
Syntactical Rules for Colored Petri Nets

Manipulation

Sami Evangelista

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

evangeli@cnam.fr

Abstract. Defining structural analysis techniques for colored Petri nets
or generalizing existing techniques of ordinary nets to colored nets is
made difficult by the management of the color mappings of the net. In-
deed, the structure of the colored net does not necessarily reflect the one
of the underlying net. A solution is to unfold the net and work directly
on the unfolded net. Another one is to work directly on the colored net
in a symbolic way. We explore in this work a symbolic framework based
on constraints systems. A class of colored Petri nets is defined. We define
simple rules to translate each color mapping allowed by this class into
an equivalent constraints system. At last we work at a syntactical level
to check properties of mappings. Two relevant examples of application
are given.

1 Introduction

Colored nets provide designers a high level language to model concurrent sys-
tems. The price to pay is an increased difficulty of the possible analysis tech-
niques. A typical example is the computation of flows of colored nets. As the
structure of the colored net is not necessarily the one of its unfolded net, gener-
alizing existing techniques of ordinary nets such as net reductions and stubborn
sets to colored nets can be quite tricky.
There are two possible ways to deal with this additional difficulty. A first one is
to unfold the net and work directly on it. This has two major drawbacks. Firstly,
it needs to fix the parameters of the system. Secondly, color domains can be far
too large to enable a complete enumeration. In our sense working with colored
nets does not make sense if at some point the net has to be unfolded. All the
interest of the colored nets theory is to define techniques applicable directly on
colored nets without unfolding.
Another solution is two work at the colored net level in a symbolic way. In a
previous work ([10]), we gave simple algorithms to compute a large set of color
mappings and to check property of color mappings of a sub class of well formed
nets. Indeed, the “good” structuring of mappings of well formed nets enable such
algorithms. Our aim is now to define a more general symbolic technique which
cover a larger set of colored nets classes.
Our work is inspired from a previous work of Brgan and Poitrenaud [9]. In this

paper, they propose to compute the stubborn sets of well formed nets in a sym-
bolic manner by using constraints systems. Starting from this initial idea, we
build a general framework, which enable to compute a large set of color map-
pings symbolically.
We focus on a class of safe colored nets which allows any user defined map-
ping. For each mapping construction allowed by this class we show how it can
be translated into an equivalent constraints system. The usefulness of this work
is illustrated by two examples : pre agglomeration ([4], [5], [6], [12], [13]) and
conflicts resolution ([2], [3]).
This work is organized as follow. Section 2 gives some basic definitions on Petri
nets and colored Petri nets. Section 3 presents our framework. At last section 4
gives two examples of application for our method.

2 Basic definitions

We recall here some basic definitions on ordinary Petri nets and colored nets.
We also present the sub class of colored nets studied in this work.

Note. The set of booleans is noted
�
. The set of natural numbers is noted � .

If E is a set, then P(E) is the set of sub sets of E, i.e, e ∈ P(E)⇔ e ⊆ E.

2.1 Petri nets

The nets we study are safe, i.e, each place can contain at most one token. There-
fore we define markings of places as boolean values indicating whether or not
a token is in the place. Similarly incidence matrixes indicate whether or not a
token is consumed (or put).

Definition 1. A safe net is a tuple 〈P, T,W−,W+,m0〉 where :

– P is a finite set of places

– T is a finite set of transitions such that P ∩ T = ∅
– W− and W+, the backward and forward incidence matrixes are mappings

from P × T to
�

– m0 is a mapping from P to
�

Petri nets are graphically represented by drawing places as circles, transitions
as boxes (or bars). Incidence matrixes define arcs (and the mapping labeling the
arc for colored nets). Initial marking indicates tokens in places. These tokens are
represented by dots for ordinary nets and tuples for colored Petri nets.
The set of input (resp. output) places of a transition t is the set {p ∈ P |W−(p, t)}
(resp. {p ∈ P |W+(p, t)}). Similarly, the set of input (resp. output) transitions of
a place p is the set {t ∈ T |W+(p, t)} (resp. {t ∈ T |W−(p, t)}). These definitions
are extended to set of places and transitions, i.e., for P ′ ∈ P(P), •P ′ = ∪p∈P ′

•p

2.2 Safe Colored Petri nets

In colored Petri nets, tokens contained in places have colors, and places and
transitions have color domains. Markings of safe colored nets are subsets of
places domains.

Definition 2. A safe colored Petri net is a tuple 〈P, T, C,W−,W+,m0〉
where :

– P is a finite set of places
– T is a finite set of transitions such that P ∩ T = ∅
– C : (P ∪ T)→ ω is a color domain mapping. ω is the finite set of finite and

non empty sets.
– W− is a mapping from P ×T such that ∀p ∈ P, t ∈ T,W−(p, t) is a mapping

from C(t) to P(C(p))
– W+ is a mapping from P ×T such that ∀p ∈ P, t ∈ T,W+(p, t) is a mapping

from C(t) to P(C(p))
– m0 is a mapping from P such that ∀p ∈ P,m0(p) is an element of P(C(p))

As said previously, a colored net is equivalent to an ordinary net obtained by
an unfolding operation. The hypothesis of finiteness of color domains is necessary
for the unfolding.

Definition 3 (Unfolding). Let N = 〈P, T, C,W−,W+,m0〉 be a colored net.
〈Pu, Tu,W

−
u,W

+
u,m0u〉, the ordinary net obtained by the unfolding of N is

such that :

– Pd = ∪p∈P,c∈C(p)(p, c)
– Td = ∪t∈T,c∈C(t)(t, c)
– ∀p ∈ P, t ∈ T, cp ∈ C(p), ct ∈ C(t),
W−

u((p, cp), (t, ct))⇔ cp ∈W−(p, t)(ct)
W+

u((p, cp), (t, ct))⇔ cp ∈W
+(p, t)(ct)

– ∀p ∈ P, c ∈ C(p),m0u((p, c))⇔ c ∈ m0(p)

In the remainder a place (p, c) obtained by the unfolding of place p is called an
instance of p. Similarly, a transition (t, c) obtained by the unfolding of transition
t is called an instance of t. The term underlying net is also used to denote the
unfolded net.

2.3 A sub class of safe Colored Petri nets

Color domains of places and transitions of the studied class of colored nets are
cartesian products of basic set called color classes.

Definition 4 (Color domain). Let Cl be a finite set of finite sets {C1, . . . , C|Cl|}.
A color domain C is a mapping from [1..ar(C)] to Cl where ar is a function from

�
, the set of color domains to � . A color domain C is noted 〈C(1), . . . , C(ar(e))〉

Color mappings are constructed over a set of elementary mappings. This
elementary mappings are the projection, a constant, the broadcast or a user
defined mapping. This elementary mappings can be combined to form tuples.
At last color mappings are combinations of tuples.

A projection mapping select a specific element in a tuple.

Definition 5 (Projection mapping). Let C be a color domain and Ci be a
color class. The set of projections from C to P(Ci) is {Xi | C(i) = Ci}. For
each Xi, c = 〈c1, . . . , car(C)〉 ∈ C, Xi(c) = {ci}. The set of projections is noted
ProjC→Ci

.

A constant mapping always select the same element.

Definition 6 (Constant mapping). Let C be a color domain and Ci be a
color class. The set of constant mappings from C to P(Ci) is {λ | λ ∈ Ci}. For
each λ, c ∈ C, λ(c) = {λ}. The set of constant mappings is noted ConstC→Ci

.

The broadcast mapping select all the element of the target color class.

Definition 7 (Broadcast mapping). Let C be a color domain and Ci be a
color class. The set of broadcast mappings from C to P(Ci) is the singleton
{All}. For each c ∈ C, All(c) = {c′ ∈ Ci}. The set of broadcast mappings is
noted BroadcastC→Ci

At last we allow any user-defined function. Each function f is defined from
Cf

1 × · · · ×C
f
nf

to a color class Ci. Parameters of a function can be any elemen-

tary mapping except the broadcast mapping (as this mapping produces several
tokens, whereas others elementary mappings can be interpreted as mapping from
C to Ci since they produce a single token).

Definition 8 (User defined mapping). Let C be a color domain and Ci be
a color class. Let � i be the set of mappings defined to Ci. The domain of each
f ∈ � i is Cf

1 × · · · × C
f
nf

The set of user mappings from C to P(Ci) is the set
of couples
{(f, (cf1 , . . . , c

f
nf

)) | f ∈ � i ∧ ∀c
f
i , c

f
i ∈ ConstC→C

f
i
∪ Proj

C→C
f
i
∪User

C→C
f
i
}.

For each c ∈ C, (f, (cf1 , . . . , c
f
nf

))(c) = {f(cf1 , . . . , c
f
nf

)}. The set of user map-

pings from C to P(Ci) is noted UserC→Ci
.

Projections, constants, broadcast, and user defined mappings form the set of
elementary mappings.

Definition 9 (Elementary mapping). Let C be a color domain and Ci be a
color class. The set of elementary function from C to P(Ci) is the set
ElemC→Ci

= ProjC→Ci
∪ ConstC→Ci

∪BroadcastC→Ci
∪ UserC→Ci

A tuple is a set of elementary functions.

Definition 10 (Tuple). Let C and C ′ be two color domains. A tuple tup is a
set ∪i∈[1..ar(C′)]fi ∈ ElemC→C′ . tup is a mapping from C to P(C ′) defined by :
∀c ∈ C, c′ = 〈c′1, . . . , c

′
ar(C′)〉 ∈ C

′,

c′ ∈ t(c)⇔ c′1 ∈ f1(c) ∧ · · · ∧ c
′
ar(C′) ∈ far(C′)(c).

We note TupC→C′ the set of tuples from C to P(C ′). A tuple is also noted
〈f1, . . . , far(C′)〉.

At last a color mapping is defined recursively as a tuple, a union of mappings,
or an intersection of mappings.

Definition 11 (Color mapping). Let C and C ′ be two color domains. MapC→C′,
the set of color mapping from C to P(C ′) is :

– t ∈ TupC→C′

– m ∪m′ with m,m′ ∈MapC→C′

– m ∩m′ with m,m′ ∈MapC→C′

3 A symbolic framework

Our framework is inspired from an initial idea of Poitrenaud and Brgan on
stubborn sets. In [9] they propose to compute stubborn sets of well formed
nets by means of constraints systems solving. For instance if we consider the
mapping f(〈X,Y, Z〉) = 〈Y, 2, All〉, the set of colors 〈X ′, Y ′, Z ′〉 which belongs
to the application f(〈X,Y, Z〉) satisfy the constraints system X ′ = Y ∧ Y ′ = 2.
For each mapping construction (union, difference, . . .) allowed by the class of
nets under study we give an equivalent constraints system. To be able to define
transposition and composition we extend color mappings domain to powerset
in a natural way : if f is a mapping from C to P(C ′), fP(C)→ is a mapping

from P(C) to P(C ′) defined by fP(C)→(C ′′) = ∪c∈C′′f(c). In the remainder, no

distinction is done between f and fP(C)→. Similarly, TupC→C′ and MapC→C′

also denote respectively the set of tuples from P(C) to P(C ′) and the set of
mappings from P(C) to P(C ′).
The definition of constraints systems is given below. Informally, such a system
is a boolean combination of elementary predicates (also called basic predicates)
on the variables of the system. Each variable is associated a color class of Cl by
a mapping D. In addition, we distinguish two different set of variables : the in
and out variables of the systems. These variables correspond to the domain and
the codomain of the mapping which is represented.

Definition 12. A constraints system is a tuple 〈V,D, I, O, P 〉 where V is a set
of variables, D is a mapping from V to Cl, I ⊆ V is a set of in variables, O ⊆ V
is a set of out variables such that I ∩ O = ∅, and P is a boolean combination
of basic predicates over the set V . N = V \ (I ∪ O) is the set of intermediate
variables.

A basic predicate is any boolean condition under the form e1 op e2 where e1
and e2 are either a variable of the system either a constant, either a user defined
mapping and op is in the set {=, 6=}.
Each constraints system is equivalent to a color mapping. A color 〈c1, . . . , cn〉 is
produced by the application m(〈c′1, . . . , c

′
m〉) if we can find an assignment to the

intermediate variables such that the value of predicate P is evaluated to true
for I1 = c1, . . . , In = cn, O1 = c′1, . . . , Om = c′m.

Definition 13. Let C = 〈V,D, I, O, P 〉 be a constraints system such that I =
{I1, . . . , In}, O = {O1, . . . , Om}, N = {N1, . . . , Nl}. The equivalent color map-
ping ψ of C noted ψ ≡ C is the mapping from P(〈D(I1), . . . , D(In)〉) to
P(〈D(O1), . . . , D(Om)〉) defined by :

〈o1, . . . , om〉 ∈ ψ(〈i1, . . . , in〉)
⇔

∃n1, . . . , nl | P (i1, . . . , in, n1, . . . , nl, o1, . . . , om)

3.1 Building constraints systems

Elementary mappings Each elementary mapping is translated into an elemen-
tary predicate. If f is an elementary mapping, we note Predf the corresponding
elementary mapping. In order to define the predicate associated to an elementary
mapping we have to know the tuple in which the elementary mapping appears
to bind the correct variable.

Proposition 1. Let C and C ′ be two color domains, and t = 〈t1, . . . , tar(C′)〉 ∈
TupC→C′ such that t ≡ 〈V,D, I, O, P 〉, I = {I1, . . . , Iar(C)} and
O = {O1, . . . , Oar(C′)}. For each ti the elementary predicate predti

associated to
ti is

predti
=

if ti = Xj then Oi = Ij
if ti = λ then Oi = λ
if ti = All then true
if ti = (f, 〈c1, . . . , cnf

〉) then Oi = (f, 〈c′1, . . . , c
′
nf
〉)

where each c′i is obtained from ci by replacing each Xk by Ik.

Tuples A sufficient and necessary condition for a color 〈c1, . . . , cn〉 to be pro-
duced by a tuple 〈f1, . . . , fn〉 applied to a color c is that each ci belongs to
the application fi(c). Therefore, the equivalent constraints system of a tuple is
obtained by the conjunction of the basic predicate associated to the fi.

Proposition 2. Let C and C ′ be two color domains, and t = 〈t1, . . . , tm〉 ∈
TupC→C′. If

– V = {I1, . . . , Iar(C)} ∪ {O1, . . . , Oar(C′)}
– ∀i ∈ [1..ar(C)], D(Ii) = C(i), and ∀i ∈ [1..ar(C ′)], D(O1) = C ′(i)

– I = {I1, . . . , Iar(C)}
– O = {O1, . . . , Oar(C′)}
– P = [predt1 ∧ . . . ∧ predtar(C′)

]

then t ≡ 〈V,D, I, O, P 〉

Example 1. Let t = 〈X,Y,max(X,Y), All, 0〉 be a tuple from P(〈C,C〉) to
P(〈C,C,C,C,C〉). The corresponding constraints system is
V = {I1, I2, O1, O2, O3, O4, O5}
∀v ∈ V,D(v) = C
I = {I1, I2}
O = {O1, O2, O3, O4, O5}
P = [O1 = I1 ∧ O2 = I2 ∧ O3 = max(I1, I2) ∧O5 = 0]
We note that I4 does not appear in the predicate since the corresponding ele-
mentary mapping is the broadcast.

Union, intersection, and difference To deal with union, intersection and
difference, we simply perform respectively the disjunction, the intersection, and
the disjunction of the right negation of the predicates corresponding to the map-
pings.

Proposition 3. Let C and C ′ be two color domains, m1 ∈MapC→C′ and m2 ∈
MapC→C′. If

– m1 ≡ 〈V1, D1, I, O, P1〉
– m2 ≡ 〈V2, D2, I, O, P2〉
– V = V1 ∪ V2

– ∀v1 ∈ V1, D(v1) = D1(v1) and ∀v2 ∈ V2, D(v2) = D1(v2)
– P∪ = [P1 ∨ P2]
– P∩ = [P1 ∧ P2]
– P\ = [P1 ∧ ¬P2]

then

– m1 ∪m2 ≡ 〈V,D, I, O, P∪〉
– m1 ∩m2 ≡ 〈V,D, I, O, P∩〉
– m1 \m2 ≡ 〈V,D, I, O, P\〉

Example 2. Let t = 〈X,Y, 0〉 and t′ = 〈X,Y, f(X)〉 be two tuples from P(〈C,C〉)
to P(〈C,C,C〉). The constraints system obtained for t ∪ t′, t ∩ t′, t \ t′ are
respectively 〈V,D, I, O, P∪〉, 〈V,D, I, O, P∩〉, and 〈V,D, I, O, P\〉 where :

V = {I1, I2, O1, O2, O3}
∀v ∈ V,D(v) = C
I = {I1, I2}
O = {O1, O2, O3}
P∪ = [(O1 = I1 ∧ O2 = I2 ∧O3 = 0) ∨ (O1 = I1 ∧ O2 = I2 ∧ O3 = f(I1))]
P∩ = [O1 = I1 ∧ O2 = I2 ∧ O3 = 0 ∧ O1 = I1 ∧O2 = I2 ∧ O3 = f(I1)]
P∩ = [(O1 = I1 ∧ O2 = I2 ∧O3 = 0) ∧ ¬(O1 = I1 ∧ O2 = I2 ∧ O3 = f(I1))]

Transposition The transposition is often used to find instances of transitions
which are linked to a place instance. For instance tW−(p, t)(cp) is the set of colors
of ct such that (t, ct) consumes a token in (p, cp). We give now its definition.

Definition 14 (Transposition). If C and C ′ are color domain and f is a
mapping from P(C) to P(C ′), then tf is a mapping from P(C ′) to P(C) defined
by
tf(c′) = {c ∈ C | c′ ∈ f(c)}

The constraints system of the transposition is simply obtained by switching
the in and out set of variables.

Proposition 4. Let C and C ′ be two color domains, m ∈ MapC→C′ . If m ≡
〈V,D, I, O, P 〉 then tm ≡ 〈V,D,O, I, P 〉.

Composition The composition operation allows to find instances of a place
(resp. transition) which are linked to another place (transition) by an interme-
diate transition (place).

Definition 15 (Composition). If C, C ′ and C ′′ are color domain, f is a
mapping from P(C ′′) to P(C ′), and g is a mapping from P(C) to P(C ′′), then
f ◦ g is a mapping from P(C) to P(C ′) defined by
(f ◦ g)(c) = {c′ ∈ C ′ | ∃c′′ | c′′ ∈ g(c) ∧ c′ ∈ f(c′′)}

The constraints system associated to a composition f ◦ g is obtained by the
conjunction of the systems of f and g. In addition, we have to link each output
variable of g to the corresponding input variable of f .

Proposition 5. Let C, C ′ and C ′′ be three color domains, m1 ∈ MapC′′→C′

and m2 ∈MapC→C′′ . If

– m1 ≡ 〈V1, D1, I1, O1, P1〉 with I1 = {I1,1, . . . , I1,ar(C′′)}
– m2 ≡ 〈V2, D2, I2, O2, P2〉 with O2 = {O2,1, . . . , O2,ar(C′′)}
– V = V1 ∪ V2

– ∀v1 ∈ V1, D(v1) = D1(v1) and ∀v2 ∈ V2, D(v2) = D1(v2)
– I = I2
– O = O1

– P = P1 ∧ P2 ∧j∈[1..ar(C′′)] I1,j = O2,j

then

– m1 ◦m2 ≡ 〈V,D, I, O, P 〉

Example 3. Let m1 = 〈X, 0〉 and m2 = 〈X, f(X)〉 be two tuples respectively
from P(〈C,C〉) to P(〈C,C〉) and from P(〈C〉) to P(〈C,C〉). The constraints
system obtained for m1 ◦m2 is :
V = {Im1,1, Im1,2, Om1,1, Om1,2, Im2,1, Om2,1, Om2,2}
∀v ∈ V,D(v) = C
I = {Im2,1}
O = {Om1,1, Om1,2}
P = [Om1,1 = Im1,1 ∧ Om1,2 = 0 ∧

Om2,1 = Im2,1 ∧ Om2,2 = f(Im2,1) ∧
Im1,1 = Om2,1 ∧ Im1,2 = Om2,2]

Summary The following table summarizes the possible constraints systems.

Mapping Predicates In Out
〈f1, . . . , fm〉 predf1 ∧ . . . ∧ predfm

{I1, . . . , In} {O1, . . . , Om}
m1 ∪m2 Pm1 ∨ Pm2 Im1 Om1

m1 ∩m2 Pm1 ∧ Pm2 Im1 Om1

m1 \m2 Pm1 ∧ ¬Pm2 Im1 Om1

tm1 Pm1 Om1 Im1

m1 ◦m2 Pm1 ∧ Pm2 ∧i I1i = O2i Im2 Om1

3.2 Exploiting constraints systems

Checking mapping properties is of course impossible in the general case, i.e. when
the mapping contains some user defined mappings, as it is impossible to reverse
such a mapping. However in some cases we are able to check some mapping
properties at a syntactical level. In order to enable simple syntactical analysis
we put the systems in a canonical form that we call reduced form. A system is
in its reduced form if it is put in normal disjunctive form ∨iPi and each Pi is
reduced. We define some reduction rules that preserve the validity of the system.

Definition 16. Let P be a conjunction of basic predicates. Pr, the reduced form
of P is obtained by applying these rules until no more rule is applicable. We
assume In and Out are respectively the input and output variables of the system.

Transitivity rule (suppress an intermediate variable used to link two others)
if P = [expr = X] ∧ [X = expr′] ∧ P ′ such that X /∈ In ∪ Out
then P ← P ′ ∧ [expr = expr′]

Inconsistency rule (two contradictory predicates appear in the conjunction)
if P = P1 ∧ P2 ∧ P ′ such that P1 = [X = a] and P1 = [X = b] or P1 =
[expr = expr′] and P2 = [expr 6= expr′]
then P ← false

Elimination rule (suppress a useless intermediate variable)
if P = [expr = X] ∧ P ′ such that X /∈ In ∪ Out ∪ V ar(P ′)
then P ← P ′

where X,Y, Z are variables, a, b are constants, and expr, expr′ are any expression
allowed in a basic predicate. V ar(P ′) denotes the set of variables which appear
in P ′.

We give now an example of system reduction.

Example 4. Let 〈V,D, I, O, P 〉 be a system such that :

– V = {i, j, k, l,m, n, o, p, q}
– ∀v ∈ V,D(c) = �
– I = {i, j, k}
– O = {o, p, q}

– P = [i = l ∧ l = o ∧ p = f(m) ∧ k = 2 ∧ q = n ∨
f(l) = o ∧ k = n ∧ n = 2 ∧ n = q ∧ q = 0]

We can reduce the system by the following sequence of reductions applications :
transitivity rule on i = l ∧ l = o→ i = o
elimination rule on q = n
transitivity rule on n = 2 ∧ n = q → q = 2
inconsistency rule on q = 2 ∧ q = 0

Finally, the fully reduced system is P = [i = o ∧ p = f(m) ∧ k = 2]

We give now two examples of such syntactical treatments : emptiness test
and inclusion test.

Emptiness test Emptiness test consists in checking that a mapping m is such
that ∀c ∈ dom(c),m(c) = ∅. To check emptiness it is sufficient to put the system
of m in its reduced form and to check that it is reduced to false. An example
is given in the next section.

Inclusion test Inclusion test consists in checking that two mappings m1 and
m2 from C to P(C ′) are such that ∀c ∈ C,m2(c) ⊆ m1(c). This relation is noted
v. It is sufficient to show that for each predicates conjunction c2 of m2 there is
a predicates conjunction c1 in m1 such that each basic predicate of c1 is also a
basic predicate of c2 by a mapping ψ which map each variable of c1 to a variable
of c2.

Proposition 6. Let m and m′ be two mappings from P(C) to P(C ′). Let φ =
〈V,D, I, O,∨iPi〉 and φ′ = 〈V ′, D′, I, O,∨iP

′
i 〉 be their respective reduced sys-

tems. m v m′ if there is an injective application ψ from V ′ to V such that

1. ∀v ∈ V ′, D′(v) = D(ψ(v)), and ∀v ∈ (I ∪ O), ψ(v) = v
2. ∀Pi = ∧jPi,j , ∃P ′

i′ = ∧j′P
′
i′,j′ , such that ∀P ′

i′,j′ , ∃Pi,j | ψ(P ′
i′ ,j′)⇔ Pi,j

where ψ(P ′
i′ ,j′) maps basic predicate P ′

i′,j′ to the basic predicate obtained by re-
placing a variable v by ψ(v)

Below is an example of inclusion test.

Example 5. Let m1 ≡ [X = 0 ∧ A = Y ∧ B = g(E) ∨ B = 0 ∧ A = g(F)] and
m2 ≡ [X = 0 ∧ B = g(J) ∨ A = g(H)] such that their input variables are X,Y
and their output variables are A,B. We can state that m1 v m2 since there is
the mapping ψ defined by ψ(J) = E,ψ(H) = F, ψ(A) = A,ψ(B) = B,ψ(X) =
X,ψ(Y) = Y and such that :
ψ([X = 0]) = [X = 0], ψ([B = g(J)]) = [B = g(E)]
and
ψ([A = g(H)]) = [A = g(F)]

4 Examples of application

We illustrate the usefulness of our work by two examples. In a first example
we see how it can be used to generalize ordinary pre agglomerations to colored
nets, then we show the usefulness of this work for checking conflicts between
transitions in a symbolic way.

4.1 Ordinary pre agglomeration

Pre and post agglomerations ([4],[5],[6]) are structural reductions which enable
to merge local transitions which do not involve synchronizations. They are very
useful to tackle the state explosion problem. They preserve all basic properties
of the net (liveness, boundness, . . .), as well as many temporal properties ([4])
and their application conditions only relies on the structure of the net. They
have been generalized by Haddad in [8] and then in [12] to colored nets.
The idea of the first one, is to merge a transition h with a set of transitions F . h
can be viewed as a local transition which firing can be delayed. Sufficient struc-
tural conditions which ensure a correct transformation with respect to general
properties are :

1. ∃p ∈ P such that

(a) •p = {h}
(b) h• = {p}
(c) p• = {F}
(d) m0(p) = false

2. ∀q ∈ •h, q• = {h}

The key point which ensures that firing of h can be delayed is point 2. Indeed,
as h does not share its input places, its input places can not lost tokens, and
thus its firing can be delayed. Let us give a colored version of this point. For a
colored generalization to be valid, each place (p, c) in the underlying net must
fulfill these conditions. In [12], conditions given to ensure that each (h, ch) does
not share its input place with another (t, ct), are :
∀q ∈ •h,

– W−(d, h) is a quasi-injective mapping, i.e., ∀c1 ∈ C, c2 ∈ C, c′ ∈ C ′, c′ ∈
f(c1) ∧ c′ ∈ f(c2)⇒ c1 = c2.

– q• = {h}

Instead of forbidding that a place q has no other transition than h, we could
state the following : for each place (p, cp) the set of instances (t, ct) that can
be reached via a transition (h, ch) and a place (q, cq) input of (h, ch) and such
that (t, ct) is an output of (q, cq) is empty. This set of instances is given by the
following mapping :

φ(c) = ∪q∈•h,t∈q•\{h}
tW−(q, t) ◦W−(q, h) ◦ tW+(p, h)(c) = ∅

tW+(p, h)(c) is the set of instances of h which have (p, cp) as a post condition.
If we compose this set with W−(q, h) we get the instances (q, cq) which are linked
to (p, cp) by a (h, ch). At last by composing this mapping with tW−(q, t), we
get the instances (t, c′) which share their input places with the instance (h, ch)
input of (p, cp).
Such a condition can be checked by constructing the constraints system equiva-
lent to the mapping and by checking if it contains inconsistencies. For instance,
let us take net depicted on figure 1. This fragment of net could correspond to an
if-then-else statement.

Unfolding
... ...

if <expr> then Y := f(Y); else ... end if;

C(t) = 〈P, � 〉
C(q) = 〈P, � , � 〉
C(h) = 〈P, � 〉

C(f) = 〈P, � 〉
C(p) = 〈P, � 〉

(q, 〈x, y, false〉) (q, 〈x, y, true〉)

(t, 〈x, y〉)

(f, 〈x, y〉)

(p, 〈x, f(y)〉)

(h, 〈x, y〉)

p

q

〈X, Y 〉

〈X, Y, false〉 〈X, Y, true〉

〈X, f(Y)〉

f

t h

Fig. 1. Second condition is fulfilled for a colored pre agglomeration

As the only input place of h is q and q•\{h} = {t}, the system 〈V,D, I, O, P 〉
of φ is :

V = {Xp, Yp, Xh, Yh, Xq, Yq , Zq, Xt, Yt}
D(Xp) = D(Xh) = D(Xq) = D(Xt) =

�
,

D(Yp) = D(Yh) = D(Yq) = D(Yt) = � ,
D(Zq) =

�

I = {Xp, Yp}
O = {Xt, Yt}

P =

Xp = Xh ∧ Yp = f(Yh) ∧
Xq = Xh ∧ Yq = Yh ∧ Zq = true ∧
Xt = Xq ∧ Yt = Yq ∧ Zq = false

We easily see that there is an inconsistency in the system (Zq = true∧Zq =
false, so we can conclude that the second condition for a pre agglomeration of
h with f is fulfilled. Indeed if we look at the underlying net, it appears that no
instance (h, ch) shares its input place, which is a necessary condition to ensure
a correct agglomeration of h with f .

4.2 Resolution of conflicts

The definition of conflicts has been given by Dutheillet and Haddad in [2] and [3].
A conflict occurs when a transition (t, c) disables the firing of another transition
(t′, c′). A sufficient condition is that (t, c) consumes tokens needed by (t′, c′). The
following mapping computes the set of instances (t′, c′) disabled by a transition
(t, c) via a place p :

tW−(p, t′) ◦ (W−(p, t) \W+(p, t))(c)

As proposed by Dutheillet and Haddad, this notion of conflict can be used to
an implementation of simulation. Indeed, given a marking m and a successor
m′ such that m[(t, c)〉m′ only the transitions which are in conflict with the fired
transition (t, c) are no more firable at m′. For instance let us take net depicted on
figure 2. When transition (t, 〈Xt, Yt〉) is fired only those transitions (t′, 〈Xt′ , Yt′〉)
which satisfy the constraints Xt′ = Xt∧Yt′ = Yt∧¬(Xt′ = Xt∧Yt′ = f(Yt)) are
removed from the list of enabled transitions. If the net is not safe we still have
to check that the transition has been disabled since there may be still enough
tokens to fire the transition.

t′ t

p
〈X, Y 〉 〈X, Y 〉

〈X, f(Y)〉

〈X〉

〈X〉

Fig. 2. A conflict between t and t
′

5 Conclusion

Because of the management of the color mappings, colored Petri nets introduce
an additional complexity in structural analysis techniques. We have defined in
this work a framework based on constraints system which enables to deal with
this complexity in a symbolic manner. The class of colored nets studied include
a large set of color mappings while it still enables analysis possibilities. By two
different examples we have proved the relevance of this work and that it can be
the basis of an efficient implementation of techniques such as net reductions or
simulation.

References

1. Dutheillet C. and Haddad S. An efficient computation of structural relations in
unary regular nets. In Seventh International Symposium on Computer and Infor-
mation Sciences (ISCIS VII), pages 73–79, 1992.

2. Dutheillet C. and Haddad S. Structural analysis of coloured nets. application to
the detection of confusion. Technical report, Rapport IBP/MASI, 1992.

3. Dutheillet C. and Haddad S. Conflict sets in colored petri nets. In 5th International
Workshop on Petri Nets and Performance Models, Toulouse (F) 19.-22. October
1993, pages 76–85, 1993.

4. Poitrenaud D. and Pradat-Peyre J.-F. Pre- and post-agglomerations for LTL
model checking. In Nielsen, M. and Simpson, D., editors, Lecture Notes in Com-
puter Science: 21st International Conference on Application and Theory of Petri
Nets (ICATPN 2000), Aarhus, Denmark, June 2000, volume 1825, pages 387–408.
Springer-Verlag, 2000.

5. Berthelot G. Transformations et Analyse de Reseaux de Petri. Applications aux
Protocoles. These d’Etat, Univ. Paris VI, June 1983. NewsletterInfo: 16.

6. Berthelot G. Transformations and decompositions of nets. In Brauer, W., Reisig,
W., and Rozenberg, G., editors, Lecture Notes in Computer Science: Petri Nets:
Central Models and Their Properties, Advances in Petri Nets 1986, Part I, Pro-
ceedings of an Advanced Course, Bad Honnef, September 1986, volume 254, pages
359–376. Springer-Verlag, 1987. NewsletterInfo: 27.

7. Jensen K. Coloured petri nets: A high level language for system design and analysis.
Lecture Notes in Computer Science; Advances in Petri Nets 1990, 483:342–416,
1991. NewsletterInfo: 39.

8. Couvreur J. M. and Haddad S. Validation of parallel systems with coloured petri
nets. In Cosnard, M. et al., editors, Parallel Processing. Proceedings of the IFIP
WG 10.3 Working Conference, 1988, Pisa, Italy, pages 377–390, Amsterdam, The
Netherlands, 1988. North-Holland.

9. Brgan R. and Poitrenaud D. An efficient algorithm for the computation of stubborn
sets of well formed petri nets. In Proceeding of the 16th International Conference
on Application and Theory of Petri Nets, Turin, June 1995., pages 121–140, 1995.

10. Evangelista S. Structural analysis of quasi well formed nets. Technical report,
Rapport Cedric/CNAM, http://cedric.cnam.fr/, 2004.

11. Haddad S. Une categorie reguliere de reseau de Petri de haut niveau: definition,
proprietes et reductions, application a la validation de systemes distribues. Thesis,
Univ. Paris, France, 1987.

12. Haddad S. A reduction theory for coloured nets. Lecture Notes in Computer
Science; Advances in Petri Nets 1989, 424:209–235, 1990.

13. Haddad S. and Pradat-Peyre J.-F. Efficient reductions for ltl formulae verification.
Technical report, Rapport Cedric/CNAM, http://cedric.cnam.fr/, 2004.

