
of NΓ with a valuation ν of the variables in P . A state
of NΣ is denoted < S, ν >.

• The set of accepting states of NΣ, accept(NΣ) is
accept(NΓ) × Σ|var(P)|.

• The transition function of NΣ, δΣ, is drawn from the
transition function of NΓ, δΓ, as follows:

– if δΓ(Si, α) = Sj is a transition of NΓ with
α ∈ Σ, then δΣ(< Si, ν >, α) =< Sj , ν >. In
other words the transition has no effect on vari-
able bindings.

– if δΓ(Si, @x) = Sj is a transition of NΣ with
@x ∈ V , then δΣ(< Si, ν >, α) =

< Sj , ν + @x := α >
if ν(@x) is undetermined and the binding
of @x with α is allowed by the constraints.

< Sj , ν > if ν(@x) = α.
is undefined otherwise.

Whenever an accepting state < S, ν > of NΣ is reached,
the input trajectory is accepted and the valuation ν defines
the instantiations of all the variables (recall that, by defini-
tion, any word in a language defined by a mobility pattern
contains all the variables).

In order to check at run time whether an object o
matches a mobility pattern, we do not need to fully con-
struct the automaton described above. Instead, we start
with a minimal representation, and build in a progressive
way, according to the symbols appended to the trajectory of
o, the instantiation of the variables which potentially leads
to an accepting state. Here is an example that illustrates the
process (more details can be found in the long version).

Example 2 Consider the mobility pattern P =
(a|b)+.@x.(a|b)+. Figure 2 shows an NFA automa-
ton NΓ which recognizes the words of L(P), S0 being the
initial state and S4, S5 the final states.

Assume that one receives successively the following
events for an object o: a, a, b, b, c and a. Each row

S

S

S

S

S

S0

1

2

3

4

5

a

b

@x

@x

a a

a

b b

b

a a

b b

Figure 2: An automaton for the mobility pattern (a|b)+.@x.(a|b)+

in the table of the figure 3 shows the states of the NFA NΣ

after reading a symbol, as well as the possible valuations
of variable @x. The accepting states are in bold font and
mean that the trajectory belongs to the query result set.

Example 2 shows that we might have to maintain, dur-
ing the analysis of an input trajectory, several valuations
associated to a same state. In the worst case one might
have |states(NΓ)| × |Σk| simultaneous states to maintain,
representing all the possible instantiations of variables that
lead to an accepting state.

Depending on the application, the size of the database
and the number of queries, maintaining a large amount of
informations to continuously evaluate a query might be-
come costly. In some cases we might therefore want to
restrict the expressive power of the language to obtain very
low memory needs. Consider for instance a web server
providing a subscribe/publish mechanism over a (possibly
large) set of moving objects. In such a system, web users
can register queries, waiting for notification of the results.
The performance of the system, and in particular its abil-
ity to serve a lot of queries under an intensive incoming of
events, depends on the efficiency of the query result main-
tenance, and therefore on the size of the data required to
perform this maintenance. We define below a fragment
of the query language which meets the requirement of this
kind of application.

3.3 Deterministic queries

The class of deterministic queries is such that, at any in-
stant, there is only one possible instantiation for each vari-
able of the mobility patterns. Deterministic queries are de-
fined by the following property:

Definition 6 (Deterministic queries) A query q(P, C is
deterministic iff ∀u, v ∈ (Σ ∪ V)∗, ∀@x∈ V , u.@x.v ∈
L(P) ⇒6 ∃α ∈ domq(@x), 6 ∃w ∈ (Σ∪V)∗, uαw ∈ L(P).

The intuition is that when it becomes possible to instan-
tiate a variable during the analysis of a trajectory, then this
transition is the only possible choice. This makes the bind-
ing of variables deterministic, and ensures that, for a given

word, there is only one (if any) possibility to instantiate a
variable.

Example 3 The following examples illustrate determinis-
tic queries.

• The query q(f.@x.(c|d).@x.f, ∅) is determinis-
tic. Whenever a f symbol has been read, the only pos-
sible choice is to bind @x to the symbol that follows
immediately f.

• The query q((a|b)+.@x.(a|b)+, ∅) is non-
deterministic since the words a.@x.a.b and
a.b.@x.b both belong to L(P). However
q′((a|b)+.@x.(a|b)+, {@x 6= a, @x 6= b}) is
deterministic.

We state the following properties of deterministic
queries without the proofs which can be found in the long
version.

Proposition 2 Let q(P, C) be a deterministic query. Then,
for each word w of Σ∗, there is at most one witness of w in
L(P).

Consider again the queries of Example 3. In the first
example an accepted word can only have one single wit-
ness, either f.@x.d.@x.f or f.@x.c.@x.f. In the
second example, with constraints {@x6=a,@x6=b}, any wit-
ness consists of two words of {a,b}+, separated by a sym-
bol distinct from a or b. It follows that if q(P, C) is a
deterministic query, the memory space required to check
whether a word matches q is |P |+|var(P)|, where |P | rep-
resents the number of symbols in P . Essentially, we need
one FA for q, plus a storage for each variable, and we can
build an FA with a number of states equal to the number of
symbols in the expression.

When evaluating a continuous query, we need to main-
tain for each object o the set of its current states, as well
as the binding of variables and this suffices to determine, at
each GPS event, whether o enters, stays or quits the query
result.

Input Reached states in NΣ

a < S1,@x=⊥>

a[2] < S1,@x=⊥>, < S3,@x=a>

a[2].b < S2,@x=⊥>, < S3,@x=b>, < S5,@x=a>

a[2].b[2] < S2,@x=⊥>, < S3,@x= b >, < S5,@x=a>, < S5,@x=b>

a[2].b[2].c < S3,@x= c >

a[2].b[2].c.a < S4,@x=c>

Figure 3: Evaluation of a undeterministic query

Example 4 Let us consider again the query q(P, C), with
P = (a|b)+.@x.(a|b)+ and C = {@x 6= a, @y 6= b}. The
automaton remains identical (see Figure 2) but the evalu-
ation on input a[2].b[2].c.a is now as presented in
the table of the figure 4.

The properties of deterministic queries ensure that the
required amount of memory is independent from the size
of Σ, and thus of the underlying partition of space used to
describe the trajectories of moving objects. This property
might be quite convenient if the space of interest is very
large, or if the number of queries to maintain is such that
the memory usage becomes a problem.

4 Conclusion and further work

We described in this paper a new approach for querying a
moving object database by means of mobility patterns. Our
proposal is based on a data model which allows to retrieve
objects whose trajectory matches a parameterized sequence
of moves expressed with respect to a set of labeled zones.
We investigated the applicability of the model to continu-
ous query evaluation, showed how to maintain incremen-
tally the result of a query, and identify a fragment of the
query language such that the amount of space required to
maintain this result is very low.

A version of the language can easily be introduced as
complement of a geometric-based extension of SQL, as
shown by the query samples proposed in Section 2. The
properties of the language make it a convenient candidate
for mobile object tracking based on sequences patterns, and
its simplicity leads to an easy implementation.

We are currently developing a prototype to assess the
relevancy of this approach in a web-based context where a
lot of clients can register queries, receive an initial result
set, and wait for notification of updates to this result set.

References

[1] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet,
and T. Milo. Active Views for Electronic Com-
merce. In Proc. Intl. Conf. on Very Large Data Bases
(VLDB), 1999.

[2] R. Book, S. Even, S. Greibach, and G. Ott. Ambigu-
ity in graphs and expressions. IEEE Transactions on
Computers, 20(2):149–153, 1971.

[3] T. Brinkhoff and J. Weitkämper. Continuous
Queries within an Architecture for Querying XML-
Represented Moving Objects. In Proc. Intl. Conf. on
Large Spatial Databases (SSD), 2001.

[4] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Nia-
garaCQ: A Scalable Continuous Query System for In-
ternet Databases. In Proc. ACM SIGMOD Symp. on
the Management of Data, 2000.

[5] N. D., A. Fernandes, N. Paton, and T. Griffiths.
Spatio-Temporal Evolution: Querying Patterns of
Change in Spatio-Temporal Databases. In Proc. Intl.
Symp. on Geographic Information Systems, pages 35–
41, 2002.

[6] M. Dumas, M.-C. Fauvet, and P.-C. Scholl. Handling
Temporal Grouping and Pattern-Matching Queries in
a Temporal Object Model. In Proc. Intl. Conf. on In-
formation and Knowledge Management, pages 424–
431, 1998.

[7] F. Fabret, H. Jacobsen, F. Llirba, K. Ross, and
D. Shasha. Filtering Algorithms and Implementations
for Very Fast Publish/Subscrib Systems. In Proc.
ACM SIGMOD Symp. on the Management of Data,
2001.

[8] L. Forlizzi, R. Güting, E. Nardelli, and M. Schneider.
A Data Model and Data Structures for Moving Ob-
jects Databases. In Proc. ACM SIGMOD Symp. on
the Management of Data, 2000.

[9] S. Grumbach, P. Rigaux, and L. Segoufin. Manipulat-
ing Interpolated Data is Easier than you Thought. In
Proc. Intl. Conf. on Very Large Data Bases (VLDB),
2000.

[10] R. H. Gting, M. H. Bhlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgiannis.
A Foundation for Representing and Quering Moving
Objects. ACM Trans. on Database Systems, 25(1):1–
42, 2000.

[11] M. Hammad, W. Aref, and A. Elmagarmid. Stream
Window Join: Tracking Moving Objects in Sensor-
Network Databases. In Proc. Intl. Conf. on Scientific
and Statistical Databases (SSDBM), 2003.

[12] J. Hopcroft and J. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-
Wesley, 1979.

Input Reached states in NΣ Transitions not allowed

a < S1,@x=⊥>

a[2] < S1,@x=⊥> < S3,@x=a> since a 6∈ dom(@x)
a[2].b < S2,@x=⊥> < S3,@x=b> since b 6∈ dom(@x)
a[2].b[2] < S2,@x=⊥> < S3,@x=b> since b 6∈ dom(@x)
a[2].b[2].c < S3,@x=c>

a[2].b[2].c.a < S4,@x=c>

Figure 4: Evaluation of a deterministic query

[13] D. Kalashnikov, S. Prabhakar, W. Aref, and S. Ham-
brusch. Efficient evaluation of continuous range
queries on moving objects. In Proc. Intl. Conf. on
Databases and Expert System Applications (DEXA),
pages 731–740, 2002.

[14] L. Liu, C. Pu, and W. Tang. Continual Queries
for Internet Scale Event-Driven Information Deliv-
ery. IEEE Transactions on Knowledge and Data En-
gineering, 11(4):610–628, 1999.

[15] G. Mecca and A. J. Bonner. Finite Query Languages
for Sequence Databases. In Proc. Intl. Workshop on
Database Programming Languages, 1995.

[16] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel
Approaches in Query Processing for Moving Ob-
jects. In Proc. Intl. Conf. on Very Large Data Bases
(VLDB), 2000.

[17] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan,
K. S. Beyer, and M. Krishnaprasad. Srql: Sorted re-
lational query language. In Proc. Intl. Conf. on Sci-
entific and Statistical Databases (SSDBM), pages 84–
95. IEEE Computer Society, 1998.

[18] R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. Op-
timization of sequence queries in database systems. In
Proc. ACM Symp. on Principles of Database Systems,
2001.

[19] R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi. A
sequential pattern query language for supporting in-
stant data mining for e-services. In Proc. Intl. Conf.
on Very Large Data Bases (VLDB), 2001.

[20] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A
Model for Sequence Databases. In Proc. IEEE Intl.
Conf. on Data Engineering (ICDE), pages 232–239,
1995.

[21] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and Querying Moving Objects. In Proc.
IEEE Intl. Conf. on Data Engineering (ICDE), pages
422–433, 1997.

[22] A. P. Sistla, T. Hu, and V. Chowdhry. Similarity based
retrieval from sequence databases using automata as
queries. In Proc. Intl. Conf. on Information and
Knowledge Management, pages 237–244, 2002.

[23] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest
Neighbor Search. In Proc. Intl. Conf. on Very Large
Data Bases (VLDB), pages 287–298, 2002.

[24] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Con-
tinuous Queries over Append-Only Databases. In
Proc. ACM SIGMOD Symp. on the Management of
Data, 1992.

[25] G. Trajcevski, P. Scheuermann, O. Wolfson, and
N. Nedungadi. Cat: Correct answers of continuous
queries using triggers. pages 837–840, 2004.

[26] L. Wall, T. Christiansen, and J. Orwant. Programming
Perl (3rd Edition). O’Reilly, 2000.

