
Chameneos, a Concurrency Game for Java, Ada and
Others

Claude Kaiser, Jean-François Pradat-Peyre
CEDRIC - CNAM Paris

292, rue St Martin, 75003 Paris�
kaiser, peyre � @cnam.fr

I. INTRODUCTION

This paper presents a peer-to-peer cooperation paradigm and
several implementations. The paradigm is expressed as a game.
The implementations are done in three different languages
largely available to-day (Ada, Java and C with the Posix
standard). This allows comparing their programming style and
their ability to provide secure programs. Java and Ada are high
level languages which allow concurrent programming. Both
use the concept of monitor, but their implementation choices
make them differ greatly. Posix offers low level system API
for concurrent programming.

As prolegomena of the game, we first present the application
contexts in which this concurrency paradigm may be useful.
Then we summerize the concurrent programming structures of
Java, Ada and Posix, and the coloured Petri nets formalism.
This presentation may be skipped by the user aware of it.

II. THE CONTEXT

A. Applications requiring concurrent and symmetrical coop-
eration

More and more applications require that cooperation do not
rely only on the client server relationship. They rather specify
some form of symmetrical relationship between users. This
relationship appears as a symmetrical rendez-vous or peer to
peer cooperation. Let us give some examples.

1) In e-commerce, two consumers may decide to join
for better condition and to set up internal rules. Their
negotiation may start at a meeting infrastructure which
can be seen as a virtual marketplace [1].

2) In the internet, peer to peer exchange of data (im-
ages, music) starts finding a partner, then agreeing to
use a common protocol for data transmission (Napster,
Gnutella, Freenet, JXTA).

3) In artificial intelligence multi agent applications, coop-
eration between agents need some form of negotiation
to specialize or modify the agent behaviours [2].

B. Concurrent programming (Java, Ada, others)

Concurrency introduces in the same time design facilities
and reliability problems. Indeed, the interleaving of tasks
execution leads to a high degree of combinatory and may
be the source of subtle mistakes that are difficult to detect
by simple simulations or human reasoning. Furthermore, a

little modification in a part of the code can produce a major
transformation of the application behavior.

In high level languages, such as Java and Ada which
allow concurrent programming, concurrency control of asyn-
chronous processes, named “threads” in Java, “tasks” in Ada,
relies on the concept of a monitor as introduced by Brinch
Hansen [3] and Hoare [4]. A general presentation of concurrent
programming is available in [5] and a classification of different
monitor implementations is given in [6].

The state variables are encapsulated in the monitor and
monitor procedures execute in mutual exclusion. The mutual
exclusion is always guaranteed by a lock. The language im-
plementation choices differ by the way of providing condition
synchronization and treating queuing rules.

The Java policy uses explicit self-blocking and signaling
instructions. It provides “wait()” and “notify()” clauses with
a unique waiting queue per encapsulated object (termed “syn-
chronized”).

A self-blocking thread joins the waiting queue and releases
the object mutual exclusion lock. A notifying thread wakes
up one or all waiting threads (which join the ready threads
queue), but it does not release the lock immediately. It keeps
it until it reaches the end of the synchronized “method” (or
“block”) ; this is the “signal and continue” monitor discipline.
Hence the awaken threads must still wait and contend for the
lock when it becomes available.

However, as the lock is released, and not directly passed to
an awaken thread, another thread contending for the monitor
may take precedence over awaken threads. More precisely, as
the awaken threads share the ready queue with other threads,
one of the latters may take precedence over the formers when
contending for the processor; if this elected thread calls also a
synchronized method (or enters a synchronized block) of the
object, it will acquire the lock before the awaken threads and
then access the object before them. This may contravene the
problem specification and may require the use of defensive
programming.

Ada provides protected object types and has no low level
clauses for blocking and awakening tasks. Condition synchro-
nization relies on programmed guards (a boolean expression
termed “barrier”). Access is provided by calling entries, func-
tions and procedures, but only one of these can be executed at
a time in mutual exclusion. The entries have barrier conditions
which must be true before the corresponding entry body can



be executed. If the barrier condition is false, then the call
is queued and the mutual exclusion is released. At the end
of the execution of an entry or a procedure body of the
protected object, all barriers which have queued tasks are re-
evaluated and one waiting call which barrier condition is now
true is executed. The mutual exclusion is released only when
there is no more waiting task with a true barrier condition.
Thus existing waiting calls with true barrier condition take
precedence over new calls. This is the eggshell model for
monitors.

The “requeue” statement enables a request to be processed
in two or more steps, each associated with an entry call. The
effect is to return the current caller back to an entry queue.
The caller is neither aware of the number of steps nor of the
requeuing of its call. This sequence of steps corresponds to a
sequential automaton. According to the eggshell model, any
entry call of such a sequence which guard has become true
has precedence over a new call contending for the protected
object.

The third concurrency programming tool has been intro-
duced to show how, in the absence of an adequate high level
language, a reliable software engineering technique can be
implemented by hand, when the underlying operating systems
provides the standard Posix interface. Our implementation uses
threads that have access to a shared address space (for example
a Posix process) and semaphores.

The lock is explicitely implemented with a mutual exclu-
sion semaphore and condition synchronization is implemented
with the private semaphore scheme. Recall that the mutual
exclusion and private semaphore schemes were introduced
by Dijkstra in his seminal paper [Dijkstra 1968] and that
the monitor concept is derived from them. The Posix thread
and semaphore types use “pthread t” and “sem t” struc-
tures and “pthread create()”, “pthread join()”, “sem wait()”,
“sem post()”, “sem init()” functions (other Posix types, such
as “pthread mutex” or “pthread cond t” could also be used for
implementing a monitor like structure; refer to [7]). Another
reason for presenting this programming style is that real-time
Posix standard are included in Real-Time Java proposals [8].

C. Petri nets and coloured Petri nets

A Petri net [9], [10] is a 4-tuple ���������	��
��
����� where �
is the set of places, � is the set of transitions, � � (resp. � 
 )
is the the backward (resp. forward) incidence application from
����� to � .

A Petri net can be viewed as a state transition system where
the places denote states or resources of the system and where
the transitions denote the actions that model state evolution and
resources modification. A marking � of a net is an application
from � to � that defines for any place � the number of tokens
contained in � for � . The backward incidence application
( ��� ) reflects for a a place � and a transition � how many
instances ( ������������� ) of token are needed to fire transition
� . In the same way, the forward incidence application ( ��
 )
defines how many tokens are produced in place � when firing
transition � ( ��
���������� ). A transition � is fireable at a marking

�
if and only if

� �����! "� � ��������� for all places � ; the
reached marking

��#
is defined by $%�'&'�(� ��# �)�*�,+ � ������-

���.�)�������0/1�2
(��������� . The set of all reachable markings from
the initial marking

�!3
is denoted by 465758�9�:� �!3 � .

A Petri net is commonly represented by a bipartite valuated
graph where nodes are items of �<;=� , and arcs are defined
by �2
 and ��� in the following way: an arc valued by >@?BA
exists from a place � to a transition � (resp. from � to � ) if
and only if �C�.�)�������,+D> (resp. �2
����������,+D> ).

Coloured nets allow the modeling of more complex systems
than ordinary nets because of the abbreviation provided by this
model. In a coloured net, a place contains typed (or coloured)
tokens instead of anonymous tokens in Petri nets, and a
transition may be fired in multiple ways (i.e. instantiated). To
each place and each transition is attached a type (or a colour)
domain. An arc from a transition to a place (resp. from a place
to a transition) is labeled by a linear function called a colour
function. This function determines the number and the type
(or the colour) of tokens that have to be added to or removed
from the place upon firing the transition with respect to a
colour instantiation.

There are three properties that are fundamental in Petri nets
theory : the liveness, the weakly-liveness and the deadlock-
ability. A net is said to be live when, whatever the state reached
by the net, all transitions remain fireable in future. A net is
said to be deadlockable when it can reach a marking at which
no transition is fireable. This marking is called a dead marking
and one says that the net has a deadlock. Sometimes, we are
sure that the net has no deadlock but we are not sure that the
net is live. In this case, we say that the net is weakly-live or
deadlock free : at each reachable marking, there is at least one
fireable transition.

III. CONCURRENCY PARADIGM AS A GAME

A. The mutating chameneos

The chameneos existence has been revealed last century in
the Solu Khumbu region and figures now in all up-to-date
fauna handbooks. Let us quote from one of them [11]:

Chameneos > [ME.camenious E MFr. cameneon
E L. Chameneus E Gr chamaineos E chamai on
the ground + neos new] 1. any of various Old
World lizards (family Chamaeoneostidae) which eat
honeysuckle leaves, play pall mall, may have blue,
yellow or red skin colour, with the property while
playing pall mall with a chameneos of a differ-
ent colour to change its skin colour as well as
its partner’s one into the third possible colour. 2.
any of various superficially similar reptile that can
similarly change colour of their skin, as the Inouı̈t
Chameneos (glacialis chamaeneus reptilis) described
by J. Malaurie. 3. a changeable or fickle person-
chameneonic adj.

The chameneos game is the following: Consider a population
of N chameneos that have a cyclic behaviour. A chameneos
usually lives lonely eating honeysuckle leaves in the forest and

2



training. After a while when feeling ready for competition,
it enters a mall where a nice spring babbles and where it
occasionally plays pall mall with another chameneos and
possibly mutates before leaving the mall and returning in
the forest. Given an initial population, examine its evolution
towards a final state in which all chameneos have the same
colour, and therefore in which no one can mutate anymore.

The mutating chameneos is thus a good paradigm for peer-
to-peer cooperation of concurrent processes and symmetrical
rendez-vous synchronization.

B. Concurrent behaviour specification

Each chameneos should respect the following behaviour
specification:

1) Asynchronous action before rendez-vous (no interac-
tions).

2) Symmetrical rendez-vous request (at the request the
caller does not know whether another chameneos is
already present or not, neither if there will be one in
some future). This request is sent to a rendez-vous object
which acts as a server.

3) Waiting for peer-to-peer rendez-vous.
4) Notification of rendez-vous by the server (a mate is

present and its name and colour are known).
5) Cooperative actions which in the chameneos paradigm

may lead to colour mutation and to registration of the
colour changes. The collaboration may be such that both
mates take their part of the work. It may be such that one
partner does the job while the other waits for using the
results. Any form of cooperation is possible. However
the end of this cooperation is a significant event for both
partners. The end occurs when each partner has finished
and knows that the other has finished, i.e., it is sure that
the other does not need any more its cooperation. Both
partners may have to wait for it before proceeding.

6) End of synchronous cooperation.

The server, or rendez-vous object, has the following specifi-
cation:

1) The server must wait until it has received two requests
before giving notification.

2) All the requests must be registered and multiple requests
shall not disturb the server.

3) Notifications must be sent as soon as possible.
4) When the server notifies A and B, A must known that

it mutes with B and B must known that it mutes with
A.

The notification pre and post conditions are then:
�
the request of A is registered and the request of B is registered �

notification�
A knows B’s name and colour and B knows A’s name and colour �

Additional warnings are joined to the server specification: the
server may be called by more than two chameneos at a time
without disturbance.

C. Concurrent behaviour analysis

Modeling the server needs to introduce some data that are
used to memorize:
� whether the call is the first call of a pair,
� the name and colour of a waiting chameneos,
� the name and colour of the second chameneos.

A possible server behaviour, respecting mutual exclusion, is:
� at first call: register name and colour of the first caller

and that the next call will be a second one; wait the end
of second call before reading the name and colour of the
mate and notifying the rendez-vous to the first caller.

� at second call: register name and colour of the second
caller and that the next call will be a first one; read the
name and colour of the mate and notify the rendez-vous
to the second caller; notice the first caller that its mate
name and colour are available.

The corresponding coloured Petri Net is given figure 1. Its

< X >

True

True

False

False

< X >

< X > < X >

< Y >

< Y >

< Y >

< X >

< Y >

< X > < Y >

True

te

te1 te2

ts2ts1

Internal_Claiming

Claiming

First_Call

Waiting_Id

Internal_Waiting

Current_Id

Mess

< X, Y >
< Y, X >

< X >

Ack

Fig. 1. Coloured Petri net model of the server

analysis shows that there is an inconsistency when the server
is late to notify the rendez-vous to the waiting chameneos.
For example there is a possible sequence leading to a state
where chameneos A expects a rendez-vous with chameneos
B, while chameneos B expects a rendez-vous with chame-
neos C. For instance, A enters the mall, and goes to state
Internal_Waiting by firing transitions ��� and ����� for� + 4 (and putting a token A in place Waiting_Id);
then B comes into the mall and fires ��� and ���	� ; it’s then
in state (place) Internal_Claiming. Suppose that, before
A fires ��
�� and leaves the mall, C comes into the mall and
fires ��� and ����� (it puts a token of its value C in places
Internal_Waiting and Waiting_Id). Then B can leave
the mall with C (by firing transition ��

� for � +�� and� +�� ) while A can leave the mall with B (by firing ��
��
for

� +C4 and � +�� ). However there is no deadlock nor

3



starvation as it can be automatically demonstrated using a tool
like Quasar [12], [13].

Previous inconsistency leads to complete the specification
and to state that the first call is only possible when the second
call is finished (three states are then necessary: a: “first part
of first call”, b: “second call”, c: “last part of first call”; and
three transitions only are possible: ���

� � � � 58��5���� ).
IV. SOLUTIONS

A. Using Java objects

In Java, each chameneos is an object which has some
behaviour described by a Java thread, and which has some
properties such a colour. The mutation is performed individu-
ally by each chameneos after it has received a message with
the colour of its companion. This mutation can be done outside
the mall and is independent of the companion mutation. Thus
a chameneos can leave the mall as soon as it receives the
message and has not to wait its companion. The corresponding
Java objects are given in Annex A.

Synchronized methods are executed in mutual exclusion.
However, due to the Java choices of locking and notifying
semantic, the entrance of a third chameneos in the mall has to
be explicitely forbidden in the program. Otherwise, as demon-
strated previously with Petri nets models, an inconsistency
may be observed.

B. Using Ada protected objects

The Ada program uses protected objects and requeue state-
ments. Each chameneos manages also its own colour modifi-
cation. The Ada program is presented in Annex B. The exe-
cutions of protected object operations are mutually exclusive.
Moreover the protected object semantic, called the eggshell
model for monitors, gives precedence to already queued entries
which have true barriers over other calls contending for the
protected object. There is no need to program the interdiction
of a third chameneos into the mall.

C. Using semaphores with Posix standards

Using Posix needs a communication between the operat-
ing system and the user program. The program text must
incorporate library calls performing the correct system calls
and must declare data structures for thread and semaphore
representations. On the other end, the call parameters must
pass the references of these data structures and of the threads
codes to allow the system to use them. This communication
uses libraries, called Posix binding in Ada (IEEE standard
1003.5) or direct C API. Both are presented in Annex C and
D, showing how to use Posix with Ada (using the Florist
implementation [14]) and allowing a comparison with the
corresponding C code. In principle, a binding with Java may
be done similarly. However, we did not find a standard package
for doing this.

The cooperation between threads starts by using one
semaphore (initialized at the value 2) which aim is to limit
to at most two the number of cooperating partners and to

block momentarily additional requesting chameneos. This de-
fensive coding forbids any inconsistency due to a third partner.
Then the cooperation uses traditionally a mutual exclusion
semaphore (initialized at the value 1) and a private semaphore
(initialized at the value 0). The latter is used to block the
first calling chameneos until the condition of its notification
holds. When the second chameneos calls the server, it can
be notified immediately since the required data of the first
chameneos are already available. Before leaving the server, the
chameneos passes the lock to the first chameneos; this uses the
synchronization technique called “passing the bâton” [5]. The
awaken chameneos, i.e. the first calling chameneos, can now
be notified; it is also in charge, before leaving the server, of
resetting the server initial state, that is releasing the lock and
allowing a new couple of chameneos to start a symmetrical
rendez-vous.

V. COMPARING THE CONCURRENT PROGRAMMING STYLES

WHEN USING SEMAPHORES, JAVA OR ADA

This case study gives some insights for comparing the
concurrent programming style. We add some other aspects
deduced from our experience. More general comparison are
given in [15]. The three approaches are compared for code
simplicity, clarity and reliability and for ease of correctness
formal proving.

A. Java strong points (advantages )

The full class and object orientation provides high level
language abstractions for the expression of programs and
therefore of concurrent objects. The strong typing is a factor
of safety.

The existence of a Java virtual machine gives portability,
although the language is not standardized. The coexistence of
synchronized and not synchronized methods and the possibil-
ity of requiring mutual exclusion for a small portion of code
only (synchronized block) provide great flexibility.

B. Java weak points (disadvantages)

The choice of having only objects obscures the represen-
tation of concurrence and the observation of thread cooper-
ation behaviour. Since Java allows simple inheritance only,
a runnable interface has to be implemented by another class
(for other Java aspects too, such as graphic interactions or
components frameworks, interfaces have to be implemented
in order to define environmental supports). When defining
subclasses for concurrent objects some impossibility, called
inheritance anomaly, can arise [16].

The condition variable with wait, notify, notifyAll is a low
level synchronization mechanisms.

Thread scheduling is completely implementation dependant.
This imposes to reevaluate the waiting conditions, and to
program a waiting loop, thus leading to some form of busy
waiting. The barriers (boolean conditions preceeding wait()
clauses) are disseminated in the code, allowing to call an
already synchronized code in a synchronized code; these mu-
tual monitors calls are susceptible of the well known “nested
monitor” deadlock problem .

4



Last but not least, Java is not standardized and a Java
program is not necessarily portable form a version of the
language to a new one.

C. Ada strong points (advantages)

Ada provides a high level structural approach for the ex-
pression of concurrency, based on explicitly defined active
objects. This allows a good visibility of tasks, even in nested
scopes, as well as a clear comprehension and observation of
the interaction between tasks. The language is standardized,
programs are fully portable and the Posix Ada binding is also
a standard (IEEE 1003.5).

High level concurrency is provided by barriers, located only
at the beginning of an entry code and reevaluated at the end
of a subprogram execution. This evaluation and reevaluation
is safely done under the protection of the mutual exclusion
lock. This leads to simple and readable code. The eggshell
model semantic of the protected object is well defined and
gives priority to the tasks which are the foremost advanced in
the resource usage. With the ceiling-locking scheduling policy,
provided with the language real-time annex implementation,
mutual calls across protected objects will not deadlock when
running on a uniprocessor machine.

D. Ada weak points (disadvantages)

A barrier cannot use the entry call parameters; this com-
plicates the programming of preference control, leading to
complicated structures when the requeue statement is used
with no assumption about queuing policies. Too many different
constructions are available for concurrency: tasks used as
servers with a rendez-vous between tasks, protected objects
with functions, procedures or entries, low level mechanisms
when needed for real-time applications and provided by the
language real-time annex.

E. Posix strong points (advantages)

Posix allows a direct action on the underlying operating
system; this is supposed to be useful and more efficient
for real-time or embedded applications when associated with
the control of scheduling policies. This is true with simple
hardware architectures (optimization by hand may then be
efficient); however this is no longer the case for sophisticated
architectures in which caches and pipelines are associated with
look-ahead of instruction execution and hardware optimiza-
tion.

Posix threads (and Posix synchronization mechanisms) are
standardized and are implemented in numerous operating
systems or real-time executives, and are language independent
(in principle).

F. Posix weak points (disadvantages)

Posix provides only low level mechanisms (however Java
is not higher level). There is no special linguistic feature
for expressing and representing threads; the notion of thread
is just a pointer to a supposed sequential code. There is
no data encapsulation mechanism, no thread code bracketing

(starting and ending a thread execution must be explicitely
programmed), no synchronization bracketing (the beginning
and the end of mutual exclusion needs to be explicitely
marked in the code; leaving a critical section while forgetting
a V operation, entering a critical section while omitting a P
operation, are omissions that break the mutual exclusion and
makes the code unreliable).

Concurrent programs are difficult to debug since the code
and the synchronization are in two different universes with
interferences on each others by parameter modifications and
passing without type control. The actions required are not clear
since many options and parameters are present. Many oppor-
tunities for undetected errors are present, the communications
between the operating system and the program have many im-
plementation dependencies (for example: exception reporting
from operating system to program, exception handling).

VI. CONCLUSION

A. Game termination

Given an initial population of � Chameneos, the game
does not always reaches a final state in which all chameneos
have the same colour, and therefore in which no one can
mutate anymore. As a matter of fact, according to their initial
value and to the population size, the � chameneos population
may belong to one of three possible connected components
and therefore cannot move from one connected component
to another one. Thus the evolution may end only when the
initial state is in the same connected components as one final
state, else it never stops. For example, if � is a multiple of
�

( � + ���
) then the initial state ( � ��� - � � � ) may lead to

termination whilst ( � ��� - � � � ) doesn’t.

B. Real-life considerations

The chameneos paradigm provides a simple example. How-
ever it is significant enough to point out the semantic dif-
ferences and the necessity of defensive code in Java and
Posix. Additional comparison of the complete languages may
be found in [15]. Providing reliable Posix concurrent pro-
gramming style may be useful in the future since low-level
Posix-like synchronization primitives are included in Real-
Time Java proposals [8], aimed for real-time, mobile and
embedded applications. Note that high level abstractions like
protected objects are also included in these proposals.

We provide also an amusing and interesting paradigm for
peer-to-peer communication, which may be extended to peer
groups and to real-time considerations.

Acknowledgments

We are grateful to the Ada designers and to the Petri
nets community, the efforts of which allow designing better
concurrent programs and providing thus more secure real-life
computer applications, whatever they are developed in Java,
Posix or Ada.

5



Note

Year 1953, Tensing Norgay and sir Edmund Hillary were
the first to succeed in the ascent of mount Everest, also called
Chomolungma in Thibetan and Sagarmatha in Nepalese.

REFERENCES

[1] Z. Mamaar, E. Dorion, and C. Daigle, “Toward virtual marketplaces for
e-commerce support,” Communications of the ACM, vol. 44, no. 12, pp.
35–38, 2001.

[2] F. Wolinsky and F. Vichot, “Des multi-agents pour développer des
applications de contenu en ligne,” TSI, pp. 213–232, 2001 (French).

[3] P. Brinch Hansen, Operating Systems Principles. Prentice Hall, 1973.
[4] C. A. R. Hoare, “Monitors: an operating system structuring concept,”

Communications of the ACM, vol. 17, no. 10, pp. 549–557, 1974.
[5] G. Andrews, Concurrent Programming: Principles and Practice. Ben-

jamin/Cummings, 1991.
[6] P. A. Buhr, M. Fortier, and M. H. Coffin, “Monitor classification,”

ACM Computing Surveys, vol. 27, no. 1, pp. 63–107, 1995. [Online].
Available: citeseer.nj.nec.com/buhr95monitor.html

[7] A. Burns and A. Wellings, Real-Time Systems and Programming Lan-
guages (Third Edition) Ada 95, Real-Time Java and Real-Time POSIX.
Hardback, 2001.

[8] B. Brosgol and B. Dobbing, “Real-time convergence of Ada and Java,” in
Proceedings of the 2001 annual ACM SIGAda international conference
on Ada. ACM Press, 2001, pp. 11–26.

[9] W. Reisig, EATCS-An Introduction to Petri Nets. Springer-Verlag, 1983.
[10] “Les réseaux de Petri: Modèles fondamentaux,” M. Diaz, Ed. Hermès,

2001 (French), no. ISBN : 2-7462-0250-6.
[11] T. N., Tensing’s New World Fauna Handbook, Third Edition. Teng-

boche, 1987.
[12] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau, “Quasar:

a new tool for analysing concurrent programs,” in Ada-Europe 2003,
ser. LNCS. Springer-Verlag, 2003.

[13] “Quasar web site,” http://quasar.cnam.fr, 2002.
[14] “The fsu implementaton of ieee standard 1003.5b,” http://libre.act-

europe.fr/GNAT/, 1996.
[15] B. Brosgol, “A comparison of Ada and Java as a foundation teaching

language,” ADALTRS: Ada Letters, A Bimonthly Publication of SIGAda,
the ACM Special Interest Group on Ada, vol. 18, 1998.

[16] D. Lea, Concurrent Programming in Java: Design Principles and
Patterns. Addison-Wesley, 1999.

APPENDIX

ANNEX A: JAVA SOLUTION

// =========================================================
// class IdChameneos
// =========================================================
public class IdChameneos �

private final int value ;
public IdChameneos(int val) � value = val ; �
public String toString () � return value + ””; �

�

// =========================================================
// class Colour
// =========================================================
public class Colour �

public int internalColour ;

private static final int blueInt = 0;
private static final int redInt = 1;
private static final int yellowInt = 2;

public static final Colour BLUE = new Colour(blueInt );
public static final Colour RED = new Colour(redInt );
public static final Colour YELLOW = new Colour(yellowInt);

private Colour( int value) � internalColour = value % 3; �

public Colour ComplementaryColour(Colour C) �
if ( internalColour == C. internalColour )

return new Colour( internalColour );
else

return new Colour( 3 � internalColour � C.internalColour );
�
public String toString () �

if ( internalColour == blueInt )
return ”blue”;

else if ( internalColour == redInt )
return ”red”;

else
return ”yellow”;

�
�

// =========================================================
// class Mall
// =========================================================
public class Mall �

private Colour AColour, BColour;
private boolean FirstCall = true ;
private boolean MustWait = false ;

public synchronized Colour Cooperation(IdChameneos x, Colour C) �
Colour result ;

while (MustWait) �
try � wait (); � catch( InterruptedException e) ���

�
if ( FirstCall ) �

AColour = C;
FirstCall = false ;

while ( ! FirstCall ) �
try � wait (); � catch( InterruptedException e) ���

�
MustWait = false ;
result = BColour;
notifyAll ();

�
else �

BColour = C;
result = AColour;
FirstCall = true ;

MustWait = true;
notifyAll ();

�
return result ;

�
�

// =========================================================
// class Chameneos
// =========================================================
public class Chameneos extends Thread �

private Mall mall ;
private IdChameneos id;
private Colour myColour, otherColour;

public Chameneos(Mall m, IdChameneos id, Colour c) �
this .mall = m; this . id = id ; this .myColour = c;

�
private void Message(String Mess) �

System.out . println ( ”(” + id . toString () + ”) I am ” +
myColour.toString () + ” and ” + Mess);

�
private void EatingHoneysuckleAndTraining() �

Message(”I am Eating Honey suckle and Training”);
�
private void GoingToTheMall() �

Message(”I am going to the mall”);
�
private void Mutating() �

Message(”I am going to mute”);
otherColour = mall .Cooperation( id , myColour);
myColour = myColour.ComplementaryColour(otherColour);
Message(”I have done a mutation”);

�

public void run() �
while(true) �

EatingHoneysuckleAndTraining();
GoingToTheMall();
Mutating ();

�
�

�

6



// =========================================================
// class Simulation ( the main class )
// =========================================================
public class Simulation �

static Colour [] TheColours =
� Colour.YELLOW,

Colour.BLUE,
Colour.RED,
Colour.BLUE,
Colour.YELLOW,
Colour.BLUE
� ;

static Chameneos[] TheChameneos = new Chameneos[TheColours.length];

public static void main(String args []) �
Mall myMall = new Mall();

for ( int i =0; i � TheColours.length; i++) �
TheChameneos[i] =

new Chameneos( myMall, new IdChameneos(i), TheColours[i] );
�
for ( int i =0; i � TheColours.length; i++) �

TheChameneos[i]. start ();
�

�
�

ANNEX B: ADA SOLUTION

��� ========================================================

��� package P Id Chameneos

��� ========================================================
package P Id Chameneos is

subtype Id Chameneos is Natural ;
end P Id Chameneos;

��� ========================================================

��� package P Colour

��� ========================================================
package P Colour is

type Colour is (Blue, Red, Yellow);
function Complementary Colour(C1, C2: Colour) return Colour;

end P Colour;

package body P Colour is
function Complementary Colour(C1, C2: Colour) return Colour is
begin

if (C1 = C2) then
return C1;

else
return Colour’Val(3 � Colour’Pos(C1) � Colour’Pos(C2));

end if ;
end Complementary Colour;

end P Colour;

��� ========================================================

��� package Mall

��� ========================================================
with P Id Chameneos, P Colour; use P Id Chameneos, P Colour;
package Mall is

function Cooperation(X: Id Chameneos; C: Colour) return Colour;
end Mall;

package body Mall is
protected Cooperation Synchro is

entry Cooperate(X: in Id Chameneos; C: in Colour ; C Other: out Colour );
private

entry Waiting(X: in Id Chameneos; C: in Colour ; C Other: out Colour );
First Call : Boolean := True;

A Colour : Colour;
B Colour : Colour;

end Cooperation Synchro;

protected body Cooperation Synchro is
entry Cooperate(X: in Id Chameneos; C: in Colour ; C Other: out Colour)
when True is
begin

if ( First Call ) then
A Colour := C; First Call := False ;
requeue Waiting;

else

B Colour := C; C Other := A Colour;
First Call := True;

end if ;
end Cooperate;

entry Waiting(X: in Id Chameneos; C: in Colour ; C Other: out Colour)
when First Call is
begin

C Other := B Colour;
end;

end Cooperation Synchro;

function Cooperation(X: Id Chameneos; C: Colour) return Colour is
Other Colour : Colour;

begin
Cooperation Synchro.Cooperate(X, C, Other Colour );
return Other Colour;

end Cooperation;
end Mall;

��� ========================================================

��� package P Chameneos

��� ========================================================
with P Id Chameneos, P Colour; use P Id Chameneos, P Colour;
package P Chameneos is

task type Chameneos is
entry Start (Id : in Id Chameneos; C: in Colour);

end Chameneos;
end P Chameneos;

with Text IO , Mall; use Text IO , Mall;
package body P Chameneos is

task body Chameneos is
My Id : Id Chameneos;
My Colour, Other Colour : Colour;

procedure Message(Mess : in String ) is
begin

Put Line(”(” & Id Chameneos’Image(My Id) & ”) I am ” &
Colour’Image(My Colour) & ” and ” & Mess);

end;
procedure Eating Honey Suckle And Training is
begin

Message(”I am eating honey suckle and training” );
end;
procedure Going To The Mall is
begin

Message(”I am going to the mall”);
end;
procedure Mutating is
begin

Message(”I am ready to mute”);
Other Colour := Cooperation(My Id, My Colour);
My Colour := Complementary Colour( My Colour, Other Colour);
Message(”I have performed a mutation”);

end;
begin

accept Start ( Id : in Id Chameneos; C: in Colour) do
My Id := Id ; My Colour := C;

end Start ;
loop

Eating Honey Suckle And Training;
Going To The Mall;
Mutating;

end loop;
end Chameneos;

end P Chameneos;

��� ========================================================

��� procedure Simulation (main procedure)

��� ========================================================
with P Id Chameneos, P Colour, Mall , P Chameneos;
use P Id Chameneos, P Colour, Mall , P Chameneos;
procedure Simulation is

The Colours : array(Natural range ��� ) of Colour :=
(Yellow, Blue, Red, Blue, Yellow, Blue);

The Chaemenos : array(The Colours’Range) of Chameneos;
begin

for I in The Chaemenos’Range loop
The Chaemenos(I).Start ( Id Chameneos(I ), The Colours(I ) );

end loop;
end Simulation;

7



ANNEX C: POSIX STYLE SOLUTION WITH THE FLORIST

POSIX/ADA BINDING

with Posix , Posix .Semaphores; use Posix , Posix .Semaphores;

package body Mall Posix is
AtMostTwo : Semaphore;
Mutex : Semaphore; ��� mutual exclusion semaphore or lock
SemPriv : Semaphore; ��� private semaphore used to pass the baton

FirstCall : Boolean := True;
AColour : Colour;
BColour : Colour;

procedure P(S: in Semaphore) is begin Post ( Descriptor Of (S ) ); end P;

procedure V(S: in Semaphore) is begin Wait( Descriptor Of (S ) ); end V;

function Cooperation(X: Id Chameneos; C: Colour) return Colour is
Other Colour : Colour;

begin
P(AtMostTwo); ��� limits the number of partners
P(Mutex);

��� user programmed mutual exclusion = setting the lock
if FirstCall then

AColour := C; FirstCall := False ;

��� the next call will be considered as a second one
V(Mutex); P(SemPriv); ��� waiting for the lock
Other Colour := BColour;
V(Mutex); ��� releases the lock since the rendez � vous ends
V(AtMostTwo); V(AtMostTwo); ��� allows a new pair

else ��� this is the second chameneos of the pair
FirstCall := True;

BColour := C;
Other Colour := AColour;

��� the next call will start a new meeting
V(SemPriv); ��� passes the lock to its mate

end if ;
return Other Colour;

end Cooperation;

begin
Initialize (AtMostTwo, 2);
Initialize (Mutex, 1);
Initialize (SemPriv , 0);

end Mall Posix;

ANNEX D: PURE POSIX SOLUTION

/ � =========================================================== � /
/ � file types .h � /
/ � =========================================================== � /
#define NB CHAMENEOS 4
typedef int idChameneos;
typedef enum � Blue, Red, Yellow � colour;

/ � =========================================================== � /
/ � file cooperation .c � /
/ � =========================================================== � /
#include � semaphore.h �
#include ”types .h”

sem t AtMostTwo;
sem t Mutex;
sem t SemPriv;

int FirstCall = 1;
colour AColour;
colour BColour;

/ � =========================================================== � /
colour Cooperation(idChameneos id, colour c) �

colour otherColour ;
int val ;

sem wait(&AtMostTwo); // limits the number of partners
sem wait(&Mutex);
// user programmed mutual exclusion = setting the lock
if ( FirstCall ) �

AColour = c; FirstCall = 0;
// the next call will be considered as a second one
sem post(&Mutex); sem wait(&SemPriv); // waiting for the lock

otherColour = BColour;
sem post(&Mutex ); // releases the lock since the rendez � vous ends
sem post(&AtMostTwo); sem post(&AtMostTwo); // allows a new pair

�
else � // this is the second chameneos of the pair

FirstCall = 1;
BColour = c;
otherColour = AColour;
// the next call will start a new meeting
sem post(&SemPriv ); // passes the lock to its mate

�
return otherColour ;

�

/ � =========================================================== � /
void initCooperation (void) �

sem init (&AtMostTwo, 0, 2);
sem init (&Mutex, 0, 1);
sem init (&SemPriv , 0, 0);

�

/ � =========================================================== � /
/ � file simulation .c � /
/ � =========================================================== � /
#include � stdio.h �
#include � pthread.h �
#include ”types .h”

/ � =========================================================== � /
colour complementaryColour(colour c1, colour c2) �

if ( c1 == c2)
return c1;

else
return (3 � c1 � c2);

�

/ � =========================================================== � /
extern colour Cooperation(idChameneos id, colour c );
extern void initCooperation (void );

/ � =========================================================== � /
void chameneosCode(void � args) �

idChameneos myId;
colour myColour, oldColour, otherColour ;

sscanf ((char � ) args , ”%d %d”, &myId, &myColour);

printf (”(%d) I am (%d) and I am running
�

n”, myId, myColour);

while (1) �
printf (”(%d) I am (%d) and I am eating honey suckle and training

�
n”,

myId, myColour);
printf (”(%d) I am (%d) and I am going to the mall

�
n”,

myId, myColour);
otherColour = Cooperation( myId, myColour);
oldColour = myColour;
myColour = complementaryColour( myColour, otherColour);
printf (”(%d) I am (%d) and I was %d before

�
n”,

myId, myColour, oldColour);
�

�

/ � =========================================================== � /
int main(void) �

colour tabColour[NB CHAMENEOS] = � Yellow, Blue, Red, Blue � ;
char theArgs[255][NB CHAMENEOS];
pthread t tabPid [NB CHAMENEOS];
int i ;

initCooperation ();

for ( i =0; i � NB CHAMENEOS; i++) �
sprintf ( theArgs[ i ], ”%d %d”, i, tabColour[ i ]);

pthread create (& tabPid[ i ], NULL, (void � ( � )()) chameneosCode, theArgs[i ]);
�
// waiting the end of children ( that will never come)
for ( i =0; i � NB CHAMENEOS; i++) �

pthread join ( tabPid [ i ], NULL);
�
return 0;

�

8


