

A TRANSACTIONAl MULTIMODE MODEL TO HANDLE OVERLOAD

IN DISTRIBUTED RTDBSs

Samia Saad-Bouzefrane, Sofiane Bourenane
Laboratoire CEDRIC, Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75141 , Paris, France

Email: samia.bouzefrane@cnam.fr, bourenanesofiane@hotmail.com

Key words : Real-time database management system, real-time scheduling, commit process, overload, real-time transaction.

Abstract: Current applications, such as Web-based services, electronic commerce, mobile telecommunication systems, etc.

are distributed in nature and manipulate time-critical databases. In order to enhance the performance and the

availability of such applications, the major issue is to develop efficient protocols that cooperate with the

scheduler to manage the overload of the distributed system. In order to help real-time database management

systems (RTDBS) to maintain data logical consistency while attempting to enhance concurrency execution of

transactions, we introduce a transactional multimode model to let the application transactions adapt their

behavior to the overload consequences. In this paper, we propose for each transaction several execution

modes and we derive an overload controller suitable for the proposed multimode model.

1. INTRODUCTION

 Current applications, such as Web-based
services, electronic commerce, mobile
telecommunication systems, etc. are distributed in
nature and manipulate time-critical databases. In
order to enhance the performance and the availability
of such applications, the major issue is to develop
efficient protocols that cooperate with the scheduler
to manage the distributed-system overload.

Data are structured and managed by a real-time
database management system (RTDBS) which
implements functionalities ensuring the data logical
consistency and the respect of temporal constraints
(Duvallet et al. 1999; Ramamritham 1993; Xiong et
al., 1996) for transactions.

 In a distributed real-time environment, the
occurrence of an overload situation within a site is
due to the shortage of processor time, at a given
moment, to ensure the execution on time of all the
transactions activated on this site. This situation
generates an abortion of several transactions and
involves, consequently, the loss of resources and a
degradation of the quality of service. In order to
avoid the undesirable effect of the overload on the
distributed transactional treatment, many researchers
propose to integrate mechanisms that manage and
control the processor load by introducing the concept
of importance. In fact, to each transaction is
associated an importance value used to alleviate the
processor load by removing the least-important

transactions of the application (Kaiser et al. 1998,
Saad et al.. 2003). Unfortunately, the concept of
importance is not sufficient to express the semantic
primordiality of the treatment carried out by the
transactions. In fact, the abortion of the least-
important transactions can also generate a loss in
term of data logical and temporal performances. To
resolve this problem, we present in this paper a
multimode transactional model inspired by the
multimode model of tasks proposed by J. Delacroix
et al. in (Delacroix et al. 2000). Our model specifies a
multimode transactional behavior that allows
distributed real-time transactions to adapte their
behavior to the overload consequences by starting
palliative actions in a degraded mode, instead of
being simply aborted.

 Our study is concerned with “firm-deadline”
transactions because many current applications such
as Web-based services use communication protocols
with timeout features. In firm-deadline applications,
each transaction that misses its deadline is useless
and is then aborted immediately. The remainder of
this paper is organized as follows : Section 2 presents
the related work. Section 3 defines the architecture of
the distributed RTDBS. Section 4 proposes a
transactional model with several modes associated to
transactions to adapte their behavior to the overload
situation. Section 5 describes, at a global level, the
consequences generated by a transaction that
switches to another execution mode. Section 6
derives overload-management algorithms that take
into account the multimode transactional model.
Before concluding in Section 8, Section 7 presents a
simulation framework.

2. RELATED WORK

 Many authors have designed real-time
scheduling algorithms that are resistant to the effects
of system overload (Cottet et al. 2002). In fact, some
algorithms deal with periodic task sets and allow the
system to handle variable computation times which
cannot always be bounded (Atlas et al. 1998, Buttazo
et al. 1998, Mok et al. 1997). Other algorithms deal
with hybrid task sets where tasks are characterized by
an importance value (Delacroix 1996, Kaiser et al.
1998, Koren et al. 1995). Designing algorithms to
manage overload in RTDBSs has received
comparatively little attention, however, and the few
efforts in this area have assumed a centralized real-
time database system. For example, Hansson et al. in
(Hansson et al. 1998, Hansson et al. 2001) propose
an algorithm denoted OR-ULD (Overload
Resolution-Utility Loss Density) that resolves
transient overloads by rejecting non critical
transactions and replacing critical ones with
contingency transactions. The overload resolver
cooperates with an EDF scheduling algorithm (Liu et
al. 1973) that uses SRP (Stack Resource Policy
(Baker 1991)) to handle blocking since the database
is main-memory resident. Hansson et al., in (Hansson
et al. 1999), improve OR-ULD algorithm to bias the
execution among transaction classes such that the
minimum completion ratio constraints are satisfied.
OR-ULD algorithm has been also evaluated in
(Hansson et al. 2000) for imprecise tasks where tasks
are decomposed into one mandatory task that has
hard deadline and one optional task that has firm
deadline.

Bestavros et al., in (Bestavros et al. 1996),
consider overload management for soft deadline
transactions where primary transactions have
compensating transactions. Transactions are
guaranteed to complete either by successful
commitment of the primary transaction or by safe
transaction of the compensating transaction. Datta et
al., in (Datta et al. 1996), developed a scheduling
mechanism to perform admission control both for
managing transient overloads and to bias towards
particular transaction classes. Among the techniques
that use the concept of importance, Saad et al., in
(Saad et al. 2003), have proposed a protocol to
control the transactions load in a distributed RTDBS.
Transactions are assigned values used to define the
importance degree of each transaction with respect to
the application. In order to decrease the transactions
load, only the transactions declared "important" by
the application developer have their execution
maintained, the other transactions considered as less
important are aborted. However, even the abortion of
the least-important transactions may generate a loss
in term of data logical and temporal performances. In
order to resolve this problem, we propose in this
paper a model that specifies a multimode
transactional behavior that allows the least-important
transactions to start palliative actions in overload
situations, instead of being aborted as in (Saad et al.

2003; Kaiser et al. 1998). This model will be used to
derive algorithms that manage processor overload.

3. THE SYSTEM ARCHITECTURE

 In this paper, we are interested only in “firm-
deadline” transactions. Each transaction is submitted
on a site called master site. It is splitted into
subtransactions submitted to sites called participant
sites (see Figure 1).

 Each participant site is composed of four
modules:

- a transactional manager that manages the
validation of the subtransactions using a traditional
two-phase commit protocol (2PC) (Samaras et al.,
1995; Bernstein et al.. 1987),

 - an EDF scheduler (Liu et al., 1973) that
allocates the processor to the highest-priority
transaction that is, to the transaction that has the
nearest deadline,

 - a data manager that manages the data-access
conflicts using a two-phase locking strategy 2PL
(Bernstein et al.. 1987) and

- an overload controller.
 A global transaction, as well as a

subtransaction, is characterized by its arrival time, its
deadline and its importance value that expresses the
criticality of the transaction compared to the other
application transactions. The arrival time of a
subtransaction corresponds to the time at which it is
submitted to the participant site. The deadline and
the importance value of a subtransaction are inherited
from the global transaction to which the
subtransaction belongs. The importance value is a
fixed integer. It will be used by the overload
controller to select the least-important transactions to
consider during the overload-resorption process.

4. THE MULTIMODE

TRANSACTIONAL MODEL

 Within a participant site, an overload occurs
when the time needed to execute all the ready
subtransactions exceeds the available processor time.
In this situation, one or more subtransactions may not
finish their execution before the expiration of their
deadline and consequently may be aborted. It
becomes then necessary to have a multimode
transactional model that defines a behavioral
structure for each subtransaction so that a degraded
mode is triggered each time a processor overload is
detected. In the adapted model of transaction, a
subtransaction is made up of at most four execution
modes : the normal mode which is executed when the
subtransaction begins to execute. It takes care of
normal execution of the subtransaction. Three
survival modes are executed when the normal mode
is rejected, adjourned or revoked. The computation
time of a survival mode should be short because it

contains only actions that set the application in a safe
state. Such specific actions, are for example, release
of data locks, validation or abortion of update
operations.

4.1 Normal mode

 A global transaction T is in normal mode if all
its subtransactions STi ∀ i ∈ { 1, n } executed on
participant sites are in normal mode. Initially, each
subtransaction STi activated by the local
transactional manager, starts its execution in normal
mode. STi preserves its normal execution mode as
long as the overload manager has not selected it as a
victim. A subtransaction is considered as a victim if
its normal mode is cancelled by the overload
manager.

4.2 Survival mode

 This mode is handled by subtransactions
executed on an overloaded site. A subtransaction STi
activates its survival mode when it undergoes, at the
time of its execution in normal mode, an action of the
overload resorption. The activation of this mode lets
the subtransaction to execute palliative actions in a
degraded mode. The survival mode is composed of
three submodes: a rejection mode, an adjournment
mode and a revocation mode. Each submode defines
a program code with a level of degradation specified
by the programmer. A subtransaction cannot switch
to a survival mode as long as its global transaction
does not support this type of mode in its multimode
contract. The program code associated with the
survival mode of a subtransaction must be executed
imperatively. As illustrated in Figure 2, the submodes
are described in the following :

- Rejection Mode : a subtransaction STi is
switched from the normal mode to a rejection mode
if the overload manager chooses STi as a victim
when STi is requesting for the processor for the first
time (STi has not yet begin its execution in normal
mode). Indeed, its insertion into the ready queue with
a normal mode generates an overload situation. The
rejection mode is made up of a program code smaller
than that of the normal mode. STi, in rejection mode,
can be aborted if its insertion in the ready queue may
generate also an overload.

- Adjournment Mode : a subtransaction STi
switches from the normal mode to the adjournment
mode when it undergoes an adjournment of its
execution by the overload controller. An adjournment
action is the operation of stopping the normal mode
of STi when STi is executing before the preparation
phase of 2PC protocol (Bernstein et al., 1987).

- Revocation Mode : a subtransaction STi
switches from the normal mode to the revocation
mode when it undergoes an action of the overload
controller during its preparation phase and before
beginning the commit phase. At this advanced
execution level, the subtransaction switched to the
revocation mode can:

- either execute the data requests in a degraded
mode. The behavior of STi may be the same either in
the revocation mode or in the adjournment mode.

- or stop the preparation phase and vote by YES
in order to accelererate the passage to the commit
phase so that the updates are directly posted on the
database. The subtransaction STi, in revocation
mode, ensures the temporal consistency without
guaranteeing the data logical consistency.

Example :
The following transaction T defines two modes, a

normal mode and a rejection mode. If T is rejected, it
will execute a smaller program code.
T.NormalMode {Begin_Transaction
Req1 : Update Company_quotation
 SET Course = Course + Variation

WHERE Company_identity = FR0006
or Company_identity = FR0011
 Company_identity = FR0028 or
Company_identity = FR0031
Req2 : Update Statistical_quotation
 SET High = Van [1], Low = Van [2]
 WHERE Company_identity = FR0006
or Company_identity = FR0011
 Company_identity = FR0028 or
Company_identity = FR0031
End_Transaction }

T.RejectionMode {Begin_Transaction
Req1 : Update Company_quotation
 SET Course= Course + Variation

WHERE Company_identity >= FR0010
And Company_identity <= FR0030
 End_Transaction }

4.3 Multimode demarcation point

 The multimode demarcation point is defined by
an execution instant from which a subtransaction
cannot support any changing of mode. A
subtransaction STi reaches its demarcation point
when it finishes its preparation phase and sends a
message YES to the master site. At this execution
level, the transaction cannot be cancelled to switch to
a survival mode. Figure 2 locates the demarcation
point relatively to the activation levels in the life time
of a subtransaction.

4.4 A behavioral contract

 A global transaction, as well as a
subtransaction, is characterized by a contract
determining the supported survival modes. The
multimode contract includes three properties and is
declared in a properties file that respects an XML
format (see the following DTD). This file represents
the multimode properties of all the transactions
classes : a class gathers all the transactions which
have the same behavioral contract.

The DTD of the XML file that defines the
multimode contract

<!ELEMENT Contract(Class)>
<!ELEMENT Class(Rejection, Adjournment,
Revocation)>
<!ATTLIST Class type #PCDATA #REQUIRED>
<!ELEMENT Rejection (#PCDATA)>
<!ELEMENT Adjournment (#PCDATA)>
<!ELEMENT Revocation (#PCDATA)>

This is an example of a file that declares

multimode classes.

< Contract>
<Class type = j >
< Rejection> No < / Rejection >
<Adjournment> Yes< /Adjournment>
<Revocation > Yes < /Revocation >
</Class >…………
<Class type = k >
< Rejection> No < / Rejection >
<Adjournment> No < /Adjournment>
<Revocation > Yes < /Revocation >
</Class>
</Contract>

In the example above, the class j gathers all the

non-rejectable, adjournable and revocable
transactions. The class k includes all the revocable,
non-rejectable and non-adjournable transactions.

5 THE CONSEQUENCES OF A

SUBTRANSACTION-MODE

CHANGING

 A subtransaction STk that changes its execution
mode can generate one of the two following
scenarios:

1. all the subtransactions STi ∀i∈ {1,n}-{k}
executed on the other participant sites switch to the
same survival mode m. We say that the global
transaction T supports a synchronized multimode
behavior. This cooperation model for a global
switching is suitable for the transactions that require
the atomicity of their distributed transactional
treatments. STk that causes the global mode
switching does not await for the agreement of the
other subtransactions.

Mode (STi) = normal, for any STi i ∈
{1…n} of T
When STk goes to a survival mode m
 Mode (STk) = m
 For any STi i ∈ {1…n}-{k} of T do
 Switch Mode (STi) to mode m
EndFor

We introduce a protocol that allows the overload

controller to synchronize the switching mode of

subtransactions that belong to the same global
transaction. This protocol implements three
messages: ·

- Mode_Changed (STk, T, Mode = m): message
sent by the overload controller of a participant site to
inform the master site that subtransaction STk has
switched to its survival mode m.

- Change_Mode (STi, T, Mode = m): message
broadcasted by the master site to all the non-
overloaded participant sites to invite them to switch
their subtransaction to the mode m.

- Change_Mode_Ok (STi, T): message sent by
each participant site to the master site once the local
switching has been done.

2. A local switching of the execution mode of

STk without changing the mode of the other
subtransactions STi ∀ i ∈ {1, n}-{k}. This local non-
synchronized switching is supported by a transaction
which a cancellation of the normal mode does not
affect the logical consistency of the database but
degrades the data QoS. This relaxation principle
avoids the loss of resources.

6 THE OVERLOAD CONTROLLER

 The overload controller is composed of two
modules: an admission controller and an overload
manager. These modules cooperate with the
scheduler to set up a scheduling and an overload-
management policy which, in overload conditions,
favours the execution of the most important
transactions and which removes the least important
ones by switching them to the survival mode. Each
overload controller manages the overload situations
within each participant site without communicating
its state to the other local overload controllers.
However, with the introduction of the multimode
transactional model, the overload controllers of the
participant sites communicate to ensure the global
mode switching by using the protocol described
above. The overload controller manages two queues.
We denote by:

ReadyQueues : the ready queue of a participant

site S that contains the subtransactions that are
waiting for the processor. They are sorted by
increasing their deadlines. At time t, ReadyQueues
has the following state :

ReadyQueues(t) = {ST0,m0, ST1,m1,
ST2,m2,…,STn,mn}, mi is the execution mode of
subtransaction STi.

ImportanceQueues : the importance queue of a

participant site S is composed of ready
subtransactions executing in normal mode, sorted by
increasing their importance values. The state of the
queue at time t is the following : ImportanceQueues
= {STk,normal, ImpSTk} k ∈ {1,…,d} (d≤n).

At the arrival of a new subtransaction STn
requiring the processor on a participant site S, the
scheduler invokes the admission controller. This
latter has the role of detecting the overload and
deciding the admission or the rejection of STn. The
overload manager is called by the admission
controller to resorb the overload situation generated
by the insertion of STn into ReadyQueues. The
scheduler is triggered at the end of each overload-
management module to allocate the processor to the
highest-priority ready subtransaction.

6.1 The admission controller

 The admission controller is made up of two
phases: a detection phase and an admission phase.
The detection phase detects overload situations. At
the arrival of a new subtransaction STn,normal, a
parameter called processor laxity (denoted by LP(t))
is computed for the new configuration of
ReadyQueues ∪ {Tn,normal}. The processor laxity
corresponds to the minimal value of the conditional
laxities of the ready subtransactions.

LP(t) = Min (LCSTi,mi(t)) i ∈ {0,.., n} / ∀ STi,mi of
(ReadyQueues ∪ {Tn,normal})

LCSTi,mi(t) is the conditional laxity of the

subtransaction STi,mi. It is equal to the time interval
during which STi,mi can be delayed, from time t,
without missing its deadline. A negative value of
LCSTi,mi means that STi,mi cannot finish its execution
in mode mi before its deadline expires. If LP(t)
corresponds to a positive value, then the admission of
STn,normal in ReadyQueues does not generate an
overload situation. Thus, STn,normal is accepted and
inserted in ReadyQueues. Otherwise, the acceptance
of STn,normal generates an overload situation. In this
case, the controller starts its second phase which
consists in rejecting or accepting STn,normal. If
STn,normal is more important than one or several
normal-mode subtransactions, then it is accepted by
the admission controller. The overload manager is
called then by the admission controller to stabilize
the processor load (Section 6.2 will describe the
principle of stabilization process). Otherwise, STn
switches to the rejection mode. If the execution in
this latter mode does not cause an overload situation
STn,rejection is accepted. Otherwise, it is aborted
causing the abortion of the global transaction.

Module Overload_detection (ReadyQueues,Tn,normal)

Begin

Compute Processor_laxity (ReadyQueues, t)

If Processor_laxity (ReadyQueues, t) < 0 then

 Overload_value= |Processor_laxity

(ReadyQueues, t)| ;

 Call Admission Phase ;

Else

 Call the scheduler to insert Tn,normal into

ReadyQueues;

EndIf End

Admission Phase
Begin

If ImpTn > ImpST ∀ ST ∈ ImportanceQueues Then
Tn,normal is admitted ;

Call the scheduler to insert Tn,normal to ReadyQueues;

Call the overload manager to stabilize ReadyQueues;

Else

Tn is switched to rejection mode Tn,rejection

If (Modenormal(Tn)-Moderejection(Tn)≤ Overload_value)

 Call the scheduler to insert Tn,Rejection into

ReadyQueues;

 Else Tn is aborted

 EndIf

EndIf

End

6.2 The overload manager

 This module is called by the admission
controller when the overload occurs. It proceeds to
the resorption of the overload situation generated by
the insertion of a new subtransaction STn in
ReadyQueues. The overload manager implements a
mechanism called a stabilization process. When an
overload occurs, the stabilization process is executed
to release the least-important transactions that are in
normal mode, by switching them to the survival
mode in order to alleviate the site processor. The
stabilization process builds an overload-resolution
plan denoted by P. The plan P is made up of a subset
of ReadyQueues, denoted ORset, including the least-
important subtransactions that execute in normal
mode, that support the survival mode and that have
not reached yet their demarcation point.

ORset = {STk} STk is a subtransaction of
ReadyQueues chosen in the plan P

 The stabilization process removes all the

subtransactions of ORset chosen in the plan P to
alleviate the processor time, ensuring the deadline
meeting for the most important subtransactions. In
our transactional model, the removal of a
subtransaction means its switching from the normal
mode to a survival mode m which is adequate to its
execution state. That is, (see Figure 2):

- its switching to the revocation mode if it is in
the preparation phase of 2PC protocol,

- or its switching to the adjournment mode if it is
in its data-processing phase. Processor time freed
thanks to this switching is equal to the difference
between the remainder execution time in normal
mode and its computing time in survival mode m.

Processor time freed= [Modenormal (STk) - Modem
(STk)].

The use of the resolution plan P stabilizes

ReadyQueues and generates a new configuration of
ready subtransactions denoted by ReadyQueues

stable.

P(ReadyQueues) = ReadyQueues

stable with
Processor_laxity(ReadyQueues

stable)>0

The stabilization process stops when one of the
following conditions is satisfied:

- the plan P has stabilized ReadyQueues: P
(ReadyQueues) = ReadyQueues

stable and the processor
laxity is a positive value : Processor_laxity
(ReadyQueues

stable)>0. In this case, the overload
situation is resorbed completely.

- all the subtransactions STk of ORset verifying
the selection rules are inserted in the plan P and the
processor laxity is always negative. In this case, the
stabilization process cannot resorb the overload
situation completely. Consequently, the
subtransactions of ReadyQueues, having a negative
conditional laxity, will be aborted.

7 THE SIMULATION

FRAMEWORK

7.1 The Java platform

The simulation platform is based on Java
technology and makes use of MySQL databases. Its
architecture is composed of a master site and three
participant sites over which the database system is
distributed. Transactions are sent via HTTP requests
to the master site which splits them into
subtransactions and distributes them to appropriate
participant sites, where they are processed into SQL
statements and executed. Furthermore, the
communication framework is based on socket
primitives, rather than CORBA, for performance
reasons and messages are modelled as objects.

The master site is implemented as a Java Servlet
and sits on a TomCat Server. Transaction requests
are made via HTTP and each request is handled by
an instance of the Servlet. A transaction request
contains one or more data operations. The number of
the global transaction is calculated as an addition of
the arrival time of the transaction at the master site
and a random number ranging from 0 to one million.
The transaction deadline is calculated from the
arrival time of the transaction at the master site and
the execution time of all its data operations. The
execution time of each data operation is determined
by its type (read or write). An additional time is also
included to cater for communication time between
sites. The importance value of the transaction is
determined from the number of the data operations of
the transaction and from the type of each operation.
To each subtransaction is associated a normal mode
and a survival mode.

The participant site is composed of various
modules, implementing the Overload Manager, the
EDF Scheduler and the Data Manager. All these
modules are defined like threads and work
concurrently.

The application developed to evaluate the
performance of our platform under various working
conditions is composed of three modules:

- the Execution Module : that gets the transactions
to be executed from a file and sends them
simultaneously, in the form of HTTP requests, to the
master site and waits for the execution results.

- the Configuration Module that enables the user
to change the execution parameters of the distributed
system. These parameters allow the user to determine
the conditions under which the transactions would be
executed. For example, the user can determine
whether the importance value of transactions should
be considered during the stabilization process or not,
etc.

- the Statistics Module has the purpose of
analysing the series of execution grouped according
to the type of configuration under which they have
been executed and to display graphically the results
of the analysis.

7.2 Simulation analysis

During the simulation phase, several series of
execution have been used to measure the
performance of the system under different working
conditions. The series vary in terms of the number of
transactions (50, 100, 150, 200, 250, 300) in order to
allow one to evaluate the behavior of each simulation
configuration vis-à-vis a linear increase of the
number of requests. The series have also been
designed in a way to ensure several conflicting data
access between read and write operations and few
conflicts between write operations. All the tests have
been carried out on a platform consisting of
participant sites, each having a local database of 30
records. Also, each distributed transaction contains
three subtransactions, one for each participant site,
and each sub-transaction has at most 3 data
operations. The tests presented in Figure 3 have been
carried out to evaluate the system under various
configurations, comprising the multimode concept
and that of the importance value.

The results of Figure 3 show that the system
achieves the best performance when the multimode
concept is applied and when the importance value of
transactions is considered during the stabilization
process.

8 CONCLUSION

In this paper, we have focused on the design of a
model which defines a transactional behaviour
adapted to the context of real time. The behavioural
and the structural specifications of this model
involving several execution modes for real-time
transactions is an efficient solution to manage
overload situations. A simulation platform based on a
commit processing protocol that manages transient-
overload situations of the distributed system has been
developed. When an overload is detected within a
participant site, the transactions that are important for
the application are favoured. The less important ones
are switched into degraded modes or discarded if the

degraded modes are not sufficient to resorb overload.
The simulation platform is based on Java technology
and makes use of MySQL databases. Transactions
are sent via HTTP requests to the master which is
implemented as a Java Servlet on TomCat server.
Each participant site implements an overload
manager, an EDF scheduler and a data manager. This
platform integrates a graphical interface to submit
transactions, a configuration module to fix a certain
number of parameters and a statistical module that
displays the simulation tests in a graphical way. The
simulation results show good performances under
overload and multimode execution.

9 REFERENCES

(Atlas et al. 1998) A. Atlas and A. Bestavros,

"Statistical Rate Monotonic Scheduling", in proc. of IEEE

Real-Time Systems Symposium, Madrid, dec. 1998.

(Bernstein et al. 1987) P. Bernstein, V. Hadzilacos and

N. Goodman, "Concurrency Control and Recovery in

Database Systems”, Addison Wesley, 1987.

 (Baker 1991) T. P. Baker, "Stack-based Scheduling of

Real-Time Processes", in Real-Time Systems Journal,

3(1), pp. 67-99, march 1991.

(Bernstein et al., 1987) P. Bernstein, V. Hadzilacos and

N. Goodman, "Concurrency Control and Recovery in

Database Systems”, Addison Wesley, 1987.

(Bestavros et al., 1996) A. Bestavros and S.

Nagy,"Value-cognizant Admission Control for RTDB

systems", Proc. of the 17th Real-Time Systems Symp., pp.

230-239, IEEE Computer Society, dec. 1996.

(Buttazo et al., 1998) G. C. Buttazo, G. Lipari and L.

Abeni, "Elastic Task Model for Adaptive Rate Control", in

Proc. of IEEE Real-Time Systems Symposium, Madrid,

dec. 1998.

(Cottet et al., 2002) F. Cottet, J. Delacroix, C. Kaiser

and Z. Mammeri, "Scheduling in Real-Time Systems",

Edition J. Wiley & Sons, 2002.

(Datta et al., 1996) A. Datta and et al., "Multiclass

Transaction Scheduling and Overload Management Real-

Time Database Systems", Information Systems, 21(1), pp.

29-54, 1996.

(Delacroix et al. 2000) J. Delacroix and C. Ménival,

"Intégration d’un Contrôle de Charge par Importance au

sein du système RT-Linux”, RTS’2000 Conference, pp. 47-

63, march 2000, Paris.

 (Duvallet et al. 1999) Claude DUVALLET,

Zoubir MAMMERI, Bruno SADAG., « les SGBD Temps

réel », edition Hermes, 1999.

(Hansson et al., 1998) J. Hansson, S. H. Son, J.A.

Stankovic and S. F. Andler,"Dynamic Transaction

Scheduling and Reallocation in Overloaded Real-Time

Database Systems", Proc. of the 5th Conference on Real-

Time Computing Systems and Applications (RTCSA'98),

pp. 293-302, IEEE Computer Press, 1998.

(Hansson et al., 1999) J. Hansson, S. F. Andler and S.

H. Son, "Value-driven Multi-class Overload Management",

Inter. Conf. on Real-Time Systems and Applications, dec.

1999, Hong Kong.

(Hansson et al., 2000)J. Hansson, M. Thuresson and S.

H. Son,"Imprecise Task Scheduling and Overload

Management using OR-ULD", Inter. Conf. on Real-Time

Computing Systems and Applications}, Korea, dec. 2000.

(Hansson et al., 2001) J. Hansson and S. H. Son,"Real-

Time Database Systems: Architecture and Techniques", K.

Lam and T. Kuo (eds.), Kluwer Academic Publishers, pp.

125-140, 2001.

 (Kaiser et al., 1998) C. Kaiser, C. Santellani,

"Pétrarque. Une Plate-forme d'Expérimentation pour

l'ordonnancement temps réel strict d'applications réparties",

Technique et Science Informatique Journal, 17(1), pp.39-

62, 1998 (French).

(Koren et al., 1995) G. Koren and D. Shasha, "Dover :

An Optimal On-Line Scheduling Algorithm for Overloaded

Uniprocessor Real-Time Systems", SISAM J. Comput.,

24(2), pp.318-339, 1995.

(Liu et al., 1973) C. Liu and J. Leyland, "Scheduling

Algorithms for Multiprogrammig in Hard Real-Time

Environment", Journal of the ACM, 20(1), 1973.

(Mok et al., 1997) A. K. Mok and D. Chen, "A

multiframe model for real-time tasks", IEEE transactions

on Software Engineering, 23(10), p. 635-645, 1997.

(Ramamritham 1993) Ramamritham K., "Real-time

databases", J. of Distributed and Parallel Databases, 1(2),

pp. 199-226, 1993.

(Saad et al., 2003) S. Saad-Bouzefrane and C. Kaiser,

“Distributed Overload Control Control for Real-Time

Replicated Database Systems”, 5th Int. Conf. On Enterprise

Information Systems, april 2003, Angers, France.

(Samaras et al., 1995) G. Samaras et al., “Two-Phase

Commit Optimization in a Commercial Distributed

Environment”, Journal of Distributed and Parallel

Databases, 3(4), 1995.

(Xiong et al., 1996) M. Xiong, J. A. Stankovic, K.

Ramamritham, D. Towsley and R. M. Sivasankara,

“Maintaining Temporal Consistency : issues and

algorithms”, 1st Int. Workshop on RTDBS: Issues and

Applications, pp. 1-6, California, 1996.

Figure 1. The transactional model

Figure 2. The life time of a multimode subtransaction STi

0

20

40

60

80

100

50 100 150 200 250 300

No. of Transactions

%
 o

f
tr

an
sa

ct
io

n
s

m
ee

ti
n

g
 t

h
ei

r
d

ea
d

lin
e

No Ex. modes - No
Importance

No Ex. modes -
Importance

Ex. modes -
Importance

Figure 3. Percentage of transactions meeting their deadline in different situations

