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Abstract:  Current applications, such as Web-based services, electronic commerce, mobile telecommunication systems, etc. 

are distributed in nature and manipulate time-critical databases. In order to enhance the performance and the 

availability of such applications, the major issue is to develop efficient protocols that cooperate with the 

scheduler to manage the overload of the distributed system. In order to help real-time database management 

systems (RTDBS) to maintain data logical consistency while attempting to enhance concurrency execution of 

transactions, we introduce a transactional multimode model to let the application transactions adapt their 

behavior to the overload consequences. In this paper, we propose for each transaction several execution 

modes and we derive an overload controller suitable for the proposed multimode model. 

1. INTRODUCTION   

   Current applications, such as Web-based 
services, electronic commerce, mobile 
telecommunication systems, etc. are distributed in 
nature and manipulate time-critical databases. In 
order to enhance the performance and the availability 
of such applications, the major issue is to develop 
efficient protocols that cooperate with the scheduler 
to manage the distributed-system overload.  

Data are structured and managed by a real-time 
database management system (RTDBS) which 
implements functionalities ensuring the data logical 
consistency and the respect of temporal constraints 
(Duvallet et al. 1999; Ramamritham 1993; Xiong et 
al., 1996) for transactions.  

   In a distributed real-time environment, the 
occurrence of an overload situation within a site is 
due to the shortage of processor time, at a given 
moment, to ensure the execution on time of all the 
transactions activated on this site. This situation 
generates an abortion of several transactions and 
involves, consequently, the loss of resources and a 
degradation of the quality of service. In order to 
avoid the undesirable effect of the overload on the 
distributed transactional treatment, many researchers 
propose to integrate mechanisms that manage and 
control the processor load by introducing the concept 
of importance. In fact, to each transaction is 
associated an importance value  used  to alleviate the 
processor load by removing the least-important 

transactions of the application (Kaiser et al. 1998, 
Saad et al.. 2003). Unfortunately, the concept of 
importance is not sufficient to express the semantic 
primordiality of the treatment carried out by the 
transactions. In fact, the abortion of the least-
important transactions can also generate a loss in 
term of data logical and temporal performances. To 
resolve this problem, we present in this paper a 
multimode transactional model inspired by the 
multimode model of tasks proposed by J. Delacroix 
et al. in (Delacroix et al. 2000). Our model specifies a 
multimode transactional behavior that allows 
distributed real-time transactions to adapte their 
behavior to the overload consequences by starting 
palliative actions in a degraded mode, instead of 
being simply aborted.  

 Our study is concerned with “firm-deadline” 
transactions because many current applications such 
as Web-based services use communication protocols 
with timeout features. In firm-deadline applications, 
each transaction that misses its deadline is useless 
and is then aborted immediately. The remainder of 
this paper is organized as follows : Section 2 presents 
the related work. Section 3 defines the architecture of 
the distributed RTDBS. Section 4 proposes a 
transactional model with several modes associated to 
transactions to adapte their behavior to the overload 
situation. Section 5 describes, at a global level, the 
consequences generated by a transaction that 
switches to another execution mode. Section 6 
derives overload-management algorithms that take 
into account the multimode transactional model. 
Before concluding in Section 8, Section 7 presents a 
simulation framework. 



 

2. RELATED WORK 

  Many authors have designed real-time 
scheduling algorithms that are resistant to the effects 
of system overload (Cottet et al. 2002). In fact, some 
algorithms deal with periodic task sets and allow the 
system to handle variable computation times which 
cannot always be bounded (Atlas et al. 1998, Buttazo 
et al. 1998, Mok et al. 1997). Other algorithms deal 
with hybrid task sets where tasks are characterized by 
an importance value (Delacroix 1996, Kaiser et al. 
1998, Koren et al. 1995). Designing algorithms to 
manage overload in RTDBSs has received 
comparatively little attention, however, and the few 
efforts in this area have assumed a centralized real-
time database system. For example, Hansson et al. in 
(Hansson et al. 1998, Hansson et al. 2001) propose 
an algorithm denoted OR-ULD (Overload 
Resolution-Utility Loss Density) that resolves 
transient overloads by rejecting non critical 
transactions and replacing critical ones with 
contingency transactions. The overload resolver 
cooperates with an EDF scheduling algorithm (Liu et 
al. 1973) that uses SRP (Stack Resource Policy 
(Baker 1991)) to handle blocking since the database 
is main-memory resident. Hansson et al., in (Hansson 
et al. 1999), improve OR-ULD algorithm to bias the 
execution among transaction classes such that the 
minimum completion ratio constraints are satisfied. 
OR-ULD algorithm has been also evaluated in 
(Hansson et al. 2000) for imprecise tasks where tasks 
are decomposed into one mandatory task that has 
hard deadline and one optional task that has firm 
deadline. 

Bestavros et al., in (Bestavros et al. 1996), 
consider overload management for soft deadline 
transactions where primary transactions have 
compensating transactions. Transactions are 
guaranteed to complete either by successful 
commitment of the primary transaction or by safe 
transaction of the compensating transaction. Datta et 
al., in (Datta et al. 1996), developed a scheduling 
mechanism to perform admission control both for 
managing transient overloads and to bias towards 
particular transaction classes. Among the techniques 
that use the concept of importance, Saad et al., in 
(Saad et al. 2003), have proposed a protocol to 
control the transactions load in a distributed RTDBS. 
Transactions are assigned values used to define the 
importance degree of each transaction with respect to 
the application. In order to decrease the transactions 
load, only the transactions declared "important" by 
the application developer have their execution 
maintained, the other transactions considered as less 
important are aborted. However, even the abortion of 
the least-important transactions may generate a loss 
in term of data logical and temporal performances. In 
order to resolve this problem, we propose in this 
paper a model that specifies a multimode 
transactional behavior that allows the least-important 
transactions to start palliative actions in overload 
situations, instead of being aborted as in (Saad et al. 

2003; Kaiser et al. 1998). This model will be used to 
derive algorithms that manage processor overload.  

3. THE SYSTEM ARCHITECTURE  

   In this paper, we are interested only in “firm-
deadline” transactions. Each transaction is submitted 
on a site called master site. It is splitted into 
subtransactions submitted to sites called participant 
sites (see Figure 1).  

   Each participant site is composed of four 
modules:  

- a transactional manager that manages the 
validation of the subtransactions using a traditional 
two-phase commit protocol (2PC) (Samaras et al., 
1995; Bernstein et al.. 1987), 

 - an EDF scheduler (Liu et al., 1973) that 
allocates the processor to the highest-priority 
transaction that is, to the transaction that has the 
nearest deadline, 

 - a data manager that manages the data-access 
conflicts using a two-phase locking strategy 2PL 
(Bernstein et al.. 1987) and  

- an overload controller.  
   A global transaction, as well as a 

subtransaction, is characterized by its arrival time, its 
deadline and its importance value that expresses the 
criticality of the transaction compared to the other 
application transactions. The arrival time of a 
subtransaction corresponds to the time at which it is 
submitted to the  participant site. The deadline and 
the importance value of a subtransaction are inherited 
from the global transaction to which the 
subtransaction belongs. The importance value is a 
fixed integer. It will be used by the overload 
controller to select the least-important transactions to 
consider during the overload-resorption process.  

4. THE MULTIMODE 

TRANSACTIONAL MODEL 

     Within a participant site, an overload occurs 
when the time needed to execute all the ready 
subtransactions exceeds the available processor time. 
In this situation, one or more subtransactions may not 
finish their execution before the expiration of their 
deadline and consequently may be  aborted. It 
becomes then necessary to have a multimode 
transactional model that defines a behavioral 
structure for each subtransaction so that a degraded 
mode is triggered each time a processor overload is 
detected. In the adapted model of transaction, a 
subtransaction is made up of at most  four execution 
modes : the normal mode which is executed when the 
subtransaction begins to execute. It takes care of 
normal execution of the subtransaction. Three 
survival modes are executed when the normal mode 
is rejected, adjourned or revoked. The computation 
time of a survival mode should be short because it 



 

contains only actions that set the application in a safe 
state. Such specific actions, are for example, release 
of data locks, validation or abortion of update 
operations.  

4.1 Normal mode  

   A global transaction T is in normal mode if all 
its subtransactions STi ∀ i ∈ { 1, n } executed on 
participant sites are in normal mode. Initially, each 
subtransaction STi activated by the local 
transactional manager, starts its execution in normal 
mode. STi preserves its normal execution mode as 
long as the overload manager has not selected it as a 
victim. A subtransaction is considered as a victim if 
its normal mode is cancelled by the overload 
manager. 

4.2 Survival mode  

   This mode is handled by subtransactions 
executed on an overloaded site. A subtransaction STi 
activates its survival mode when it undergoes, at the 
time of its execution in normal mode, an action of the 
overload resorption. The activation of this mode lets 
the subtransaction to execute palliative actions in a 
degraded mode. The survival mode is composed of 
three submodes: a rejection mode, an adjournment 
mode and a revocation mode. Each submode defines 
a program code with a level of degradation specified 
by the programmer. A subtransaction cannot switch 
to a survival mode as long as its global transaction 
does not support this type of mode in its multimode 
contract. The program code associated with the 
survival mode of a subtransaction must be executed 
imperatively. As illustrated in Figure 2, the submodes 
are described in the following :  

- Rejection Mode : a subtransaction STi is 
switched from the normal mode to a rejection mode 
if the overload manager chooses STi as a victim 
when STi is requesting for the processor for the first 
time (STi has not yet begin its execution in normal 
mode). Indeed, its insertion into the ready queue with 
a normal mode generates an overload situation. The 
rejection mode is made up of a program code smaller 
than that of the normal mode. STi, in rejection mode, 
can be aborted if its insertion in the ready queue may 
generate also an overload. 

- Adjournment Mode : a subtransaction STi 
switches from the normal mode to the adjournment 
mode when it undergoes an adjournment of its 
execution by the overload controller. An adjournment 
action is the operation of stopping the normal mode 
of STi when STi is executing before the preparation 
phase of 2PC protocol (Bernstein et al., 1987).  

- Revocation Mode : a subtransaction STi 
switches from the normal mode to the revocation 
mode when it undergoes an action of the overload 
controller during its preparation phase and before 
beginning the commit phase. At this advanced 
execution level, the subtransaction switched to the 
revocation mode can:  

- either execute the data requests in a degraded 
mode. The behavior of STi may be the same either in 
the revocation mode or in the adjournment mode.  

- or stop the preparation phase and vote by YES 
in order to accelererate the passage to the commit 
phase so that the updates are directly posted on the 
database. The subtransaction STi, in revocation 
mode, ensures the temporal consistency without 
guaranteeing the data logical consistency. 

 
Example : 
The following transaction T defines two modes, a 

normal mode and a rejection mode. If T is rejected, it 
will execute a smaller program code. 
T.NormalMode {Begin_Transaction 
Req1 : Update Company_quotation   
  SET Course = Course + Variation 

WHERE Company_identity = FR0006 
or Company_identity = FR0011 
      Company_identity = FR0028 or 
Company_identity = FR0031 
Req2 : Update Statistical_quotation   
  SET High = Van [1], Low = Van [2] 
      WHERE Company_identity = FR0006 
or Company_identity = FR0011 
    Company_identity = FR0028 or 
Company_identity = FR0031 
End_Transaction } 
 
T.RejectionMode {Begin_Transaction 
Req1 : Update Company_quotation 
    SET Course= Course + Variation    

WHERE Company_identity >= FR0010 
And Company_identity <= FR0030 
 End_Transaction } 

4.3 Multimode demarcation point  

   The multimode demarcation point is defined by 
an execution instant from which a subtransaction 
cannot support any changing of mode. A 
subtransaction STi reaches its demarcation point 
when it finishes its preparation phase and sends a 
message YES to the master site. At this execution 
level, the transaction cannot be cancelled to switch to 
a survival mode. Figure 2 locates the demarcation 
point relatively to the activation levels in the life time 
of a subtransaction.  

4.4 A behavioral contract 

   A global transaction, as well as a 
subtransaction, is characterized by a contract 
determining the supported survival modes. The 
multimode contract includes three properties and is 
declared in a properties file that respects an XML 
format (see the following DTD). This file represents 
the multimode properties of all the transactions 
classes : a class gathers all the transactions which 
have the same behavioral contract.  

 



 

The DTD of the XML file that defines the 
multimode contract    

 
<!ELEMENT Contract(Class)> 
<!ELEMENT Class(Rejection, Adjournment, 
Revocation)> 
<!ATTLIST Class type #PCDATA #REQUIRED> 
<!ELEMENT Rejection (#PCDATA)> 
<!ELEMENT Adjournment (#PCDATA)> 
<!ELEMENT Revocation (#PCDATA)>  

 
This is an example of a file that declares 

multimode classes. 
 

< Contract> 
<Class type = j >  
< Rejection> No < / Rejection > 
<Adjournment> Yes< /Adjournment>  
<Revocation > Yes < /Revocation > 
</Class >………… 
<Class type = k >  
< Rejection> No < / Rejection > 
<Adjournment> No < /Adjournment>             
<Revocation > Yes < /Revocation > 
</Class>  
</Contract>  

 
In the example above, the class j gathers all the 

non-rejectable, adjournable and revocable 
transactions. The class k includes all the revocable, 
non-rejectable and non-adjournable transactions. 

5 THE CONSEQUENCES OF A 

SUBTRANSACTION-MODE 

CHANGING  

   A subtransaction STk that changes its execution 
mode can generate one of the two following 
scenarios:  

1. all the subtransactions STi ∀i∈ {1,n}-{k} 
executed on the other participant sites switch to the 
same survival mode m. We say that the global 
transaction T supports a synchronized multimode 
behavior. This cooperation model for a global 
switching is suitable for the transactions that require 
the atomicity of their distributed transactional 
treatments. STk that causes the global mode 
switching does not await for the agreement of the 
other subtransactions.   

 
Mode (STi) = normal, for any STi i ∈ 
{1…n} of T  
When STk goes to a survival mode m 
     Mode (STk) = m 
     For any STi i ∈ {1…n}-{k} of T do 
        Switch Mode (STi) to mode m 
EndFor   

 
We introduce a protocol that allows the overload 

controller to synchronize the switching mode of 

subtransactions that belong to the same global 
transaction. This protocol implements three 
messages: ·  

- Mode_Changed (STk, T, Mode = m): message 
sent by the overload controller of a participant site to 
inform the master site that subtransaction STk has 
switched to its survival mode m.  

- Change_Mode (STi, T, Mode = m): message 
broadcasted by the master site to all the non-
overloaded participant sites to invite them to switch 
their subtransaction to the mode m.  

- Change_Mode_Ok (STi, T): message sent by 
each participant site to the master site once the local 
switching has been done.   

 
2. A local switching of the execution mode of 

STk without changing the mode of the other 
subtransactions STi ∀ i ∈ {1, n}-{k}. This local non-
synchronized switching is supported by a transaction 
which a cancellation of the normal mode does not 
affect the logical consistency of the database but 
degrades the data QoS. This relaxation principle 
avoids the loss of resources.  

6 THE OVERLOAD CONTROLLER  

   The overload controller is composed of two 
modules: an admission controller and an overload 
manager. These modules cooperate with the 
scheduler to set up a scheduling and an overload-
management policy which, in overload conditions, 
favours the execution of the most important 
transactions and which removes the least important 
ones by switching them to the survival mode. Each 
overload controller manages the overload situations 
within each participant site without communicating 
its state to the other local overload controllers. 
However, with the introduction of the multimode 
transactional model, the overload controllers of the 
participant sites communicate to ensure the global 
mode switching by using the protocol described 
above. The overload controller manages two queues. 
We denote by:  

 
ReadyQueues : the ready queue of a participant 

site S that contains the subtransactions that are 
waiting for the processor. They are sorted by 
increasing their deadlines. At time t, ReadyQueues 
has the following state :  

ReadyQueues(t) = {ST0,m0, ST1,m1, 
ST2,m2,…,STn,mn}, mi is the execution mode of 
subtransaction STi. 

 
ImportanceQueues : the importance queue of a 

participant site S is composed of ready 
subtransactions executing in normal mode, sorted by 
increasing their importance values. The state of the 
queue at time t is the following :  ImportanceQueues 
= {STk,normal, ImpSTk} k ∈ {1,…,d}  (d≤n). 

 



 

At the arrival of a new subtransaction STn 
requiring the processor on a participant site S, the 
scheduler invokes the admission controller. This 
latter has the role of detecting the overload and 
deciding the admission or the rejection of STn. The 
overload manager is called by the admission 
controller to resorb the overload situation generated 
by the insertion of STn into ReadyQueues. The 
scheduler is triggered at the end of each overload-
management module to allocate the processor to the 
highest-priority ready subtransaction.  

6.1 The admission controller  

   The admission controller is made up of two 
phases: a detection phase and an admission phase. 
The detection phase detects overload situations. At 
the arrival of a new subtransaction STn,normal, a 
parameter called processor laxity (denoted by LP(t)) 
is computed for the new configuration of 
ReadyQueues ∪ {Tn,normal}. The processor laxity 
corresponds to the minimal value of the conditional 
laxities of the ready subtransactions.  

LP(t) = Min (LCSTi,mi(t)) i ∈ {0,.., n} /  ∀ STi,mi of 
(ReadyQueues ∪ {Tn,normal}) 

 
LCSTi,mi(t) is the conditional laxity of the 

subtransaction STi,mi. It is equal to the time interval 
during which STi,mi can be delayed, from time t, 
without missing its deadline. A negative value of 
LCSTi,mi means that STi,mi cannot finish its execution 
in mode mi before its deadline expires. If LP(t) 
corresponds to a positive value, then the admission of 
STn,normal in ReadyQueues does not generate an 
overload situation. Thus, STn,normal is accepted and 
inserted in ReadyQueues. Otherwise, the acceptance 
of STn,normal generates an overload situation. In this 
case, the controller starts its second phase which 
consists in rejecting or accepting STn,normal. If 
STn,normal is more important than one or several 
normal-mode subtransactions, then it is accepted by 
the admission controller. The overload manager is 
called then by the admission controller to stabilize 
the processor load (Section 6.2 will describe the 
principle of stabilization process). Otherwise, STn 
switches to the rejection mode. If  the execution in 
this latter mode does not cause an overload situation 
STn,rejection is accepted. Otherwise, it is aborted 
causing the abortion of the global transaction.  

 
Module Overload_detection (ReadyQueues,Tn,normal ) 

Begin   

Compute  Processor_laxity (ReadyQueues, t)  

If  Processor_laxity (ReadyQueues, t) < 0 then  

 Overload_value= |Processor_laxity  

(ReadyQueues, t)| ; 

 Call Admission Phase ;  

Else  

 Call the scheduler to insert Tn,normal into 

ReadyQueues; 

EndIf  End  

Admission Phase  
Begin 

If ImpTn > ImpST   ∀ ST ∈  ImportanceQueues   Then  
Tn,normal is admitted ; 

Call the scheduler to insert Tn,normal to ReadyQueues; 

Call the overload manager to stabilize ReadyQueues; 

Else    

Tn is switched to rejection mode Tn,rejection 

If (Modenormal(Tn)-Moderejection(Tn)≤ Overload_value) 

      Call the scheduler to insert Tn,Rejection  into 

ReadyQueues; 

  Else   Tn is aborted  

  EndIf 

EndIf   

End 

6.2 The overload manager 

  This module is called by the admission 
controller when the overload occurs. It proceeds to 
the resorption of the overload situation generated by 
the insertion of a new subtransaction STn in 
ReadyQueues. The overload manager implements a 
mechanism called a stabilization process. When an 
overload occurs, the stabilization process is executed 
to release the least-important transactions that are in 
normal mode, by switching them to the survival 
mode in order to alleviate the site processor. The 
stabilization process builds an overload-resolution 
plan denoted by P. The plan P is made up of a subset 
of ReadyQueues, denoted ORset, including the least-
important subtransactions that execute in normal 
mode, that support the survival mode and that have 
not reached yet their demarcation point.  

ORset = {STk} STk  is a subtransaction of  
ReadyQueues chosen in the plan P 

 
   The stabilization process removes all the 

subtransactions of ORset chosen in the plan P to 
alleviate the processor time, ensuring the deadline 
meeting for the most important subtransactions. In 
our transactional model, the removal of a 
subtransaction means its switching from the normal 
mode to a survival mode m which is adequate to its 
execution state. That is, (see Figure 2):  

- its switching to the revocation mode if it is in 
the preparation phase of 2PC protocol,  

- or its switching to the adjournment mode if it is 
in its data-processing phase. Processor time freed 
thanks to this switching is equal to the difference 
between the remainder execution time in normal 
mode and its computing time in survival mode m.  

Processor time freed= [Modenormal (STk) - Modem 
(STk)]. 

 
The use of the resolution plan P stabilizes 

ReadyQueues and generates a new configuration of 
ready subtransactions denoted by ReadyQueues

stable. 
 
P(ReadyQueues) = ReadyQueues

stable with 
Processor_laxity(ReadyQueues

stable)>0 
 



 

The stabilization process stops when one of the 
following conditions is satisfied: 

- the plan P has stabilized ReadyQueues: P 
(ReadyQueues) = ReadyQueues

stable and the processor 
laxity is a positive value : Processor_laxity 
(ReadyQueues

stable)>0. In this case, the overload 
situation is resorbed completely.  

- all the subtransactions STk of ORset verifying 
the selection rules are inserted in the plan P and the 
processor laxity is always negative. In this case, the 
stabilization process cannot resorb the overload 
situation completely. Consequently, the 
subtransactions of ReadyQueues, having a negative 
conditional laxity, will be aborted.  

7 THE SIMULATION 

FRAMEWORK 

7.1  The Java platform 

The simulation platform is based on Java 
technology and makes use of MySQL databases. Its 
architecture is composed of a master site and three 
participant sites over which the database system is 
distributed. Transactions are sent via HTTP requests 
to the master site which splits them into 
subtransactions and distributes them to appropriate 
participant sites, where they are processed into SQL 
statements and executed. Furthermore, the 
communication framework is based on socket 
primitives, rather than CORBA, for performance 
reasons and messages are modelled as objects. 

The master site is implemented as a Java Servlet 
and sits on a TomCat Server. Transaction requests 
are made via HTTP and each request is handled by 
an instance of the Servlet. A transaction request 
contains one or more data operations. The number of 
the global transaction is calculated as an addition of 
the arrival time of the transaction at the master site 
and a random number ranging from 0 to one million. 
The transaction deadline is calculated from the 
arrival time of the transaction at the master site and 
the execution time of all its data operations. The 
execution time of each data operation is determined 
by its type (read or write). An additional time is also 
included to cater for communication time between 
sites. The importance value of the transaction is 
determined from the number of the data operations of 
the transaction and from the type of each operation. 
To each subtransaction is associated a normal mode 
and a survival mode. 

The participant site is composed of various 
modules, implementing the Overload Manager, the 
EDF Scheduler and the Data Manager. All these 
modules are defined like threads and work 
concurrently. 

The application developed to evaluate the 
performance of our platform under various working 
conditions is composed of three modules: 

- the Execution Module : that gets the transactions 
to be executed from a file and sends them 
simultaneously, in the form of HTTP requests, to the 
master site and waits for the execution results. 

- the Configuration Module that enables the user 
to change the execution parameters of the distributed 
system. These parameters allow the user to determine 
the conditions under which the transactions would be 
executed. For example, the user can determine 
whether the importance value of transactions should 
be considered during the stabilization process or not, 
etc.  

- the Statistics Module has the purpose of 
analysing the series of execution grouped according 
to the type of configuration under which they have 
been executed and to display graphically the results 
of the analysis.  

7.2 Simulation analysis 

During the simulation phase, several series of 
execution have been used to measure the 
performance of the system under different working 
conditions. The series vary in terms of the number of 
transactions (50, 100, 150, 200, 250, 300)  in order to 
allow one to evaluate the behavior of each simulation 
configuration vis-à-vis a linear increase of the 
number of requests. The series have also been 
designed in a way to ensure several conflicting data 
access between read and write operations and few 
conflicts between write operations. All the tests have 
been carried out on a platform consisting of 
participant sites, each having a local database of 30 
records. Also, each distributed transaction contains 
three subtransactions, one for each participant site, 
and each sub-transaction has at most 3 data 
operations. The tests presented in Figure 3 have been 
carried out to evaluate the system under various 
configurations, comprising the multimode concept 
and that of the importance value. 

The results of Figure 3 show that the system 
achieves the best performance when the multimode 
concept is applied and when the importance value of 
transactions is considered during the stabilization 
process. 

8 CONCLUSION  

In this paper, we have focused on the design of a 
model which defines a transactional behaviour 
adapted to the context of real time. The behavioural 
and the structural specifications of this model 
involving several execution modes for real-time 
transactions is an efficient solution to manage 
overload situations. A simulation platform based on a 
commit processing protocol that manages transient-
overload situations of the distributed system has been 
developed. When an overload is detected within a 
participant site, the transactions that are important for 
the application are favoured. The less important ones 
are switched into degraded modes or discarded if the 



 

degraded modes are not sufficient to resorb overload. 
The simulation platform is based on Java technology 
and makes use of MySQL databases. Transactions 
are sent via HTTP requests to the master which is 
implemented as a Java Servlet on TomCat server. 
Each participant site implements an overload 
manager, an EDF scheduler and a data manager. This 
platform integrates a graphical interface to submit 
transactions, a configuration module to fix a certain 
number of parameters and a statistical module that 
displays the simulation tests in a graphical way. The 
simulation results show good performances under 
overload and multimode execution.    
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Figure 1. The transactional model 

 

 

 
 

 

 
Figure 2. The life time of a multimode subtransaction STi 
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Figure 3. Percentage of transactions meeting their deadline in different situations  

 
 


