
Verification in Concurrent Programming with Petri nets Structural
Techniques

Kamel Barkaoui and Jean-François Pradat-Peyre
Conservatoire National des Arts et Métiers

Laboratoire CEDRIC
barkaoui@cnam.fr, peyre@cnam.fr

Abstract

This paper deals with verification of flow control in
concurrent programs. We use Ada language model
as reference. After translation of Ada programs
into Petri nets (named Ada nets for Ada programs),
we show how one can fully exploit the relationship
between the behavior of the concurrent program
and the structure of the corresponding Petri net.
Using the siphon structure, we precise some
structural conditions for behavioral properties
such as deadlock-freeness and liveness that
correct concurrent programs must satisfy. These
conditions can be proved or disproved using
efficient algorithms. We provide also a formal
justification of guidelines (such as client/server
paradigm) that programmers observe traditionally
in order to built correct concurrent programs.
Several examples are presented to show the
effectiveness of using structure theory of Petri nets
for static analysis of concurrent programs.

1. Introduction

1.1. Motivations

Because individual modules are small enough to
be understood and are more likely to be correct
than larger ones, the software construction for
complex computer systems must be done in a
modular fashion. However, more and more
complex computer systems are built such that
embedded computer systems where concurrent
programming is required, and where faults in

their design or construction lead to unacceptable
consequences. So, these big and critical systems
must be correct but not only ”probably” correct.
In fact, for such applications , ”probably” almost
means ”probably not”. For example, suppose
that in a 1000-modules system , we have 0.999
confidence in each module (or task), then the
probability of the whole system being error-free
will be only

����� �������
	��
�
������� ���
.

Even, if one can prove, with formal methods,
that specifications correspond to user needs,
and that the code is correct with respect to
these specifications, the correctness of concurrent
programs is ensured only if safety and liveness
properties (in the sense of Owicki and Lamport
[17]) are satisfied. Due to the non-deterministic
behavior of concurrent programs, the proof of
these properties is quite complex.

An important example of safety property is
freedom from deadlock. Deadlock is a state in
which all processes (tasks) are blocked waiting
for something that will never happen. Detection
techniques of deadlocks in concurrent programs
generally split into two classes : static analysis
techniques which do not require actual execution
of the source program, and dynamic analysis
techniques which requires the introduction of a
specific monitoring task into the program and
for which results are dependent on the scheduler
characteristics.

In this paper, we provide a contribution for
verification of concurrent programs [9]. For
sake of simplicity, we focus here on concurrent
Ada programs (called in the following Ada
tasking programs) involving tasks and rendez-vous

concepts. However, the techniques proposed are
based on structure theory of Petri nets, and can be
applied to any synchronization and communication
pattern [13, 2].

This paper is organized as follows : in section
2, we recall some basic definitions and results
of the structure theory of Petri nets being used
in this study. We give also a succinct overview
of translation of Ada tasking programs into Ada
nets and their main properties. In section 3 we
give a necessary structural-liveness condition and
a sufficient deadlock freeness condition of an Ada
net based on the notion of controlled siphon. In
section 4 , we present subclasses of Ada programs
for which necessary or sufficient condition
deadlock freeness (and liveness) conditions can be
stated and efficiently proved. We justify hence
formally some practices used by programmers to
built deadlock-free concurrent programs. Finally
in section 5, we conclude and discuss worthwhile
future work.

1.2. On flow control analysis of concurrent
programs

A program is correct when it fulfills certain
properties [18]. A property of a concurrent
program is some assertion that is true of every
legal execution of that program. In general the
properties are very dependent on the scheduling
policy used. Static analysis of a program
consists in checking properties without making
assumptions on the support system on which the
program is executed.

There are two classes of property that a correct
concurrent program must satisfy : safety and
liveness [17, 8].

1. safety properties : assert that nothing ”bad”
will ever happen during an execution (the
program will never enter a ”bad” state).

2. liveness properties : assert that something
”good” will eventually happen during the
execution.

There are two important concurrent program
properties : the deadlock freeness and the livelock
freeness. A deadlock is a state in which processes
are blocked waiting for something that will never

happen. The livelock is a condition in which
processes are executing instructions uselessly, in
the sense that they will never make constructive
progress.

If deadlock can be viewed as a violation of
safety and liveness, livelock however is not usually
considered a violation of safety.

Conditions for the occurrence of livelock remain
difficult to characterize while conditions for
the occurrence of deadlock are well identified.
However the strategies to cope with deadlock need
techniques difficult to manage.

There are three strategies for coping with deadlock
in concurrent programming. The first one,
very difficult to apply, consists in introducing
components into the program that can detect the
occurrence of deadlock and when it has, carry
out some recovery actions. The second one,
called deadlock avoidance, consists in anticipating
impending deadlock and to take avoiding action
in advance. These two approaches need the
introduction of external components and doesn’t
ensure that system remains always in safe states.
The third one, called deadlock prevention, consists
in building a system such that the occurrence
of deadlock is logically impossible i.e. in
which one of the Coffman conditions [10] is
denied. Generally, designers try to remove the
circular ”wait condition” by ordering the resources
requests. This policy leads generally to poor
performance measures in terms of concurrency
(throughput, resources utilization ratios, ...) and
imposes restrictive programming rules difficult to
respect.

An efficient deadlock prevention method consists
in translating a concurrent program into a Petri
net model [15]. This net is called Ada net in
the case of multi-tasking Ada program. In such
a translation, only Ada statements which can alter
the control flow (such as If, Loop, and select
statements) or constitute a Rendez vous (entry calls
and accepts) are taken into account in the Petri net
translation. More details on the translation of Ada
programs into Ada nets can be founded in [15] or
in [2, 13] for the modeling of the protected object
in Ada95. For efficiency reasons, the reachability
analysis of Ada net must be avoided since it is
equivalent to Taylor’s algorithm that shows in [21]
that the generation of the complete concurrency

2

history for a program has an exponential time
complexity (in terms of the number of tasks).
Recent works attempt to exploit reductions [22]
and decomposition techniques [16] developed in
Petri nets theory to reduce the cost of such analysis
[20]. In [15] a static analysis method is developed
combining Petri nets transition invariants with
reachability graph generation.

The approach developed in this paper is purely
based on structure theory concepts of Petri nets.
Structure theory consists to relate the behavior of
the Petri net to its structural objects, such like
siphons, traps or invariants.

2. Basic Petri nets notions

2.1. Definitions

We suppose that the reader is familiar with basic
Petri nets notions and its graphical representation.

In the following, we denote ���������	��
��	�
��� a
Petri net where � is the set of places, � is the
set of transitions and ��� (resp. ��
) is the the
backward (resp. forward) incidence application
from �
��� to IN.

Given a marking � and a transition � , one denotes
by ��� ������� the fact that � is fireable at �
and accesses ��� . The set of reachable markings
of a Petri net from a marking � is denoted by� ��� � � �

.

One notes !#" ��$ �&%'�)(�
 � "*��� � � �,+
and "-! �

$ �&%��.(�
� � "*��� � � �/+
.

Definition 2.1 Let
�0� � � � � be a marked Petri net.�0� �	� � � is said to be :

1 live iff: 23�4% � �0� �	� � � �52-�)%6��� 7,8'%9�;:
such that : ��� 8<�=���0� �>�?��� � . This
property means that whatever the evolution of
the system is, each action (transition) remains
executable (fireable).

1 weakly-live (or deadlock free) iff : 2�� %� �0� �	� � � �	7/�>%@���	����% IN A such that
��� �B� ��� . This property means that
the system never reaches a deadlock (not
deadlockable) but does not ensure that the net
is live.

Important remark : Because we focus only on
the control flow and the communication patterns of
concurrent programs, valuations of the net model (Ada
nets for Ada programs) belong to CEDGF HJI . So, now on, we
denote by Petri net, places/transitions nets for which
valuations belong to CEDGF HJI .

We define now two classes of Petri nets for which
there exists a necessary and sufficient condition for
liveness.

Definition 2.2 A Petri net is called

1 a free choice net if and only if : 2 � "*�	K � %
�
�L����" !NM K !PO�RQ��3S " ! � K !

1 an asymmetric choice net if and only if :
2 � "*�	K � %T�U�V����" !.M K !WO�XQ���S " !ZY
K ! or K ![Y " !

2.2. The controlled siphon property

Definition 2.3 Let
�

be a Petri net.

1 A subset of place \ of � is a siphon if and
only if, !]\ Y \^! .

	

1 A siphon \ is said to be token-free for a
marking � if 2_"'%'\`�	� � " � � �

.

1 A siphon \ is said to be minimal if it contains
no other siphon.

1 A siphon \ is said to be maximal if there is
no siphon containing it.

1 A siphon \ is said to be controlled for � �
an initial marking of

�
if for each reachable

marking � of
� �0� � � � � , D is not token-free

for � .

Definition 2.4 A marked Petri net
�0� �	� � � fulfills

the controlled siphon property (cs-property) if
each siphon \ of

�
is controlled for � � .

With this definition sufficient conditions for
deadlock freeness and a necessary condition for
liveness can be established.a

we denote by extension, b�c`d�e_f]gih.jlkmcon the output
transitions of b and c bpd`e fEgqh j c kmn the input transitions ofb

3

Proposition 2.1 The cs-property is a sufficient
condition for deadlock freeness [5]; i.e. a marked
Petri net that fulfills the cs-property is weakly-live.

Proposition 2.2 The cs-property is a necessary
liveness condition [5]; i.e a live marked Petri net
fulfills the cs-property.

These two conditions can be unified in a necessary
and sufficient condition for liveness in the case of
asymmetric choice nets.

Proposition 2.3 An asymmetric net (or a free
choice net) is live if and only if it satisfies the cs-
property [5].

2.3. How cs-property can be checked

Two structural methods can be used to check the
satisfiability of cs-property. The first one consists
in checking that each minimal siphon contains a
trap (a subset of places � with � !��@! �) that
is non token-free for the initial marking. This
is the deadlock-trap property [19]. The second
one consists in checking that for each siphon of
the net, there exists a particular invariant place �
that ”covers” it and ensures, with respect of initial
marking, that the siphon cannot become token-free
[5].

Proposition 2.4 Let
�0� �	� � � be a marked Petri

and \ a siphon of
�

. If there exists a subset of
places � with � !^Y
! � , � Y \ and � � � � � � �
then \ is controlled for � � .

In this proposition the subset � is a trap and this
proposition is known as the Commoner’s property.

Proposition 2.5 Let
�0� �	� � � be a marked Petri

and \ a siphon of
�

. If there exists a vector of
places � �����	�

A �
� " � � " such that

1.
��
 � F � fEg������������ ������� F�� � � fEg�� ��������� �"!#��� F�� � ,
2. C �
%$'& �������)(DqI+*-, and

3.
� fEg�� ��������� .0/1�����2(D

then \ is controlled for � � [5].

Remark : point 1 ensures that � is a place invariant of
the net, point 2 that the positive support of � is included
in the siphon , and point 3 that there exists a place � of, such that �������2(D and .0/������2(D .

Checking the cs-property by the first method is
polynomial for free choice nets [4, 11, 1], but it
is theoretically exponential in general case because
of the complexity of minimal siphon calculus.

However, experience shows that, in most cases,
these verification methods work as they were
polynomial [12], [8]. Furthermore, it is clear that
for complex models it is often easier to check the
cs-property than to build the reachability graph in
order to ensure the deadlock freeness [19].

In section 3, we show how the cs-property can be
used to characterize Ada-tasking programs.

3. On the use of the cs-property in
concurrent programming

3.1. Modeling concurrent programs with
Petri nets

We focus on Ada’s language model [14] but others
languages employing message passing, remote
invocation, semaphore or monitors (like Occam,
Pascal FC, Java, ...) can also be take into account
with the proposed approach due to modeling power
of Petri nets.

Parallel systems programming can be expressed
in Ada through the concept of task. An Ada
task is an Ada program unit which is defined by
a specification and a body. A task specification
defines the name of the task and names of its
entries. Each entry defines a synchronization or
communication point reachable by others tasks.
The synchronization mechanism is based on
the one-to-one Rendez-vous mechanism. This
mechanism assumes that both called and calling
tasks are ready to achieve the Rendez-vous. In
order to provide code reutilization, a Rendez-vous
is asymmetric : the called task is not made known
to the calling task. An entry without parameter
means that this entry is only used to synchronize
tasks (no communication). Furthermore, tasks can
make selective calls or selective accepts by the use
of the constructor ”select”.

4

Petri nets are well-suited to describe
communication patterns and control flow of an Ada
tasking program. Basic works on this approach are
described in [15] or in [14]. The idea is to associate
to each task a Petri net state-machine and to
represent communications and synchronization by
shared places. The Ada program is then modeled
by a set of communicating state-machines.

In term of communication patterns, we have to
distinguish several cases : the called task may do
a simple or a selective accept, there may be one or
many tasks calling a particular entry and a calling
task may do a simple or a selective call. To each
case corresponds a particular modeling in term of
Petri nets.

Translation of Ada-tasking programs into a Petri
net model called Ada-net is done according to the
rules presented in [15]. This Ada-net is bounded
(conservative) by construction. Its initial marking
represents the state in which the program modeled
by the net is ready to start execution. In order
to ensure strong connectivity, and then to use the
results of structure theory of Petri nets, we consider
that each task is encapsulated in an external loop.
This transformation does not alter the behavior of
the original programs [15].

We define now the relations linking the behavior
of an Ada tasking program and the properties of
the corresponding Ada net.

Definition 3.1 An Ada tasking program is said
to be statically executable if and only if its
corresponding Ada net is weakly-live.

Such a program has always something to do i.e.
there is no reachable state in which tasks can be
indefinitely blocked waiting for something that
will never happen. However, it does not ensure
that all instructions can be executed : a part of
the program may be blocked. We are then faced
to the difficult problem of livelock : ”condition in
which tasks are executing instructions uselessly, in
the sense that they will never make constructive
progress” [7].

The following definition characterizes Ada
program in which a livelock condition can never
appear.

Definition 3.2 An Ada tasking program is said

to be concurrently correct if and only if its
corresponding Ada net is live.

Correct programs fall within the
class of concurrently correct programs and then,
several researchers have given a characterization of
this class with Petri nets theory.

The first method to verify that an Ada tasking
program is concurrently correct is to construct
the reachability graph of the Ada net [20] :
i.e. the graph which describes the complete
enumeration of the state space. Since an Ada
net is by construction bounded (each marking
place is bounded by an integer), it is possible to
generate this graph. However, this way is not
efficient since it is equivalent to trace the program’s
control flow by generating all possible reachable
states (Taylor’s algorithm [21]). The complexity
is exponential : � ����� �

where � is the number of
tasks and

�
the number of statements related to

concurrency.

So, alternative methods have been proposed. The
first method was to use the theory of invariants [15]
to obtain a necessary condition on liveness. The
second one was to try to reduce the Ada net state
space by applying reduction theory of Petri nets
[22] or more recently by using a decomposition
method [16]. Unfortunately, all these methods
remain exponential in time and space.

We show in the next section that controlled siphon
property is a necessary and/or sufficient liveness
condition.

3.2. Deadlock detection

3.2.1 A necessary liveness condition

Proposition 3.1 If the Ada net of an Ada program
contains a siphon token-free for the initial marking
then the Ada program is not concurrently correct.
Moreover, this condition can be checked in linear
time (as a function of the number of arcs) by the
following algorithm [3].

Algorithme 1 : maximal siphon

1. ���	�
� �

A
 �	�
��
�� ����� � � � A
 ���

��� �
with

� � ��� �
– � is the set of places that cannot belong to any siphon

2. While ������ do

5

(a) take

�
in � ; ��� � � �

� �
(b) forall

�
in

� �
do

if

� � � �
� �

then � � � � � �
� �

fi; – outputs of
�

cannot belong to a deadlock

(c) A � A � �
� � (and remove all arcs linked to

�
)

done

3. The necessary condition is fulfilled if and only if A ���

Let
�

be an Ada net and let \ be the maximal
siphon computed by the previous algorithm. Each
task that has non alternative statement and having
a transition included in \ ! is deadlocked; i.e.
the program reaches surely a state from which
any instruction of this task can not be more
executed. Moreover, it is possible to anticipate
about dynamic program behavior. As soon as an
alternative of a task including a dead transition
(� % \ !) is chosen, then this task will be also
deadlocked. If the program contains

�
tasks, as

soon as
�����

tasks are proved deadlocked, then
the program is not static executable (its Ada net is
deadlocked).

Let us demonstrate the power of this simple
necessary condition on significant examples. For
the two models of producer-consumer given in
[15] (Ada-tasking program 1), we can compute
in both case a token-free siphon. The Ada
program and the corresponding Ada net of the
first example are given below (figure1). One can
verify that dashed places form a siphon token-
free for the initial marking. This program is not
concurrently correct. Task Producer is deadlocked
(there is no alternative statement). Since task
Buffer accepts entry ”produce”, this task becomes
also deadlocked. So, we can conclude that, since
task Buffer accepts entry ”produce”, the program
is deadlocked.

Consider now the following Ada program (Ada-
tasking program 2) from [22] modeling the
activities in a gas station when a customer comes
to fill up with petrol. The corresponding Ada net is
represented figure2.

In the corresponding Petri net one can compute
in linear time a siphon that is token-free for the
initial marking (blacked places on figure 2). So,
without any more consideration, we can conclude
that the Ada program is not concurrently correct.
Since tasks Customer and Pump have no select
statement and got state places in this siphon, we
can conclude that necessarily these tasks will be

wait.consume

ready.to.consume ready.to.produce

wait.msg_ack

accept.msg_send

accept.msg_ack

accept.msg_ack

wait.msg_send

wait.prod

accept.produce accept.consume

task Producer task Bufferselect task Consumer

Figure 1. The Ada net of the program
1 (the "bad producer-consumer")

loop.Cust loop.Op

select.Op.prepay-charge

send.to.Op.prepay

ready.to.Op.prepay

wait.to.Op.prepay

send.to.Op.start

wait.to.Pu.activate

send.to.Pu.activate

loop.Pu

accept.activate

ack.Op.start

send.to.Op.finish

ack.from.Pu.activate

ack.from.Op.finish

wait.to.Op.finish

wait.to.Op.start

ready.to.Op.start

ack.from.Op.prepay

send.to.Op.Charge

ack.from.Op.Charge

accept.change

wait.to.Op.charge

send.to.Cust.change

ack.from.Cust.change

wait.to.Cust.change

accept.prepay

end.accept.prepay

accept.chrage

end.accept.charge

end.acceprt.finish

end.loop.Cust

end.loop.Pu

end.loop.Op

end.select.prepay-charge

accept.start

accept.finish

ready.to.Op.charge

Task Customer Task Operator

Task Pump

Figure 2. Ada net of Pgm 2 (the gas
station program)

6

deadlocked. As the Ada program contains only
three tasks, the program is deadlockable.

3.2.2 A sufficient deadlock freeness condition

We can claim through these significant examples
that most ”bad” Ada programs can easily be
detected by our previous algorithm. However,
a program that pass this filter is not necessary
”good”. So, in order to characterize ”not bad”
program, we give now a sufficient condition on
weakly-liveness.

Proposition 3.2 If the Ada net of an Ada program
fulfills the cs-property then the Ada program is
statically executable.

Proof :

As a direct consequence of proposition 2.1. �����

Using this property it is possible to verify that
programs which seems to be concurrently correct
(the last necessary condition is satisfied) are at least
statically executable. Theoretical complexity of
this verification is not polynomial in the general
case due to the theoretical complexity of minimal
siphon computation. However, experiences reveal
[12] that in most cases, siphon can be computed in
polynomial time and so, checking cs-property can
be done efficiently.

On the following example (Ada-tasking program
3 and fig.3) taken from [15], the cs-property
is satisfied (all every minimal siphon contains
a marked trap), then we can ensure that the
corresponding Ada-tasking program is at least
weakly-live. Indeed, we will show in the next
section, that this program is live because it belongs
to a class of Petri nets (asymmetric choice nets)
for which the cs-property is a sufficient liveness
condition.

4. Sub classes of concurrent programs

Many books about concurrent programming give
the following guideline : ”a task must be an active
entity (client) or a passive one (server) but not both
!”.

wait.prod accept.produce
accept.consume

ready.to.msg_ack

wait.msg_ackaccept.msg_ack

wait.consume

select

ready.to.consume ready.to.produce

ready.accept

task Producer task Buffer task Consumer

Figure 3. Ada net of program 3 (the
"good" producer-consumer)

We must not give to this guideline a restrictive
meaning. In our context, this sentence must be
interpreted as : ”at each Rendez-vous occurrence,
one and only one participating task may be on a
selective statement”. At this point, only one task
controls, in some way, the manner in which it is
used. In this sense, this task acts as a server, the
other as a client. It is possible to say that the
client/server paradigm is satisfied locally.

One can note that this paradigm is thinner than the
classical ”client/server paradigm” which imposes
that a task must be devoted to be either a client
or a server. In particular, a task may be a client
at one point of its life and a server at an other
point. Furthermore, a task may choose, using a
select statement, to be either a server or a client.
The only restriction is that two tasks on a Rendez-
vous cannot be both on a select statement (even if
one make only calls and the other only accepts).
In this case, both may control the manner in which
they are used and then, both act as a client.

We can now justify formally how this empirical
guide help programmers to ensure the concurrency
semantic correctness of their programs.

4.1. Asymmetric choice programs

Definition 4.1 A tasking Ada program is an
asymmetric choice Ada-tasking program if at
each Rendez-vous occurrence at most one of both
task is on a select statement.

By construction, Ada nets of asymmetric choice

7

Ada-tasking program are asymmetric choice nets.
It has been proved, in Petri nets theory, that such
nets are live as soon as they are weakly-live [5, 6].

So, under this property, livelock condition
cannot appear in asymmetric choice Ada-tasking
programs. They are either totally blocked or
concurrently correct. Since detection of livelock is
much less straightforward, it becomes obvious that
building asymmetric choice Ada-tasking programs
is an efficient way to build correct concurrent
programs.

Proposition 4.1 A necessary
and sufficient condition for an asymmetric choice
Ada-tasking program to be concurrently correct
(live) is that the corresponding Ada-net fulfills the
cs-property.

Proof :

Since Ada-nets obtained from asymmetric choice
Ada-tasking program is asymmetric choice net, we
have, prop. 2.3, that cs-property is a necessary
and sufficient condition for the program to be
concurrently correct.

�����

We may observe that several significant examples
belong to this class (all programs presented
previously are in this class). For instance,
the ”good” program of consumer-producer (Ada-
tasking program 4) is an asymmetric choice
program. As we show in the previous section,
this program is statically executable (weakly-live),
so, using the previous condition, it is possible to
conclude that this program is concurrently correct
(live).

If we consider the problem of the dining
philosophers, and if we imposed that philosopher
take forks in a particular order we have the
following Ada-tasking program.

Using the algorithm given in [3], it is possible
to check that this program is an asymmetric
choice program and that the corresponding Ada net
satisfies the cs-property.

So, this solution of the dining philosophers
problem is concurrently correct.

4.2. Free choice programs

In Petri nets theory it is shown [4] that for
some classes of bounded Petri nets(extended free
choice nets and non self-controlling nets) liveness
is decidable in polynomial time using cs-property.

In this paper we define a first sub-class of
asymmetric choice programs called free choice
programs for which concurrently correctness can
be checked in polynomial time.

Definition 4.2 An asymmetric choice Ada-tasking
program is a free choice Ada-tasking program if
none of its tasks has a select statement and each of
its entry is called once only.

Proposition 4.2
A necessary and sufficient condition for a free
choice Ada-tasking program to be concurrently
correct (live) is that the corresponding Ada-net
fulfills the cs-property. Moreover, the cs-property
can be checked in polynomial time.

Proof :

Since free choice Ada-tasking programs are
a particular case of asymmetric Ada-tasking
programs the first part of the proof is clear.

It is shown in [4] that the cs-property is equiv-
alent to the deadlock-trap property. Further-
more deadlock-trap property can be checked in
polynomial time for bounded (marking of each
place is bounded) free choice nets by using al-
gorithms proposed in [4] or in [11]. Since
free choice Ada nets are bounded, the cs-
property can be checked in polynomial time.

It is important to point out that, in spite of
the limitations imposed by definition, the nested
Rendez-vous is allowed in a free choice Ada-
tasking program. For instance, let us consider the
following program (Ada-tasking program 5) taken
from [16] in which we have introduced a nested
Rendez-vous. In [16], this example is used to
illustrate the efficiency of the method proposed by
the authors which is exponential in time.

Such a program is a free-choice Ada tasking
program. So, we can prove in polynomial time,
that it is concurrently correct using only the cs-
property.

8

5. Conclusions

The crucial need for verification techniques which
can be applied to concurrent software for complex
systems has motivated our study. The main
contribution of this work is to show that concepts
and results of structure theory of Petri nets can
lead to an efficient and automatic support for
static analysis of concurrent programs. Moreover,
we provide the formal justification of empirical
guidelines that programmers observe frequently in
order to built concurrent correct (safe and live)
programs.

Some areas for future research are suggested by
this work : first, we try to combine all structural
analysis techniques (based on graph theory and
or linear algebra) of Petri nets to highlight the
livelock structural conditions and to improve
tools and methodologies for concurrent software
verification.

Secondly, we project to apply these techniques to
Java programs in order to propose safe concurrent
patterns, offering high level synchronization
mechanisms for secure intranet applications.

References

[1] K. Barkaoui, J. Couvreur, and C. Duteilhet. On
liveness in extended non self-controlling nets in
application and theory of Petri nets. LNCS, 935,
1995.

[2] K. Barkaoui, C. Kaiser, and J. Pradat-Peyre. Petri
nets based proofs of Ada95 solution for preference
control.
In Proc.of the Asia Pacific Software Engineering
Conference (APSEC) and International Computer
Science Conference (ICSC), Hong-Kong, 1997.

[3] K. Barkaoui and M. Minoux. Deadlocks and
traps in Petri nets as horn satisfiability solutions
and some related polynomially solvable problems.
Discrete Applied Mathematics, No. 29, 1990.

[4] K. Barkaoui and M. Minoux. A polynomial time
graph algorithm to decide liveness of some basic
classes of bounded Petri nets. LNCS, No. 616:62–
75, 1992.

[5] K. Barkaoui and J. Pradat-Peyre. On liveness and
controlled siphons in Petri nets. In Reisig, editor,
Petri Nets, Theory and Application, number 1091
in LNCS. Springer-Verlag, 1996.

[6] E. Best. Structure theory of Petri nets : The free
choice hiatus. In G. W.Brauer, W.Resig, editor,
LNCS, volume No. 255. Springer-Verlag, 1986.

[7] A. Burns, M. Lister, and A. Wellings. A review of
Ada tasking. In LNCS. Springer-Verlag, 1987.

[8] A. Burns and A. Wellings. Concurrency in
Ada, chapter 6.11, pages 134–137. Cambridge
University Press, 1995.

[9] J. Corbett. Evaluating deadlock detection methods
for concurrent software. IEEE Transactions on
Software Engineering, Vol. 22(No. 3), 1996.

[10] C. E.G., E. M.J., and S. A. Systems deadlocks. In
Computing Survey, 3 (2), 1971.

[11] J. Esparza and M. Silva. A polynomial-time
algorithm to decide liveness of bounded free-
choice nets. T.C.S, N 102:185–205, 1992.

[12] J. Ezpeleta and J. Couvreur. A new technique for
finding a generative family of siphons, traps and
st-components. In proc of the 12th International
Conference on Application and Theory of Petri-
Nets, Aarhus, Denmark, June 1991.

[13] C. Kaiser and J. Pradat-Peyre. Comparing the
reliability provided by tasks or protected objetcs
for implementing a resource allocation service :
a case study. In TriAda, St Louis, Missouri,
november 1997. ACM SIGAda.

[14] D. Mandrioli, R. Zicari, C. Ghezzi, and F. Tisato.
Modeling the Ada task system by Petri nets.
Computer Languages, Vol. 10(NO. 1):43–61,
1985.

[15] T. Murata, B. Shenker, and S. Shatz. Detection
of Ada static deadlocks using Petri nets invariants.
IEEE Transactions on Software Engineering, Vol.
15(No. 3):314–326, March 1989.

[16] M. Notomi and T. Murata. Hierarchical
reachability graph of bounded Petri nets for
concurrent-software analysis. IEEE Transactions
on Software Engineering, Vol. 20(No. 5):325–336,
May 1994.

[17] S. Owicki and L. Lamport. Proving liveness
property of concurrent programs. In ACM
Transaction on Programming Languages and
Systems, Vol.4, N.3, pp. 455-495, 1982.

[18] M. R. Communication and concurrency. In
Prentice Hall Ed., 1989.

[19] W. Reisig. EATCS-An Introduction to Petri Nets.
Springer-Verlag, 1983.

[20] S. Shatz, K. Mai, D. Moorthi, and J. Woodward.
A toolkit for automated support of Ada-tasking
analysis. In Proceedings of the 9th Int. Conf. on
Distributed Computing Systems, pages 595–602,
June 1989.

[21] R. Taylor. A general purpose algorithm for
analyzing concurrent programs. Communication
of ACM, Vol. 26(No. 5):362–376, May 1983.

[22] S. Tu, S. Shatz, and T. Murata. Applying Petri
nets reduction to support Ada-tasking deadlock
detection. In Proceedings of the 10th IEEE Int.
Conf. on Distributed Computing Systems, pages
96–102, Paris, France, June 1990.

9

Annexe

task body Producer is task body Buffer is task body Consumer is
begin begin begin
loop loop loop

Buffer.produce; select Buffer.consume;
Buffer.msg_send; accept produce end loop;
accept msg_ack; Producer.msg_ack; end Consumer;
accept msg_ack; accept msg_send;

end loop; or
end Producer; accept consume;

end select;
end loop;
end Buffer;

Ada-tasking program 1: A ”bad” producer-consumer

task body Customer is task body Operator is task body Pump is
begin begin begin
loop loop loop

Operator.Prepay; select accept Activate;
Pump.Start; accept Prepay do accept Start;
Pump.Finish; Pump.Activate; accept Finish do
accept Change; end Prepay; Operator.Charge;

end loop; or end Finish;
end Customer; accept Charge do end Pump;

Customer.Change;
end Charge;

end select;
end loop;
end Operator;

Ada-tasking program 2: The gas-station program

task body Producer is task body Buffer is task body Consumer is
begin begin begin
loop loop loop

Buffer.produce; select Buffer.consume;
accept msg_ack; accept produce end loop;

end loop; Producer.msg_ack; end Consumer;
end Producer; or

accept consume;
end select;

end loop;
end Buffer;

Ada-tasking program 3: A ”good” producer-consumer

task body Philo1 is task body Philo2 is task body Philo3 is task body Forks is
begin begin begin begin
loop loop loop loop

Forks.f1; Forks.f3; Forks.f1; select
Forks.f2; Forks.f2; Forks.f3; accept f1;

end loop; end loop; end loop; or accept f2
end Philo1; end Philo2; end Philo3; or accept f3;

end select;
end loop;
end Forks;

Ada-tasking program 4: A version of the dining philosophers

task body T1 is task body T2 is task body T3 is task body T4 is
begin begin begin begin
loop loop loop loop

T2.E; accept E do accept G; T3.G;
end loop; T3.F; accept F do T3.H;
end T1; end E; accept H; end loop;

end loop; end F; end T4;
end T2; end loop;

end T3;

Ada-tasking program 5: An Ada free choice program

10

