
AspectTAZ : a new approach based on Aspect Oriented Programming for
Object Oriented Industrial Messaging Services design

L. Teboul*+, R. Pawlak*, L. Seinturier+, E. Gressier-Soudan*, E. Becquet*

*CEDRIC-CNAM,
292, rue St Martin,

75 141 Paris Cedex 03 France,
{teboul, pawlak, gressier, becquet}@cnam.fr

+LIP6, Université Pierre et Marie Curie
4, place Jussieu

75 252 Paris Cedex 05, France
Lionel.Seinturier@lip6.fr

Abstract

Since 1994, we have designed and prototyped
several industrial messaging services over different
platforms. Our experiments have been based on
ISO-MMS standard and TASE.2. This paper
describes the lessons learned from these past
projects, and some of our activities in designing a
next generation of industrial messaging services.
Faced with a fast changing world of
communication protocols, a stringent requirement
for these services is to be easily adaptable to new
protocols (yesterday ONC-RPC and CORBA, today
SOAP/XML). Recent software engineering
researches introduced the notion of aspect-oriented
programming (AOP) to cope with such a need in
adaptability. This paper demonstrates the viability
of this approach in addressing our requirement.

1. Introduction

In the past decade, we designed and prototyped
different generations of industrial messaging services
[9]. We used different distributed system platforms:

• ASN.1/BER together with Sun's ONC-RPC
(implemented in C) [7],

• CORBA object request brokers (ORB) :
� COOL, over the real-time micro-kernel

ChorusOS, (implemented in C++) [10],
� Jonathan, ORBacus over Linux, and Windows,

(implemented in Java) [8] [23] [4],
� MICO, over Linux (implemented in C++) [3].

The level of reuse between two implementations was
low. Lessons learned from one prototype enhanced the
design of the next one, but the old implementation was
discarded. Other technologies (e.g. Java-RMI,
OPC/DCOM) could have been also investigated. .NET
or SOAP/XML are also promising for factory
communication systems, and we'd like to evaluate them.
Yet we want to avoid the "yet another version of an
object oriented industrial messaging service over ORB
Z" syndrome.

New challenges on factory communication system
imply to be able to build distributed system services
independently of the platforms that can support them. To
face this software engineering problem, we decided to
stress the Aspect Oriented Programming (AOP) [14]
approach using JAC a framework (Java Aspect
Components) [20] that some of us are developing.
Earlier studies on AOP underlined its advantages for
distributed system services engineering.

This paper describes AspectTAZ, our AOP based
industrial messaging service. Its aim is to build an object
oriented industrial messaging service easily adaptable to
middleware technologies such as RMI, CORBA,
SOAP/XML, or any other to come. This service is based
on TASE.2 as specified in [3], uses the JAC framework,
and is developed in Java. Only one core code of the
industrial messaging services is specified and will be
ready to run over the three platforms. One can notice that
our project shares many goals with approaches such as
the OMG Model Driven Architecture [18].

As far as we know, there is no equivalent project in
the field of factory communication systems. This is
probably due to the youth of the AOP approach. More
generally, existing applications that are built with AOP
are demonstrators or toy systems.

Furthermore, our work is of interest for power
utilities. First, TASE.2, our application service model is
used to support production data exchanges, and results
from the standardization process driven by experts of the
utility domain. Also, the European open Power market is
under construction and could rely on TASE.2 services.
Indeed, a close analysis of TASE.2 functions shows that
it can be the basis of a real-time peer-to-peer data
exchange service for the trading of energy. As a
consequence, providing TASE.2 functionalities
independently of any middleware solution is a key goal
in order to reduce development costs.

This paper is organized as follows. Section 2 presents
the principles of AOP and JAC. Section 3 expresses the
needs for a new software engineering approach in
factory communication systems. Section 4 recalls the
key features of our object oriented TASE.2 based
industrial messaging service and presents the design of

AspectTAZ. It gives the current performances. Section 4
also presents new trends for AspectTAZ. Section 5
concludes.

2. Oriented Programming and the JAC
framework

2.1. Key principles of AOP
Separation of concerns in software engineering has

always been a very natural means to handle complexity
of software developments [19]. However, the design of a
modular code can be a very tricky task for the
programmer. It raises some issues such as performance,
crosscutting, or redesigning when the software is used in
a context that is quite different from the overseen one.
By handling crosscutting within the language or system,
the recent approach of Aspect-Oriented Programming
(AOP) [15] seems to be a very promising way for
helping developers to handle separation of concerns and
to overcome the drawbacks of traditional design
approaches.

Aspect orientation and aspect oriented programming
[16] is an approach studied in the software engineering
research field that was raised for the first time in 1997 by
Gregor Kiczales from XEROX PARC. The field inherits
results from both the separation of concerns ideas of
design and analysis methods, and the reflection ideas of
programming languages. An aspect-oriented application
is a collection of aspects and of a program called a base
program. An aspect is a piece of software that
implements a requested feature. But, unlike a class, an
aspect also defines the way it will modify the base
program. This last point is important as it allows to leave
the base program clear of any intrusion from the aspects
that will be added later on. Kiczales' team designed an
extension of Java called AspectJ [16], with dedicated
keywords to write aspects, and implemented a compiler
to generate executable code. Many other AOP languages
or frameworks exist (e.g. AspectC [21], Apostole [22],
AspectS [2], JAC [20]). However, if AOP introduces a
new programming paradigm that complements existing
ones, it is clear that it brings a new bunch of difficult
problems such as aspects composition.

The base program and the aspects are glued together
during an integration process called aspect weaving.
Aspect developers specify with a syntactic contract
called join points definition, the elements of the base
program that will be modified by the introduction of the
aspect. Depending on the AOP platform the granularity
of these elements may vary (classes, methods, variables,
method calls, exceptions). If the elements specified are
missing in the base program, the contract is not fulfilled
and the aspect will not be woven. In the AOP approach,
the base program implements the business logic of the
application, and the aspects are dedicated to non-
functional properties. Nevertheless, as the frontier

between functional and non-functional properties may be
moving depending on the application field, aspects (e.g.
time constraints) may be part of the functional
requirements in some domains (e.g. real-time control),
and of non-functional ones in other domains (e.g. word
processing).

Another interesting point about AOP is that it leaves
behind the traditional use relationship between software
entities. In the procedural or object-oriented approach, a
"client code" uses the functionalities provided by a
"server code" (a method or a procedure). The "client
code" developer must thus master the syntax and the
semantics of the invoked "server code". In the AOP
approach, the "server code" developer specifies the way
his service, implemented as an aspect, modifies the
"client code". As "server codes" are written less often
and by more skilled developers, AOP is an interesting
way of reducing development costs.

2.2. The JAC framework
JAC [20] is an ongoing research project whose goal is

to build an environment for aspect oriented application
development in Java. Fully working releases of the
product exist and can be downloaded from our Web site
[1]. JAC defines an AO programming model and
implements an application framework that supports it. It
is a general purpose application framework but our target
domain and main interest lies in middleware systems and
applications. Thus we put the emphasis on dynamicity
that is a major requirement in this domain. An aspect
with JAC is a set of aspect objects that are to be
deployed on top of application objects. An innovative
feature of JAC is that the link between aspects and
application objects can be dynamically set and removed
at run time.

JAC provides a standard library of aspects for remote
communication (currently JavaRMI and CORBA, SOAP
is under development), distributed deployment of
applications, distributed naming and binding with name
repositories, data caching, memory consistency
(currently sequential consistency with strong replication
and update of data, entry consistency is under
development), persistency (with Java JDBC), GUI (with
Java/Swing), logging. This set of aspects can of course
be enriched by developer defined aspects.

One of the point worth mentioning about JAC is that,
when several flavors of the same aspect exist (e.g.
JavaRMI and CORBA for remote communication), the
framework allows the undifferentiated use of one of
them: the developer selects either RMI or CORBA and
the same (unchanged) application takes advantage of the
specified aspect (e.g. the application objects remotely
communicate through JavaRMI or CORBA).
Furthermore, and except for the remote communication
aspect where the choice is to be made at configuration
time, an aspect can be dynamically deployed,

undeployed and replaced by another one on top of a
running application.

2.3. Programming with JAC
Programming an application with JAC is a three step

process:
• base application development: this is the business

process development (this task should stay clear
of any intrusion from non functional properties),

• aspect development: each non functional property
is to be implemented in a dedicated aspect,

• integration: the software architect defines which
non functional (i.e. aspect) properties should be
added (and where) on top of the application.

For the first task, JAC provides an application
framework. For the second one, aspects must respect a
programming model. Finally, once specified, the
integration is automatically handled by JAC.

3. AOP for factory communications

The underlying idea of this paper is that one of the
requirements for next generation open factory control
systems is to be able to achieve an obvious separation
between functional and non-functional properties. By
functional properties, we refer to the business logic that
can be caught in a process control application such as
supervision or remote control. By non-functional
properties we refer to the underlying platform that
provides the core services (system, network or
middleware services) to run and manage a process.

This requirement becomes unambiguous when
solutions are analyzed. The issue here is to be able to
precisely modularize what is relevant to the application
and what is relevant to the process itself. The preferred
property is of course, the ability to reuse all or most of
the business process whenever the architecture changes,
but also to leave these two pieces of code (business and
architecture) as much independent as possible. Object-
oriented approaches (based on ORB middleware)
addressed the first property but in our opinion, failed to
reach the second one. Our goal is thus to make a proof of
concepts and to show how this independence exists with
AOP.

The need of AOP for factory communication systems
appears in two different ways, in fact at two different
levels of factory architectures. Initially, our team were
looking for a new approach to spend less efforts on
developing new versions of functionally identical
industrial messaging services. Related to this, we can
assert that AOP is a very good answer to our requirement
ant it suits to factory communication system design and
implementation. Also, as a side effect of what AOP is
provided for, we believe that it is an appropriate
approach to design and implement the overall factory

system. One can consider that protocol designers are
aware of the problem that a protocol should circumvent.
When a protocol is specified, it answers some true users'
requirements, it is domain centric: semantic is relevant,
not syntax. From this viewpoint, ISO-MMS history is
significant. Experts provided a very interesting
application protocol for manufacturing systems but it did
not become as successful it should have been. Its most
important drawback is that it was completely dependant
from the ISO stack. We could think about what could
have happened if the same ISO-MMS software would
have been able to run in a flexible way over PROFIBUS,
FIP, MODBUS, Internet at the same time. This sort of
challenge is still existing in the automation community
where fieldbus providers are concerned by migrating
their proprietary high level communication services
towards switched Ethernet and TCP/IP based solutions
[11]. AOP clearly allows these services to be
implemented once and to run on different
communication systems if the deployment aspect
includes the targeted platform sub-systems.

This is an open approach because emerging
technologies can be added smoothly to the AOP
environment. Also, it allows co-existing versions of a
service over different platforms if gateways are defined.
Gateways are easier to implement because the protocol is
identical: exactly the same semantic everywhere, only
communications in a broad sense change.

4. Design and Implementation of AspectTAZ

Our AOP based industrial messaging prototype is
implemented in Java using the JAC framework [20].

4.1. An object oriented TASE.2 based industrial
messaging service

The TASE.2 protocol is a companion standard of the
popular MMS [24] designed to support the exchange of
data between utility control centers and production units
[12] [13] [14] [6].

TASE.2 is explicitly described as Client/Server based.
Two types of interactions are defined: "operations" are
initiated by clients and correspond to a classical reliable
method invocation (they usually return a result), and,
"actions" are initiated by servers and correspond to a
notification with data. Four data transfer semantics are
provided: "once" (classical client/server request),
"periodic" (periodic transfer), "exception" (state change
based transfer), "event" (event condition based transfer).

TASE.2 functions are separated in nine conformance
blocks. As far as we are concerned, our work deals with
blocks 1, 2. Block 1 defines a minimal set of services
related to data management and periodic data exchanges.
Block 2 extends block 1, it provides exception semantics
often referred as Report By Exception semantics.

Bilateral Table

VCC

D
om

ain
Data Set

DSConditionsDetected:
"IntervalTimeOut" bit 0
"IntegrityTimeOut" bit 1
"ObjectChange" bit 2
"OperatorRequest" bit 3
"OtherExternalEvent" bit 4

Data Value

TASE.2 Server TASE.2 Client

Condition Monitoring for Transfer Reports (end of period,
value change … depend on DSConditions setting)

Transfer Report :
Issued from Data

SetTransfert Set spec:
DSTransferSetName
DSTransferSetTimeStamp
DSConditionsDetected
EventCodeDetected
List Of Data Value Objects

Transfer Set (ENABLED)

DSTransmissionPars:
DataSetName (type MMS ObjectName)
StartTime (type GMTBasedS)
Interval (type TimeIntervalS)
TLE (type TimeIntervalS)
BufferTime (type TimeIntervalS)
IntegrityCheck (type TimeIntervalS)
DSConditionsRequested (type DSConditions) :
 "IntervalTimeOut" (type bit)
 "IntegrityTimeOut" (type bit)
 "ObjectChange" (type bit)
 "Operator Request (type bit)
 "OtherExternalEvent" (type bit)
BlockData (type Boolean {TRUE (non-zero), FALSE (0)})
Critical (type Boolean {TRUE (non-zero), FALSE (0)})
RBE (type Boolean {TRUE (non-zero), FALSE (0)})
Status (type Boolean {ENABLED(1), DISABLED(0)})
EventCodeRequested (type Integer16) IndicationPt

.

.

.

.

.

.

Figure 1. Overview of TASE.2 Variable Management.

TASE.2 defines "Data Value" objects and "Data Set"
objects (supported by MMS named variables or list of
named variables) managed by the server. Data Value
management and Data Set management functions [14]
deal with the look up of existing Data Values and Data
Sets, their creation, their destruction, etc. Data values
reference in practice specific information such as
"Indication Points" (status information, analog values,
attributes, etc.). Indication points can have attributes like
timestamp, quality class (VALID, HELD, SUSPECT,
NOTVALID), change of value counter… Data Set Transfer
Sets describe the way Transfer Reports must be pushed
toward the client and contain parameters defining under
which conditions data values related to data sets are
transmitted. Figure 1 gives an overview of variable
management in TASE.2.

AspectTAZ offers TASE.2 functions on an object
oriented basis over different platforms: RMI and
CORBA currently, SOAP is planned for soon. Its design
is based on ObjectTAZ [3], that objectified TASE.2
features on top of CORBA. Opposed to AOP benefits,
ObjectTAZ is monolithic: access to the CORBA ORB is
plugged into TASE.2 functions. Its interface has been
specified using the CORBA IDL and is freely available
[5]. This specification drove AspectTAZ implementation
in Java. ObjectTAZ fits utilities requirement: UCA
(Utility Communication Architecture) 2.0 specification
[6](p9) mentioned that CORBA is a candidate platform
to support TASE.2 services. AspectTAZ enhances
previous results by allowing TASE.2 functions over
CORBA, RMI and SOAP/XML.

4.2. AspectTAZ
The design of AspectTAZ is split in two phases:

implementation of the TASE.2 client and server as one

standalone Java program, specification and use of the
deployment aspect, which is brand new.

4.2.1. Design of AspectTAZ
The implementation of AspectTAZ follows mostly

the design of ObjectTAZ written in C++. An adaptation
has been made. The IDL specification guides the
implementation of TASE.2 standard objects in Java. The
differences are the following. There is some adaptation
between the two implementations due to the differences
between Java and C++, and to supported libraries. In the
context of AOP, a standalone program represents both
TASE.2 client and server. As a consequence, there is no
need to code the so called object server implementations
needed by CORBA. This feature will be taken into
account by the deployment aspect automatically as
specified in aspect configuration. The code is organized
as follow in a class Run that initializes the application:

public class Run {
 public static void main (String[] args) {
 …
 Server serverAspectTAZ = new Server();
 Client clientAspectTAZ = new Client();
 …
 //specific for running aspects
 serverAspectTAZ.init();
 serverAspectTAZ.start("serverAspectTAZ",serverAspectTAZ);
 clientAspectTAZ.start("clientAspectTAZ", clientAspectTAZ);
 }
}
As this class is only concerned with the business logic

of the application, its programming is much more like
developing a centralized application: no details related to
distribution disturbs the code. Rather, distribution is

purely a non-functional concern, it will be added during
the deployment phase of the application.

4.2.2. Applying the deployment aspect to AspectTAZ
One of the main features of JAC is the ability to

deploy remotely and dynamically an application from an
administration console. Although developers can write
their own customized deployment aspect, we felt the
need to provide a standard implementation for this
recurring task. The deployment aspect provided with
JAC is based on the notion of JAC server. A JAC server,
much like other application servers (e.g. Sun Enterprise
Java Beans EJB or .Net from Microsoft), runs on a
network node and hosts JAC objects within a so-called
container. The server provides a remotely accessible
interface to deploy and invoke objects. Several flavors of
JAC servers exist depending on the underlying
communication protocol used. Currently JAC servers for
Java RMI and CORBA exist, and a JAC server for
SOAP is under implementation. Each server is identified
by an URI string associated to the protocol used (e.g.
rmi://some.host/anId for RMI or an IOR string for
CORBA).

The grain of deployment is the object. Like in any
other OO approach, a JAC application is a set of
interoperating objects (either business objects, or aspect
objects implementing a non-functional concern). JAC
objects are named, either explicitly by developers who
choose an unique name, or implicitly by JAC with the
object class name extended by an unique instance
number. The deployment policy is defined in a text-
based descriptor giving:

• the localization of each object of the application,
i.e. giving the relationship between the set of
object names and the set of running JAC server
names,

• the initial localization of client stubs for JAC
objects.

If the first point is rather classical, the second one
allows to pre-deploy access stub on known client hosts.
Client stubs can be later on dynamically and
transparently downloaded, but this initialization step
speeds up the execution of the application. For
application using numerous objects and client stubs, the
exhaustive definition of all localizations is hard to
handle; the syntax of the deployment descriptor allows to
specify regular expression to summarize the policy. For
instance, the file deployment.acc contains each aspect
involved in the application:

deploy s0 clientAspectTAZ s1;
deploy s0 serverAspectTAZ s2;
createStubsFor clientAspectTAZ s1 s2;
createStubsFor ServerAspectTAZ s2 s1;

The following descriptor: specifies that the object
named clientAspectTAZ (resp. serverAspectTAZ) from
node s0 is to be deployed on node s1 (resp. s2) and that a

stub for clientAspectTAZ hosted on s1 (resp.
serverAspectTAZ on node s2) is to be created on nodes
s1 (resp. s2). s0, s1 and s2 are logical hosts, they can be
located on the same host or on different hosts.
Remember that a JAC server runs on each node able to
receive deployable JAC objects.

The deployment phase in JAC is depicted in Figure 2.
JAC follows the specification described in the
deployment.acc file: it creates stubs and migrates java
objects. Deployment uses RMI and serialization.

Figure 3. illustrates a TASE.2 client and a TASE.2
server while interacting through their implementations
clientAspectTAZ and serverAspectTAZ in Java using
RMI.

4.3. Performance of AspectTAZ
This section gives performance measurements on the

simple client/server program of Figure 3. Three
operations are measured in Table 1 and Table 2. Table 1
presents results for a get and a set from a client to a
server. Table 2 gives the time taken to provide values
from the server to the client periodically. These three
operations are benchmarked under different
configurations. Column one: the client and the server are
a centralized application (without the deployment).
Column two: the client and the server are a distributed
application on two logical sites but on one computer.
Column three: the client and the server are a distributed
application on two computers. The results shown in the
next tables are in milliseconds.

 1 2 3
Get 6 471 508
Set 3 831 863

Table 1. get and set operations.

 1 2 3
Meas. 1 11 849 876
Meas. 2 10 298 420
Meas. 3 11 201 361
Meas. 4 10 258 153

Table 2. Periodic transfers.

In Table 1. column 1, when AspectTAZ runs as a
centralized application, get and set take between 3 and 6
ms. When AspectTAZ is performed as a distributed
application (columns 2, 3) get and set take between 470
and 865 ms which shows an important overhead. Around
50% of the time is devoted to perform RMI. The other
50% comes from the JAC runtime. It adds code to allow
the dynamic management of aspects. This states the cost
of the flexibility introduced by the JAC framework and
how it handles aspects dynamically.

Table 2. states the same phenomenon with periodic
transfers. In lines 2, 3, 4, Table 2. shows also a well-

known effect of Java programs. Execution times
decrease significantly after the first utilization of Java
Classes.

JAC

s0

Server
Aspect
TAZ

Aspect
TAZ

Client
Aspect
TAZ

JAC

s1

JAC

s2

AspectTAZ before deployment

JAC

s0

Server
Aspect
TAZ

Aspect
TAZ

Client
Aspect
TAZ

JAC

s1

JAC

s2

AspectTAZ after stubs deployment

Deployment.acc

stubs

stubs

JAC

s0

Aspect
TAZ

JAC

s1

JAC

s2

AspectTAZ after client and server deployment

Deployment.acc

stubs

stubs

Client
Aspect
TAZ

Server
Aspect
TAZ

Figure 2. Phases of AspectTAZ deployment.

JAC

s0

Aspect
TAZ

JAC

s1

JAC

s2 stubs

stubs

Client
Aspect
TAZ

Server
Aspect
TAZ

Figure 3. AspectTAZ running.

Work in progress targets performance licks. Current
optimization deals with the code added to handle
dynamic management of aspects. If performance

becomes a more stringent requirement than flexibility,
statically compiled code can be produced to reduce
overhead. This code can embed the deployment and the
distribution aspects. In such a case, the original JAC
framework could be used as a rapid prototyping
environment in the design phase of a factory
communication system.

4.4. Alternate Trends for AspectTAZ Design
We built AspectTAZ like an industrial messaging

service, quite in a "classical way". But, TASE.2 can be
seen as the specification of a variable based distributed
shared memory. Indication points are replicated both on
the client and on the server, and TASE.2 defines
consistency management rules to update them. We could
have chosen the replication aspect supported by JAC to
replicate TASE.2 Indication Points. JAC offers the well-
understood and widespread Sequential Consistency
model [17] (replicas contain the same value, programs
perform totally ordered read or write accesses to data)
but it is too poor to address a time based consistency
model required by TASE.2. However, this suggest to
enrich consistency aspects of JAC with the model
provided by TASE.2 Such a feature would help
application programmers.

Access Control is a general requirement for
exchanges that cross WANs like production data
exchanged between control centers and power plants.
Access control is taken into account within TASE.2
standards, but its implementation is let to suppliers in the
version of the standards we worked with. With JAC we
have the opportunity to handle access control as an
aspect independently. Access control is a built-in aspect
of JAC. This ability eases architecture design: access
control is handled outside the industrial messaging
protocol without disturbing the functional code making
the programming task much more simpler.

5. Conclusion

The use of AOP is efficient but not something
immediate for developers. There is some kind of
revolution to achieve to be able to design correctly your
application on a per-aspect oriented programming basis.
It is more difficult than coming from classical
programming to object oriented programming. Aspect
composition is a key issue of a successful AOP based
implementation. In our experiment aspect composition
was the most difficult task. We saw also that aspects
need to be written by skilled developers. And finally,
some expertise is required to integrate aspects and
application code gracefully and efficiently. Authors of
JAC are involved in the project and it was a big help.
Despite these difficulties, we believe that AOP is a
promising approach; it only needs a lot of training.

Our results demonstrate the viability of our AOP for
factory communications. AOP matches users' needs

allowing the same industrial messaging service to run
over CORBA and RMI. Future works in this area will
extend the JAC deployment aspect with a SOAP/XML
personality (results due for end of September). Our
project addresses software engineering issues, at a
different level, its goals match the same users'
requirements than the OMG Model Driven Architecture
[18]: design once, be able to work with different
middlewares independently.

Our work is more generic than only a new way to
develop industrial messaging services. Our industrial
messaging service can become an aspect itself inside the
JAC framework. Such a new feature would ease factory
application design.

Finally, a close analysis to TASE.2 functions shows
that it can be the basis of a real-time peer-to-peer data
sharing service for the trading of energy. AspectTAZ
could be the next generation: a real-time platform
independent peer-to-peer data sharing service for energy
trading

References

[1] AOPSYS, JAC. http://jac.aopsys.com, April 2002.
[2] AspectS, http://www.prakinf.tu-ilmenau.de/~hirsch/

Projects/Squeak/AspectS/, April 2002.
[3] E. Becquet, M. Abdallah, E. Gressier-Soudan, F. Horn,

L. Bacon, "Object Oriented Timed Messaging Service
for Industrial Ethernet: a Fieldbus like Architecture for
Power Plant Control and Factory Automation", Fourth
IFAC Conference on Fieldbus Systems and Their
Applications (FeT'2001), pages 14-16 November 2001.
Nancy, France.

[4] R. Boissier, E. Gressier-Soudan, A. Laurent, L.
Seinturier, "Enhancing Numerical Controllers using
MMS Concepts and a CORBA based software bus",
International Journal of Computer-Integrated
Manufacturing (IJCIM), 14(6), 2001, Taylor and Francis
Editor.

[5] COM-RT, http://comrt.sourceforge.net, April 2002.
[6] EPRI, "Utility Communications Architecture Version

2.0, Introduction to UCA Version 2.0, Editorial Draft
1.0. September, 1998.

[7] E. Gressier, M. Lefebvre, S. Natkin, "TCP/IP
Manufacturing Applications: an experiment with MMS
over RPC", ULPAA'95. Sidney 1995,
ftp://ftp.cs.su.oz.au/bob/ULPAA/101-GRE.ps.gz.

[8] E. Gressier-Soudan, M. Epivent, A. Laurent, R. Boissier,
D. Razafindramary, M. Raddadi, "Component oriented
control architecture, the COCA project", Special Issue on
Manufacturing, Microprocessors and Microsystems
Journal, 23(2):95-102, September 1999, Elsevier
Science.

[9] E. Gressier-Soudan, "Prototyping a CORBA based MMS
-Industrial Communications with CORBA", OMG
Technical Meeting. Burlingame. California USA,

September 10-15 2000, ftp://ftp.omg.org/pub/doc/mfg/
00-09-16.pdf.

[10] G.Guyonnet, E. Gressier-Soudan, F. Weis, "COOL-
MMS: a CORBA approach to ISO-MMS", ECOOP'97.
Workshop: CORBA: Implementation, Use and
Evaluation, Jyvaskyla, Finland, June 1997.

[11] IAONA. Ethernet in Automation. http://www.iaona-
eu.com/home/home.php. December 2001.

[12] IEC, Utility Communications Specification Working
Group, "TASE.2 Services and Protocol", Version 1996-
08, IEC870-6-503, ICCP Inter-Control Centre
Communications Protocol Version 6.1, August 1996.

[13] IEC, Utility Communications Specification Working
Group, "TASE.2 Object Models", Version 1996-08,
IEC870-6-802, ICCP Inter-Control Centre
Communications Protocol Version 6.1, August 1996.

[14] KEMA-ECC, "ICCP User Guide", Final Draft.
Mineapolis, October 8, 1996.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.M. Loingtier, J. Irwin, "Aspect-oriented
programming", In Proceedings of the 11th European
Conference on Object-Oriented Programming
(ECOOP'97), volume 1241 of Lecture Notes in
Computer Science, pages 220{242. Springer, June 1997.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, W. Griswold, "An Overview of AspectJ", ECOOP
2001, LNCS 2072, June 2001.

[17] L. Lamport. "How to make a Multiprocessor Computer
that correctly executes Multiprocess Programs", IEEE
TOC, 28(9), 1989.

[18] OMG Architecture Board MDA Drafting Team, "Model
Driven Architecture (MDA)", Document number
ormsc/2001-07-01, July 9, 2001.
ftp://ftp.omg.org/pub/docs/ormsc/01-07-01.pdf.

[19] D. Parnas, "On the criteria to be used in decomposing
systems into modules", Communications of the ACM,
15(12):1053-1058, 1972.

[20] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, "JAC: A
Flexible and Efficient Solution for Aspect-Oriented
Programming in Java", Reflection 2001. LNCS 2192,
Pages 1-24, September 2001.

[21] UBC, "Exploring an Aspect-Oriented Approach to
Operating System Code",
http://www.cs.ubc.ca/~ycoady/aspectc.html, April 2002.

[22] UBC, Apostle: Aspect Programming in Smalltalk,
http://www.cs.ubc.ca/labs/spl/projects/apostle/, April
2002.

[23] L. Seinturier, A. Laurent, B. Dumant, E. Gressier-
Soudan, F. Horn, "A framework for Real-Time
Communication Based Object Oriented Industrial
Messaging Services", 7th IEEE International Conference
on Emerging Technologies and Factory Automation.
ETFA'99, Barcelona, Spain, October 1999.

[24] Valenzano, Demartini, Ciminiera, "MAP and TOP
Communications", Addison Wesley, 1992.

http://jac.aopsys.com)/
http://comrt.sourceforge.net/
ftp://ftp.omg.org/pub/docs/ormsc/01-07-01.pdf
http://www.cs.ubc.ca/~ycoady/aspectc.html
http://www.cs.ubc.ca/labs/spl/projects/apostle/

	1. Introduction
	2. Oriented Programming and the JAC framework
	2.1. Key principles of AOP
	2.2. The JAC framework
	2.3. Programming with JAC

	3. AOP for factory communications
	4. Design and Implementation of AspectTAZ
	4.1. An object oriented TASE.2 based industrial messaging service
	4.2. AspectTAZ
	4.2.1. Design of AspectTAZ
	4.2.2. Applying the deployment aspect to AspectTAZ

	4.3. Performance of AspectTAZ
	4.4. Alternate Trends for AspectTAZ Design

	5. Conclusion

