
Gram: A Graph Data Model and Query Language
�

Bernd Amann
INRIA

F-78153 Le Chesnay Cedex, France

Michel Scholl
Cedric/CNAM

292 rue St Martin, F-75141 Paris Cedex 03, France

Abstract

We present a model for data organized as graphs. Regular
expressions over the types of the node and edge labels are
used to qualify connected subgraphs. An algebraic lan-
guage based on these regular expressions and supporting
a restricted form of recursion is introduced. A natural ap-
plication of this model and its query language is hypertext
querying.

1 Introduction

Recent database [13, 5] research work shows a growing
interest in the definition of graph models and languages to
allow a natural way of handling data appearing in appli-
cations such as hypertext or geographic database systems.
Standard data models are often inefficient as they do not
capture the inherent structure of data representing hyper-
text documents [4, 7, 18] or networks (highways, rivers,
. . .) [12].

In this paper, we present a graph data model. Its appli-
cation to hypertext querying is illustrated by an example
of a travel agency that organizes journeys. We think of
a hypertext as a directed labeled graph where the nodes
are typed documents and the edges correspond to typed
span-to-span2 links between documents [15].

A journey corresponds to a sequence of stops in several
cities, where hotels, restaurants and monuments are vis-
ited. Figure 1 shows a schema, also structured as a graph.

Nodes: Document Types Edges: Link Types

CITY STOP

JOURNEYHOTELRESTAURANT

first

in

addraddr

addrMONUMENT

dist
next

Figure 1: The Travel Agency Schema

A document can have one of the following types:
STOP, JOURNEY, CITY, HOTEL, RESTAURANT and
MONUMENT. A sample of the database graph is given
in Figure 2. Note that links are typed and may contain
information such as a date, an address or a distance in
kilometers. Since restaurants like McDonalds can be de-
scribed independently from the city where they are lo-
cated, only their common characteristics are described in
the RESTAURANT node. The information specific to a
hotel or restaurant in a city, e.g. its address, is contained
in the link connecting it with the city document. Consider
a travel agency customer reading some touristic presenta-
tion of Paris:

. . . A very nice hotel in the 15 ��� district is the
Imperial hotel near the metro station Pasteur.
From there you can visit Eiffel Tower, Tro-
cadero, Orsay Museum, . . .

The two words Eiffel Tower are an anchor con-

1Work partially supported by the French Programme de Recherche
Coordonnée BD3 and the BRA Esprit Project Amusing. The second
author is also affiliated to INRIA, France.

2Links connect not only documents but more precisely spans of char-
acters called anchors, each anchor being located in a given document.

bus bus bus

Eiffeltower

Paris Vienna

ImperialPullman Holiday Inn

SalzburgMunich

trainPrinzenalleeMcDonalds

Luxembourg

St. Jacques

Notre−Dame Ile de la Cite 8/10/92 6/10/92 4/10/92 3/10/92

3/9/924/9/92

Av. Edison

Jour1

Jour2

600 300

Stop6 Stop5

Stop1Stop2Stop3Stop4

3/10/92

Pasteur

Champs de Mars

Les Halles

350

3/9/92

Figure 2: A Travel Agency Hypertext Graph

necting this text to some other document describing Eif-
fel Tower. The customer navigates through the database
graph by clicking on the anchors. The corresponding tar-
get document, e.g. the description of Eiffel Tower, is
displayed on the screen and contains itself anchors that
can be selected. Such a navigation might be supported
by a graphical browser, showing a map of the hypertext
graph and the current position. One drawback of graph
maps is that they easily become tangled, when the num-
ber of nodes and edges passes some limit (for example
more than a few dozen documents [6]). Thus query lan-
guages become necessary to restrict the search space in
navigational graphs [11, 14, 9].

We present a query algebra where regular expressions
over data types are used to select walks in a graph. For
example the regular expression JOURNEY first (STOP -
next) � STOP in CITY describes the walks going from a
journey document (a node of type JOURNEY) to one of
its stops in a city (node of type CITY). To illustrate the

Paris Holiday Inn
Av. Edison

McDonalds
Les Halles

Figure 3: A Hyperwalk

power of this language, we take three examples of queries
on the travel agency hypertext. Figure 3 contains a sub-
graph of the database showing that there are a Holiday Inn
and a McDonalds in Paris. Assume that for representing
such information we have two relations HOTEL(NAME, -
ADDRESS, CITY) and RESTAURANT(NAME, ADDRESS,

CITY).
The following SQL query extracts all cities with a Hol-

iday Inn and a McDonalds restaurant:

select HOTEL.CITY
from HOTEL, RESTAURANT
where HOTEL.NAME=‘Holiday Inn’

and RESTAURANT.NAME=‘McDonalds’
and HOTEL.CITY=RESTAURANT.CITY

A set of tuples, an element of which is depicted in Fig-
ure 3, is selected and projected on the CITY nodes. In our
model, such a tuple is called a hyperwalk. We present
an algebra for hyperwalks, which are specified by regular
expressions, called hyperwalk expressions. For example
the schema of the hyperwalk in Figure 3 can be repre-
sented by hyperwalk expression CITY addr RESTAURANT
+ CITY addr HOTEL.

Intuitively, the user wants to navigate, i.e. follow some
paths (walks) in the hypertext graph. He will choose
walks according to

� a given hyperwalk expression.
� the values of the nodes and edges traversed.
� the types and values of nodes and edges of other

walks that are related to the nodes and edges tra-
versed.

With the algebra to be defined below, the above query is
formulated as follows (a syntax a la SQL is used for clar-
ity):

select CITY
from CITY addr RESTAURANT +

2

CITY addr HOTEL
where RESTAURANT.name=“McDonalds” and

HOTEL.name=“Holiday Inn”

The from clause specifies the range of the query: it is
a regular expression � over types of nodes and edges
and specifies the starting set of hyperwalks. The se-
lect and where clauses, as usual, specify the selec-
tion criteria, as well as what is to be projected: CITY
in the select clause specifies that for each target hy-
perwalk we keep only the CITY document. RESTAU-
RANT.name=“McDonalds” in the where clause speci-
fies that we select only the hyperwalks whose restaurant
document is such that its attribute name value is “McDon-
alds”.

As another example, the following query gives all
restaurants in the third district of Paris:

select RESTAURANT
from CITY addr RESTAURANT
where CITY.name=“Paris” and addr.district=3

The last query gives all information about journeys in-
cluding a visit to the Mont St. Michel monument in
March:

select *
from JOURNEY first (STOP next)

�
STOP

in CITY addr MONUMENT
where in.month=”March” and

MONUMENT.name=”Mont St. Michel”

Section 2 defines graph schemas and databases. Hyper-
walk expressions and the notion of satisfaction of a hy-
perwalk expression are introduced in Section 3. Section 4
presents the algebraic operations on hyperwalks which are
selection, projection, renaming, join and concatenation as
well as the usual set operations. The hyperwalk algebra is
then applied on the examples mentioned before. Finally,
in Section 5, the application of this model to hypertext
querying is illustrated.

2 Graph Databases

2.1 Database Schema

Definition 2.1 A (graph database) schema is a directed
weakly connected3 labeled multigraph

�������
	����	�����	�����	������
where

1.
� 	

is a set of nodes and
 	

is a set of edges.
2.
��	

is an incidence function from
�	

into
��	�����	

.
3.
� �!�#"%$��#&

is a set of labels and
�'	

is a labeling
function from

�
	($��	
into
�

.
Additionally,

�
has to satisfy the following restrictions:

� Different nodes must have different labels (distinct
node label property):

� Note that
�

is a multigraph, i.e. a pair of nodes can
be connected by more than one edge. If two edges
connect the same pair of nodes in the same direction
then they must have different labels (distinct edge la-
bel property):���*)+�,�-���*)+./�#0�)21�!)+.�34�'	���)5��1� �'	6��)+./�87

We assume that each symbol 9 in
�

, called a type, is as-
sociated with a domain of values, denoted :<;+= � 9 � . A
set of values > is defined as the union of the domains
of all types in

�
: > �@? �BADC :E;+=

� 9 � . We do not make
any other assumptions on the type system

�
. Figure 1

shows a schema with 6 nodes and 6 edges labeled by
the types

�F�HG
JOURNEY, STOP, CITY, HOTEL, RESTAU-

RANT, MONUMENT, addr, in, dist, next, first I .

2.2 Graph Database

A (graph) database with schema
�

is a directed labeled
graph with labels in > . A function associates with each
node and edge in the database a node, respectively an
edge in the schema and thus allows the specification of
the databases satisfying a schema:

Definition 2.2 A (graph) database with schema
�

is a di-
rected labeled multigraphJK�L���M��N��������� > � where

1.
�

is a set of nodes and

is a set of edges.
2.
�

is an incidence function from

into
�O���

.
3. > is a set of labels and

�
is a labeling function from�P$Q

into > ,
such that there exists a function R from

J
to
�

associating
with each node (each edge) in

J
a node (an edge) in

�
with:

3A directed graph is weakly connected if the corresponding undi-
rected graph is connected [16]. From now on, connected will mean
weakly connected.

3

� R returns for each node � in
J

a node � in
�

and the
label of � is in the domain of the label of � :

��� � ���
:<;+= � � 	 � R � � ����� .

� R returns for each edge � in
J

, going from node � to
node � . , an edge

)
in
�

, which is going from node
R � � � to node R � � . � and the label of � is in the do-
main of the label of

)
:
� 	 � R � � ����� � R � � � � R � � .*���

and
��� � ��� :E;+= �*�'	6� R � � ����� .

Conversely, an instance of a database schema
�

is a graph
database. An instantiation function � associates with each
node (edge) = in

�
a set of nodes (edges) in

J
as fol-

lows: � � = �����
	�� R �	���� =�� . Note that a database
J

Holiday Inn

Prinzenallee

ImperialPullman

Paris

PasteurSt.Jacques

Munich Vienna

Figure 4: A Travel Agency Database

is not necessarily connected (Figure 4) and there may be
nodes without edge (Vienna) or more than one incoming
or outgoing edge (Paris).

3 Hyperwalks and Hyperwalk Ex-
pressions

3.1 Walks and Hyperwalks

Walks (paths) are the basic objects of our model. A walk
in a graph is an alternating sequence of nodes and edges
���) ����� 7 7 7 �������) ��������� beginning and ending with nodes,
in which each edge is incident with the two nodes im-
mediately preceding and following it [16]. For example,
to get the cities in a journey, one chooses the walks in
the database starting from a node of type JOURNEY4 and
ending with a CITY node.

As a matter of fact, a walk the user traverses, might be
related to information in other walks. For example, he
might choose all pairs of walks, starting in different jour-
ney nodes and ending in the same city. In the following,

4We say that a node is of type � , if its label is in �����! "��# .

STOPCITY

STOP next STOP in CITY

JOURNEY first STOP in CITY

Figure 5: $ �&%('!)+* � !,.-0/ �21 9 � �3'+45/ �!6+� �7,98
� �3'+4 �)�: 9 � �3'+4�/ �!6+� �7,(�

we will combine walks into sets of walks, called hyper-
walks. Figure 4 shows a hyperwalk made of two walks
connecting Paris with the Pullman and Imperial hotel.

3.2 Walk and Hyperwalk Expressions

Let
�O�O�#" $��#&

where
�#"

(
�#&

) denotes the sets of
node (edge) types in

�
. A walk expression (we) is a regu-

lar expression (r.e.) over
�

without alternation (
8

), whose
language contains only alternating sequences of node and
edge types, starting and ending with a node type. For ex-
ample (STOP next) � STOP in CITY addr HOTEL is a walk
expression.

Definition 3.1 A regular expression over
�

is a hyper-
walk expression (hwe) iff 1) it can be rewritten as a sum
of walk expressions, � �<; �>=?�=?@ � � such that 2) the fol-
lowing undirected labeled graph $ � � � is connected:
$ � � �Q� �BA �DC����0E � , where with each � � we associate

a node � � in
A

with label � � (
�FE�� � � �Q� � �), and there

exists an edge with label 9 between nodes ��G and ��H iff 9
is a node type in ��G and �IH .
Condition 2) is a necessary condition to enforce that infor-
mation in walks of a hyperwalk are related to each other.

Example 3.1 The r.e. JOURNEY first STOP in CITY +
STOP next STOP in CITY is a hyperwalk expression.
The walk expressions JOURNEY first STOP in CITY and
STOP next STOP in CITY share the two node types STOP
and CITY (Figure 5).

JOURNEY first STOP + CITY addr HOTEL is not a hwe
since the walk expressions JOURNEY first STOP and
CITY addr HOTEL do not share any node type.

Hyperwalk satisfying a Hyperwalk Expression: The
label of a walk is obtained by substituting each node and

4

edge in the walk with its label:
��� � �) � 7 7 7�) H ����� H � ���� ��� ������) � �#7 7 7����*) H ��� ����� � H � 7

The label of a hyperwalk
�

is obtained by replacing
each walk in

�
by its label:��� ��� � ����� � 7 7 7�� @ � ��� �+����� � �8���������5� 7 7 7������ @ � � 7

We define the following language over
�

:

��� 9 � � :<;+= � 9 �
	��������� 9 � ��7
�����(7 ��� � ������� �������
�
	����������� 7 �E7����������Q7

����� 8��
� � ��������$������
�
	����������� 7 �E7����������27
����� � � � $ �� F� ���!� � �#"�$%���&�'����� � ��� � ���

	��(���������)��*(+%�,���-��.0/%�&�21&1&3���-1(�(7

From now on,
��� � � will be called the language of � . Let �

be a we and
�

be a walk whose label is in
��� � � : �������+���� � � . With each occurrence of a type 9 in � we can asso-

ciate some nodes or edges in
�

, called instances of 9 in � ,
i.e. whose labels are in :E;+= � 9 � . For example Vienna is an
instance of CITY in the walk Stop1.3/10/92.Vienna whose
label is in

�
(STOP in CITY).

Definition 3.2 A hyperwalk
� � ��� � �&� � � 7 7 7&� @0� satis-

fies a hwe � , denoted
� � � � , iff

1. its label is a subset of
��� � � : ��� � �546��� � � .

2. there exists a decomposition
; �>=?�=?@ � � of � , such

that each walk
� � in

�
has a label

����� � � in
��� �
� � .

3. for all node types 9 shared by �I� and � G , � � and
� G

share at least a node of type 9 .
Condition 3) enforces that the walks in

�
form a con-

nected graph: to each edge
)

in $ � � � , with label 9 �F�
and between two nodes with label �I� and � G , correspond
two walks

� � and
� G in

�
such that

� ����� � � �7��� � � � , ����� G ���8��� ��G � and
� � � and

� G share a node � whose label is in the do-
main of 9 : ��� � � � :E;+= � 9 � .

Example 3.2 h=
G
Jour1.3/10/92.Stop1, Stop1.bus.Stop2 I is

a hyperwalk satisfying hwe r=JOURNEY first STOP +
STOP next STOP. The two walks in

�
share a node whose

label Stop1 is of type STOP.
G
Jour1.3/10/92.Stop1, Stop2-

.bus.Stop3 I does not satisfy � . The two walks do not share
any node.

(STOP next) � STOP + STOP in CITY is satisfied byG
Stop1.bus.Stop2.bus.Stop3, Stop2.4/10/92.Salzburg I . The two

walks share node Stop2.

PrinzenalleePasteur

600
Paris Munich

Holiday InnImperial

Prinzenallee
Av. Edison

600
Paris Munich

Holiday Inn

a) b)

Figure 6: Hyperwalk Connectivity

Note that condition 3 requires more than
�

connectiv-
ity. In h=

G
Munich.600.Paris.AvEdison.HolidayInn, Munich-

.Prinzenallee.HolidayInn I (Figure 6a) satisfying r=CITY -
dist CITY addr HOTEL + CITY addr HOTEL, the two walks
share Munich of type CITY and HolidayInn of type
HOTEL. On the contrary, h’=

G
Munich.600.Paris.Pasteur-

.Imperial, Munich.Prinzenallee.HolidayInn I (Figure 6b) does
not satisfy � . Indeed the two walks share Munich of type
CITY but do not share any node of type HOTEL (they
should !).

Instance of a Hyperwalk-Expression: The instance of
a hwe � in a database

J
is defined as the set of hyperwalks

in
J

satisfying � : � � � � � � � � � �MJF0 � � � � � .

4 Hyperwalk Algebra

The query language defined in this section is based on a
hyperwalk algebra. A query is an expression of the form9 � ���

or
9 . � � ��� . �

where
�

and
� .

are sets of hyperwalks
and

9
is an algebraic operation which is closed under the

sets of hyperwalks. Unary operations (projection, selec-
tion, renaming) take as a source a set

�
of hyperwalks in

the graph database
J

satisfying a given hwe � and return
a target set of hyperwalks

��.
satisfying a hwe � . possibly

different from � . Binary operations (join, concatenation,
set operations) take two sets of source hyperwalks and re-
turn a target set of hyperwalks.

4.1 Renaming

Hyperwalk expressions may have several occurrences of
the same type. Renaming allows one to distinguish be-
tween the different occurrences of a given type in a
given hwe. For example

� � �HG Vienna.350.Salzburg I and

5

next

in

a) b)

CITY

STOP
STOPCITY

in
STOP

next
STOP

1 1

Figure 7: Two Hyperwalk Expressions

� � �HG
Munich.600.Paris I are two hyperwalks satisfying

r=CITY dist CITY. To distinguish between the two occur-
rences of CITY in � , we rename the second occurrence
into CITY’. In CITY dist CITY’, CITY specifies the first city,
which is Vienna for

� � and Munich for
� �

and CITY’ spec-
ifies the second city (Salzburg for

� � and Paris for
� �

). In
relational algebra, renaming of attributes in a relation sat-
isfying a given relational schema keeps the relation un-
changed. Here, renaming of an instance � � � � in

J
may

select a subset of the hyperwalks in � � � � as illustrated by
Figure 7:

� (STOP next STOP + STOP in CITY)=
� (STOP � next STOP + STOP in CITY)$ � (STOP next STOP � + STOP in CITY)

By renaming the first (second) instance of STOP in � , we
get the subset of hyperwalks in � � � � satisfying the schema
in Figure 7-a (7-b).

Definition 4.1 Let � and � . be two hyperwalk expressions
such that � . is obtained from � by renaming some types in
� without changing the type definition: if 9 in � has been
renamed into 9 . then :<;+= � 9 �(� :<;+= � 9 . � . Then � and � .
have the same language:

��� � � � ��� � . � . Let
�

be a set
of hyperwalks satisfying hwe � . Renaming ����� �*� � keeps
those hyperwalks in

�
that satisfy � . (����� �*���54-�):

� � � �*���,� � � � � �M� � � � � � . �
Example 4.1 h=

G
Stop1.3/10/92.Vienna, Vienna.350-

.Salzburg I satisfies hwe r=STOP in CITY + CITY dist CITY.
After renaming � into r’=STOP in CITY � + CITY � dist CITY,
Vienna is an instance of CITY � , and Salzburg is an instance
of CITY. Hyperwalk

�
satisfies � . but does not satisfy the

renaming of � into STOP in CITY � + CITY dist CITY � .

4.2 Selection

Selection allows one to evaluate Boolean functions (se-
lection conditions) on hyperwalk labels. Applied to a set

�
of hyperwalks it returns the subset of hyperwalks in

�
whose labels satisfy the given conditions.

We may distinguish in a regular expression � , “sim-
ple” subexpressions (without �) from “complex” subex-
pressions, i.e. those of the form

� 1 � � . In hwe r=(CITY �
dist) � CITY 	 addr RESTAURANT, (CITY � dist) � is a com-
plex subexpression and CITY 	 addr RESTAURANT is a
simple subexpression. If

�
is a hyperwalk in the in-

stance of � then with a simple subexpression
 in � is
associated a unique component of

�
, denoted

���
 ,
which is not necessarily a hyperwalk. To each com-
plex subexpression

� 1 � � of � corresponds a set of com-
ponents in

�
, each of them satisfying 1 . For hy-

perwalk h=
G
Salzburg.300.Munich.600.Paris I in the instance

of (CITY � dist) � CITY 	 , the component h:CITY 	 denotes
Paris and the component h:(CITY � dist) � denotes the setG G

Salzburg.300 I , G Munich.600 I I .
Definition 4.2 Selection conditions on regular expres-
sions are defined as follows:

1. Let 9 be a type in a simple subexpression of
� . A Boolean function

- � 9 � from :E;+= � 9 � into� 9 ��)E�>-���� 1) � is a simple condition on � .
2. Let 9 and 9 . be two types in a simple subexpression

of � . Then 9 � 9 . is a simple condition on � .
3. If 6 is a condition on 1 , and

� 1 � � is a complex subex-
pression of � , then � 6 is a condition on � .

4. If 6 and 6 . are conditions on � , then so are 6 0 6 . ,
6�� 6 . and ����� 6 .

Definition 4.3 Let
�

be a set of hyperwalks satisfying �
and 6 be a condition on � . The selection on

�
with condi-

tion 6 , denoted ��� �*��� , returns the hyperwalks in
�

sat-
isfying 6 :

� � �*��� � � � � � � � 0 � 1)���)3�1 �-��1 6 � 7

A hyperwalk
�

satisfies a selection condition 6 (6 is true
for

�
) if one of the following holds:

1. If 6 is simple, then it is evaluated in the straightfor-
ward way on the label of the corresponding compo-
nent in

�
(as for tuples in the relational model).

2. If 6"!#��$ and $ is a selection condition on 1 ,
then 6 is true for

�
iff the selection on the

� 1 � � -
component of

�
, denoted

�%� � 1 � � , is not empty:� � � �&$ iff �(' � �)� � 1 � � ��1�+*
.

3. If 6,!-$ 0/.
then

� � � 6 iff
� � � $ and

� � �0.
.

6

4. If 6 ! $ � .
then

� � � 6 iff
� � � $ or

� � �-.
.

5. If 6 !���;+9 $ then
� � � 6 iff

� 1� � $.

Example 4.2 To get all hotels in Vienna, we apply
� � ��� @2@����	��
 ���� on the hyperwalks satisfying CITY addr -
HOTEL where vienna(CITY) is true for the CITY node cor-
responding to the city of Vienna.

Let
�

be a set of hyperwalks satisfying (CITY -
dist) � CITY. To get all hyperwalks where at least two
neighbor cities are closer than 100 kilometers from
each other, we apply ����� ����� �&�D������� �	�	� on

�
, where��) 1I1��� � � :E;+= �"!$# %�&��(' �)&+*-,/.D��0"132 %�. � is true for all

dist-edges with a value less than 100 km.

4.3 Projection

Informally speaking, the projection of a hyperwalk
�

on
a hwe � . consists in keeping either a subset of the walks
in
�

or subwalks of walks in
�

. For example
G
Stop1.bus-

.Stop2 I is a projection of h=
G
Stop1.bus.Stop2, Stop1.3/10/92-

.Vienna I . So is the set
G
Vienna I , containing only the city

of Vienna.
We define a partial order on walk expressions as fol-

lows.

Definition 4.4 Let � and � . be two walk expressions.
Then � . is a subexpression of � , denoted � .54 � , if � is
of the form 7 � . 7
 where and
 are possibly equal to � .
For example STOP in CITY is a subexpression of JOUR-
NEY first STOP in CITY. It is not a subexpression of
STOP (next STOP) � in CITY.

Now we define a partial order on hyperwalk expres-
sions as follows:

Definition 4.5 A hwe � .�� ; �>= G =76 � .G is a subexpres-
sion of a hwe � � ; �>=?�=?@ ��� , denoted � .84 � , iff all of
the following hold:

1. � . is a hwe with graph $ � � . � 5 (see Definition 3.1).
2. = 4 � and for all walk expressions � .G , 9 �;: � � ==< ,

there exists a we � � in � , such that � .G 4 � � . � � is a
called superexpression of � .G .

3. To each edge in $ � � . � with label 9 connecting � .� with
label � .� to � .G with label � .G , corresponds an edge in
$ � � � with label 9 connecting �(� with label �
� (super-
expression of � .�) to � G with label � G (superexpression

5 > 	?A@ # must be connected, otherwise ?+@ is not a hwe.

Jour1 Stop1 Stop2

SalzburgVienna

3/10/92

3/10/92 4/10/92

bus

Figure 8: Hyperwalk Projection

of � .G). Then all occurrences of 9 in �I� (� G) have been
kept in � .� (� .G).

In other words, not all projections on walks are legal: (i)
$ � � . � must be connected (Condition 1) and (ii) when a
type with multiple occurrences is shared, then all occur-
rences must be projected (Condition 3). To understand
why Condition 3 is necessary, look at Figure 8. It shows
one hyperwalk satisfying r=JOURNEY first STOP in CITY �
+ STOP next STOP in CITY 	 . r’=JOURNEY first STOP +
STOP next STOP in CITY 	 (grey) is a subexpression of � :
� .B4 � . But this is not true any more for the white
part satisfying r”=STOP in CITY � + STOP in CITY 	 . � . . vi-
olates Condition 3 since its second component STOP in -
CITY 	 is a subexpression of STOP next STOP in CITY 	 , in
which we have not kept all occurrences of STOP. We
should keep all occurrences of STOP in � , since we do
not know for each hyperwalk

�
satisfying � , whether the

stops shared by its walks is an instance of the first or the
second occurrence of STOP. By removing one occurrence
in the subexpression, the corresponding component of

�

(Figure 8) satisfying the subexpression is not anymore
a hyperwalk (it is not connected):

G
Stop1.3/10/92.Vienna,

Stop1.bus.Stop2.4/10/92.Salzburg I satisfies � , but the projec-
tion on � . . , G Stop1.3/10/92.Vienna, Stop2.4/10/92.Salzburg I
is not a hyperwalk.

Definition 4.6 Let hwe � . be a subexpression of hwe � .
Then the projection of a set of hyperwalks

� 4 � � � � on � . ,
denoted C���� �*��� , is the set of the � . -components, denoted� � � . , of the hyperwalks

�
in
�

:

C � � �*� ��� � � . � � � � � � . � � � � . � �
C � � �*� � is a subset of the instance of � . , � � � . � .
Example 4.3 Figure 9 shows two hyperwalks satisfy-
ing hwe JOURNEY first (STOP next) � STOP in CITY addr -
HOTEL. The projection on CITY addr HOTEL returns

7

Stop1Stop2Stop3Stop4 bus bus bus

Stop6 Stop5

Munich

trainPrinzenallee
4/9/92

3/9/92

Jour2Holiday Inn

Paris
8/10/92

Pasteur

Jour1
3/10/92

Imperial

Figure 9: Two Hyperwalks

G
Paris.Pasteur.Imperial I and

G
Munich.Prinzenallee.Holiday-

Inn I . Note that projecting on (STOP next) � STOP
returns

G
Stop1.bus.Stop2.bus.Stop3.bus.Stop4 I and

G
Stop5-

.train.Stop6 I .

4.4 Join

The join operation takes pairs of hyperwalks from two
different hyperwalk sets

� 4 � � � � and
��. 4 � � � . � and

returns their union that satisfies hwe � 8 � . :
Definition 4.7 Let

�
and
��.

be two subsets of � � � � re-
spectively � � � . � . If � 8 � . is a hwe then the join of

�
and� .

, denoted
��� ��.

, returns a subset of � � � 8 � . � each
hyperwalk of which is the union of a hyperwalk in

�
and

a hyperwalk in
��.

:
��� � . � � � $ � . � � � � � � . � � . � � $ � . � � � 8 � . � 7

Note that the union of two hyperwalks
� � �

and
� . � � .

is not necessarily a hyperwalk satisfying � 8 � . . For
example the union of

G
Paris.Luxembourg.McDonalds I andG

Munich.Prinzenallee.HolidayInn I is not a hyperwalk. In
fact,

� $ � .
is a hyperwalk in

��� ��.
if for each pair

of walk expressions � � in � and � .G in � . sharing a node
type 9 , the corresponding walks in

�
and

� .
share a node

of type 9 .
Example 4.4 Suppose we have a set of journeys

� 4

I(JOURNEY first(STOP next) � .STOP). To keep only those
journeys that make a stop in Munich, we join

�
with

� 6��I@2��� � �	��
 � � I(STOP in CITY).
All journeys stopping in Munich before Paris can be

obtained by the following query (we want to keep infor-
mation not only about the journey itself but also about all
stops in the journey):

� I(JOURNEY first (STOP next) � STOP in CITY)� � � ���A�	��
 � � �
� I(STOP in CITY)6��I@2��� � �	��
 � $�

4.5 Concatenation

The concatenation of two hyperwalk sets
�

and
� .

con-
catenates each hyperwalk

�
in
�

with a hyperwalk
� .

in
� .

whenever it is possible. The idea is to concatenate walks
in
�

with walks in
� .

. If the ending node of a walk
� � �

is equal to the starting node of a walk
��. � � .

, then the
concatenation of

�
and

� .
, denoted

�
	 � .
, is obtained by

replacing the ending node in
�

by
��.

. For example the
concatenation of Jour1.3/10/92.Stop1 and Stop1.bus.Stop2 is
Jour1.3/10/92.Stop1.bus.Stop2. If the ending node of

�
is

not equal to the starting node of
��.

, then
��	 ��. � � .

Concatenation of walk expressions is defined as fol-
lows. Let � and � . be two walk expressions. If � is of
the form 7 9 and � . is of the form 9 7
 , where 9 �P��"
and ,
 are regular expressions over

�
, then the con-

catenation of � and � . , denoted �� � . , is 7 9 7
 . It is �
otherwise. For example (STOP next) � STOP � STOP in-
CITY=(STOP next) � STOP in CITY.

For two hyperwalk expressions � � ; ��=0��=0@ � � and
� .�� ; �>= G =76 � .G , concatenation, denoted ���-� . , is de-
fined as the sum of the concatenations of the walk expres-
sions in � with the walk expressions in � . :

��� � . � �
��=0��=0@�� �>= G =76 ����� �

.G 7

For example STOP in CITY � (CITY addr HOTEL +
CITY addr RESTAURANT) is STOP in CITY addr HOTEL +
STOP in CITY addr RESTAURANT. The concatenation of
STOP next STOP with CITY addr HOTEL is empty: STOP-
next STOP � CITY addr HOTEL= � .
Definition 4.8 Let

�
and
��.

be two subsets of � � � � re-
spectively � � � . � . If ���-� . 1� � then the concatenation of�

and
��.

, denoted
� � � . , returns a set of hyperwalks in

� � ���F� ./� each element of which is the concatenation of
a hyperwalk in

�
with a hyperwalk in

��.
, denoted

� 	 � .
and defined below.

� � � . � � � 	 � . � � �M� � � . �M� . � � 	 � . � � ��� � . �

8

Let
�

and
� .

be two hyperwalks satisfying � � ; ��=0��=0@ ���
respectively � .H� ; ��= G =�6 � .G . The concatenation of

�

and
� .

contains for each pair � � , � .G where � � � � .G 1� � the
walk

� � 	���.G , where
� � (

��.G) in
�

(
� .

) satisfies � (� .). Note
that if for some � � � ��G 1� � , � � 	 � .G � � , then

� 	 � .
does

not satisfy � � � . :
� 	 � . � �2� � 	 � .G � � � � � ��� .G � � . 0�� � � � �
� �

� .G � � � .G 0 ��� � � .G 1� ��� 7

Example 4.5 Assume that we have two sets of hyper-
walks

� 4
I(STOP in CITY) and

��.'4
I(CITY addr HOTEL

+ CITY addr RESTAURANT).
�

contains stops with their
cities and

��.
represents cities together with their hotels

and restaurants. We would like to concatenate these in-
formation to obtain the hotels and restaurants which can
be visited during a stop. For each pair of hyperwalks� � �

and
� .�� ��.

, we concatenate the walks in
�

with
the walks in

� .
to get the set of hyperwalks

� � � . satisfy-
ing hwe STOP in CITY addr HOTEL + STOP in CITY addr -
RESTAURANT.

Set union (
$

), intersection (
�

) and difference (�) are
defined as usual on two sets of hyperwalks satisfying the
same hwe.

4.6 Examples

In the Introduction Section we gave some examples of
queries on a graph database with a syntax a la SQL. We
assumed in these examples that the type system is a re-
lational one, i.e. any node or edge has a tuple structure
where each attribute is of atomic type (string, integer, . . .).
For example a CITY node is structured as a tuple: [name:
string, country: string, population: integer]. An

/ � edge
might contain the following information: [year: integer,
month: integer, day: integer, duration: integer].

We shall now inspect some of the queries given in the
Introduction Section and see how each of them can be
solved by an expression of the above algebra. For each ex-
ample, we give the corresponding (hyperwalk) algebraic
expression.

1) All restaurants in the third district of Paris are ob-
tained by a selection applied on all hyperwalks satisfying
r=CITY addr RESTAURANT. Each target hyperwalk is pro-
jected on the RESTAURANT node:

C�� &�	 C���� � �
"
C
� � � � � �	�A���/
 � �
	�� �� ' �	� � � ��� ����� �

� � ���87
Observe that this is a regular relational selec-

tion/projection.
2) Assume somebody is addicted to McDonalds restau-

rants and Holiday Inn hotels. Those cities that meet
his wishes can be found as follows. Let r=CITY addr -
RESTAURANT and r’=CITYaddr HOTEL. As a matter of
fact, we look for all cities with a McDonalds restaurant
and join them with the cities with a Holiday Inn hotel:

C ��
 � � � 6 � '�� @�� � �A�������A���������! ��$� � � � �� � � � �#" @2@���$�%$�&�('�� �
� � . ���

or

C7��
 � � � 6 � '�� @�� � �A�)�����A�(�*�*���� �$��+ � * 8 * . ���
	 � � �#" @2@���$�%$�&�('��

where, e.g., the application of the Boolean func-
tion =-, $2;I� ��� : 1 � RESTAURANT

�
corresponds to testing

whether the attribute value of the restaurant name is “mc-
Donalds”.

3) The last query could not have been solved with a
relational query language. It illustrates the fact that our
language supports recursion. We want to get all journeys
which traverse Munich. It might be a journey that either
starts in, or ends in, or goes through Munich:

C�./%��*�� �� � � 6��
@ � � � �	��
 �� � � (JOURNEY first(STOP
next) � STOP in CITY)).

Cycles in the schema, e.g. the �)
: 9 edge, allow to con-
struct hyperwalk expressions with Kleene closure (�).

5 Application to Hypertexts

In the following, we sketch several mechanisms for inte-
grating the query language into hypertext applications.

When navigating through the hypertext, a user can be
positioned at arbitrarily many nodes at one time (nodes
corresponding to documents displayed on the screen),
called the current user state

)
[18].

)
is changing accord-

ing to the user’s actions: clicking on an anchor results in
adding the target node to

)
; closing a document removes

it from
)

, etc.

9

600 300 350

Prinzenallee
Av. Edison

Holiday Inn

Paris Munich Salzburg Vienna

Figure 10: Query Navigation

Paris

Munich

McDonaldsParis McDonalds

Munich HolidayInn HolidayInn

b) c)

RESTAURANT CITY HOTEL

a) Schema Browser

Figure 11: Map supported Navigation

5.1 Multiple Steps Navigation

Instead of navigating through the hypertext by selecting
anchors step by step, in state

)
the user might be helped

in reaching directly node � , following a path satisfying a
query � . This means that all nodes � reachable from a
node

:
in
)

by a walk in � are added to
)

, while docu-
ment

:
is closed (

:
is deleted from

)
).

Example 5.1 Figure 10-a shows a hypertext graph with
some cities and the Holiday Inn.

)
=
G
Vienna, Salzburg,

Munich, Paris I . Query � � � � � ��� � @2@���$�%$�&�('�� I(CITY addr -
HOTEL) adds Holiday Inn to

)
and removes all cities with

a Holiday Inn from
)

:
)H.

=
G
Vienna, Salzburg, Holiday Inn I

5.2 Map Supported Navigation

Browsers are visual representations of hypertext graphs
that allow the user to change the user state interactively
by selecting some displayed nodes. A graphical schema
browser displays the schema subgraph corresponding to a
hwe � . By selecting a node � in the schema browser, all
nodes whose labels are of type � can be displayed.

Example 5.2 By clicking on the node with label
RESTAURANT (Figure 11-a), McDonalds is added to the

user state
)

(Figure 11-b):
)(.

=
G
McDonalds, Paris, Mu-

nich I (Figure 11-c).

5.3 Navigation Space Restriction

Several mechanisms for navigation space restriction have
been proposed in the literature [11, 18]. The idea is to
allow the user to select some subgraph for further naviga-
tion.

A query � might then define a script or guided tour [1,
20]. The user navigates as usual, but being in a given node
� , he may only follow those links which are contained in
some hyperwalk in � .

Example 5.3 Assume a customer is reading some de-
scription about Paris and wants to get more informa-
tion about the hotels in the 15 ��� district. The query
� �����	� �	� � � ��� ����� � I(CITY addr HOTEL) changes the dis-
played document such that only the anchors connecting
the text to a description of a hotel in the 15 ��� district re-
main active.

. . . A very nice hotel in the 15 ��� district is the
Imperial hotel near the metro station Pasteur.
From there you can visit Eiffel Tower, Trocadero,
Orsay Museum, . . .

6 Related Work

GraphLog [7, 8] is also a query language based on a
graph representation of data and whose expressive power
is equivalent to stratified linear Datalog [19]. We may un-
derline a few significant differences between Gram and
GraphLog: 1) the graph representation is not the same;
in Gram, we do not make any assumption on the types of
edges and nodes. Even if we assume relational types, it
is not clear yet, whether the two graph representations are
equivalent. 2) GraphLog [7, 8] is a query language based
on graphs: a query is a graph pattern in which nodes are
matched against nodes in the database and edges (spec-
ified by regular expressions on the values) are matched
against paths in the database. In Gram, queries are not
expressed by graphs. Instead, regular expressions on the
(node and edge) types specify subgraphs (hyperwalks) in
the database. 3) Finally it remains to compare the expres-
sive power of Gram’s algebra to that of GraphLog. We in-

10

tend first to compare Gram’s expressive power (with types
restricted to be relational) to that of Datalog.

The graph model GOOD [13] provides a graphical lan-
guage that allows to modify graph databases. Nodes and
edges can be added and removed in subgraphs satisfying a
given graph pattern. Opposed to GraphLog, the underly-
ing data model is object oriented and functional edges are
distinguished from non-functional (multivalued) edges.

Among other related approaches, [4] describes a query
language for hypertexts which is based on modal logics
and [5] is an extension of SQL for querying graph rela-
tions.

7 Future Work

7.1 Queries and Scripts

Assume an agency employee prepares a new trip using in-
formation already existing in the hypertext database. He
would like to describe by a text document the overall or-
ganization of the journey, linking each stop description to
an already existing document in the hypertext database.

He might create a new text document $ (node of type
JOURNEY), describing the beginning of the journey, then
link it to the first city (link of type stop), then create a link
back to description $. This step is repeated for each stop:
each time a new anchor and links of type stop and back are
added. The resulting journey satisfies hwe (JOURNEY -
stop CITY back) � JOURNEY. The disadvantage of such an
approach is that the complexity of the database and the
schema might increase unnecessarily: there exists a link
back between each city and the description.

An alternate solution is to accept queries as virtual links
instead of concrete edges. By activating an anchor, the
user enters a guided tour defined by a query: together with
anchor “Paris” in journey description $, we store the fol-
lowing query:

� � � � ���A�	��
 �� � � (CITY addr MONUMENT +
CITY addr RESTAURANT).

Then by activating anchor “Paris”, the user can get infor-
mation about monuments and restaurants in Paris.

Such a mechanism would allow to implement rather
complex scripts, navigation strategies, strategies for re-
turning to previous states etc. Compared to “hard-
wired” incremental updating of the hypertext, such a

“programmable” approach of hypertext provides easy up-
dating and customization, ease of changes in navigation
strategies and reuse of existing hypertexts.

As an example, one can construct multiple level hyper-
texts from (low level) existing hypertext databases, in or-
der to allow hierarchical navigation and zooming [10, 12].

7.2 Prototype

In order to validate the applicability of this model to hy-
pertext querying, we are currently integrating [2] the hy-
permedia system MultiCard [17] with the object oriented
database management system O

�
[3].

Acknowledgments
We are grateful to Ralf Güting. Deep exchanges with

him on his graph data model [12] gave birth to this sim-
pler, although less powerful, model. We would also like
to thank Serge Abiteboul and Claude Delobel for helpful
comments.

References

[1] F. Afrati and C. Koutras. A hypertext model support-
ing query mechanisms. In Proceedings of the First
European Conference on Hypertext and Hyperme-
dia (ECHT’90), pages 52–66, Versailles, Nov. 1990.

[2] B. Amann and V. Christophides. Providing persis-
tence to the hypermedia system MultiCard by using
the OODBMS O

�
. Internal Note, Verso project, IN-

RIA, Sept. 1992.

[3] F. Bancilhon, C. Delobel, and P. Kannelakis. The
O
�
Book. Morgan Kaufmann, 1992.

[4] C. Beeri and Y. Kornatzky. A logical query language
for hypertext systems. In Proceedings of the First
European Conference on Hypertext and Hyperme-
dia (ECHT’90), pages 67–80, Versailles, Nov. 1990.

[5] J. Biskup, U. Räsch, and H. Stiefeling. An exten-
sion of SQL for querying graph relations. Computer
Languages, 15(2):65–82, 1990.

11

[6] B. Conklin. Hypertext: an introduction and survey.
IEEE Computer, 20(19):17–41, Sept. 1987.

[7] M. Consens and A. Mendelzon. Expressing struc-
tural hypertext queries in GraphLog. In Proceed-
ings of the Hypertext’89 Conference, pages 269–
292, Pittsburgh, Pennsylvania, Nov. 1989.

[8] M. Consens and A. Mendelzon. GraphLog: a vi-
sual fromalism for real life recursion. In Proceed-
ings of the ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 404–416,
Nashville, Tennessee, 1990.

[9] N. Delisle and M. Schwartz. Contexts: A partition-
ing concept for hypertexts. ACM Transactions on
Information Systems, 5(2):168–186, Apr. 1987.

[10] S. Feiner. Seeing the forest for the trees: Hierar-
chical display of hypertext structure. In Proceed-
ings of the Conference on Office Information Sys-
tems, pages 205–212, Palo Alto, Calif., Mar. 1988.

[11] R. Furuta and P. Stotts. Separating hypertext content
from structure in trellis. In Hypertext: State of the
Art, pages 205–213, 1989.

[12] R. Güting. Extending a spatial database system by
graphs and object class hierarchies. In G. Gambosi,
H. Six, and M. Scholl, editors, Proceedings of the
International Workshop on Database Management
Systems for Geographical Applications, Capri, May
1991.

[13] M. Gyssens, J. Paredaens, and D. Van Gucht. A
graph-oriented object database model. In Proceed-
ings of the ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 417–424,
Nashville, Tennessee, 1990.

[14] F. Halasz. Reflections on NoteCards: Seven is-
sues for the next generation of hypermedia systems.
Communications of the ACM, 31(7):836–852, July
1988.

[15] F. Halasz and M. Schwartz. The Dexter Hypertext
Reference Model. In Proc. Hypertext Standardiza-
tion Workshop, NIST, pages 95–133, Jan. 1990.

[16] F. Harary. Graph Theory. Addison Wesley Series in
Mathematics, 1971.

[17] A. Rizk and L. Sauter. Multicard: An open hyperme-
dia system. In Proceedings of the Fourth ACM Con-
ference on Hypertext and Hypermedia (ECHT’92),
Dec. 1992.

[18] F. Tompa. A data model for flexible hypertext
database systems. ACM Transactions on Informa-
tion Systems, 7(1):85–100, July 1989.

[19] J. Ullman. Principles of Database and Knowledge-
base Systems. Computer Science Press, 1989. Vol-
ume II.

[20] P. Zellweger. Active paths through multimedia doc-
uments. In Proc. of the 1 � � int. Conf. on Electronic
Publishing: Document Manipulation and Typogra-
phy, pages 19–34, Nice (France), Apr. 1988.

12

