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Abstract. We consider the heaviest k-subgraph problem, i.e. determine a block of k nodes

of a weighted graph (of n nodes) such that the total edge weight within the subgraph

induced by the block is maximized. We compare  from a theoretical and practical point of

view different mixed integer programming formulations of this problem. Computational

experiments when the weight of each edge is equal to 1 are reported.
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1. Introduction

Given an undirected graph ),( EVG =  with { }nvvV ,...,1=  and non-negative edge

weights jiw ,  on edges Evv ji ∈],[ , the heaviest k-subgraph problem (HSP) consists in

determining a subset VS ⊂  of k  nodes such that the total edge weight of the subgraph

induced by S is maximized. HSP is also known under the name of p-dispersion problem, k-

cluster problem and dense k-subgraph problem (DSP) when all the edge weights are equal

to 1. A straightforward quadratic 0-1 formulation of HSP is given by Q
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where { }{ }EvvjinjiT ji ∈<∈= ],[,:,...,1),( 2 . The binary variable ix  is equal to 1 if and

only if vertex iv  is put in the k-subgraph. The problem is NP-difficult even for bipartite

graphs with 1, =jiw  for all Evv ji ∈],[  [Corneil and Perl, 1984]. Many approximation

results are known for HSP [Asahiro et al., 1996], [Hassin et al., 1997], [Kortsarz and Peleg,

1993], [Srivastav and Wolf, 1997] but no approximation algorithm with fixed ratio-bound

have been found to date and the question of knowing if such an algorithm exists is open.

Concerning the practical resolution of HSP a few works have been published. Kincaid

[Kincaid, 1992] presented heuristic methods based on simulated annealing and Tabu search

but, to the best of our knowledge, no experimental results have been published about the

exact solution of the problem. A slightly different problem is considered by Erkut [Erkut,

1990] : given a graph ),( EVG =  and non-negative edge weights jiw ,  on edges

Evv ji ∈],[ , determine a subset VS ⊂  of k nodes such that the weight of the minimum

weight edge appearing in the subgraph of G induced by S is maximized.  A classical

combinatorial optimization problem, more general than HSP, is the so-called quadratic 0-1

knapsack problem (QKP). This problem can be viewed as the following graph problem:

given an undirected graph ),( EVG = , non-negative weights jiw ,  on edges Evv ji ∈],[  and

ip  on nodes Vvi ∈ , determine a subset VS ⊂  such that the total node weight of S  is less

than k, and the total edge weight of the subgraph induced by S is maximized. Several

algorithms have been proposed for QKP (see, for example, [Hammer and Rader, 1997],

[Billionnet et al. 1999] and [Caprara et al., 1999]) which allow instances with a few

hundred nodes to be solved. However, it seems that HSP, which corresponds to QKP

where all the node weights are equal, is much more difficult to solve in practice.

We address in this paper the exact solution of HSP. The aim of the paper is to show

how HSP can be solved by using a classical approach: mixed integer programming. The

obtained results eventually can be used to evaluate the efficiency of specific algorithms for

HKP. A significant advantage of our approach is that it can be handled via a mixed integer

programming tool. That considerably reduces the degree of difficulty of implementation

relative to other approaches since only standard, commercially available, software is

required. The technique is known and well tried but it is necessary to carefully implement

it since some formulations may require a prohibitive computation time (see, for example,

[Salkin and Mathur, 1989] and [Beale, 1988]). In Section 2 we propose four different
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formulations of HSP as mixed integer linear programs. In Section 3, these formulations are

theoretically compared from an upper bound point of view, the considered upper bounds

being the optimal values of the continuous relaxations of the mixed integer programs.

Section 4 presents three formulations of DSP and in Section 5 these formulations are

compared. In Section 6 computational experiments are reported about the solution of DSP

through these formulations. Section 7 is a conclusion.

2. Mixed integer linear programming formulations for HSP

In this section we present 4 formulations of HSP. It is not difficult to check that these

formulations are valid for DSP by putting 1, =jiw  for all Evv ji ∈],[ . First we define

MIP1, the standard mixed integer linear reformulation of Q. We substitute the variables

jiy ,  for the products ji xx  and we add E2  linearization constraints.
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MIP1 contains n  0-1 variables, E  positive variables and 12 +E  constraints without

counting the non-negativity ones. This linearization of quadratic 0-1 programs was initially

proposed by Rhys [Rhys, 1970] and was extensively studied  in the unconstrained case by

Hammer, Hansen and Simeone [Hammer et al., 1984].

In the second considered linearization of HSP, MIP2, there are )(nO  variables and

)(nO  constraints.
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MIP2 may be considered as a variant of the linearization proposed in [Glover, 1975] for

the general problem of optimizing a 0-1 quadratic function subject to linear constraints,

adapted to the particular case of HSP. In this linearization, there are n  binary variables, n

positive variables and 12 +n  constraints. In fact we will consider a slightly different

formulation of HSP which takes account of obvious upper and lower bounds for the

quantity ),...,1(,),(: ),(: ,,� �∈ ∈ =+
Tijj Tjij jjijij nixwxw , under the constraint kx

n

i i =� =1
.

It is easy to check that if 1=ix , � �∈ ∈+
Tijj Tjij jjijij xwxw),(: ),(: ,,  is greater than or

equal to the sum of the 1−k  smallest values of the set

{ } { }TijwTjiwW ijjii ∈∪∈= ),(:),(: ,, , and less than or equal to the sum of the 1−k

greatest values of the same set. Denoting respectively by )( iWL  and )( iWU  these two

sums we obtain the mixed integer linear program MIP2’.
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Computational experiments have shown that formulation MIP2’ was much more efficient

than formulation MIP2.
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Proposition 1  Problems Q and MIP2’ are equivalent in the following sense: given any

feasible solution )~,...,~(~
1 nxxx =  in Q, there exists a vector )~,...,~(~

1 nttt =  such that )~,~( tx  is

feasible in MIP2’, with the same objective value. Conversely, given any optimal solution

)~,~( tx  in MIP2’, the corresponding solution x~  is feasible in Q, with the same objective

value.

Proof

Let )~,...,~(~
1 nxxx =  be a feasible solution of Q. Its value is equal to � ∈Tji jiji xxw),( ,

~~ .

Consider the solution )~,~( tx  where ))(~~(~~
),(: ,),(: , �� ∈∈ −+=

Tjij ijjiTijj jijii WLxwxwxt

for all { }ni ,...,1∈ . Obviously constraints (9) and (11) are satisfied. On the other hand,

since when 1=ix , �� ∈∈ ≤+
Tjij ijjiTijj jij WUxwxw ),(: ,),(: , )(~~ , we get

))()((~~
iiii WLWUxt −≤  and constraint (10) is satisfied. )~,~( tx  is therefore a feasible

solution to (MIP2’). Its value is equal to

� =
n
i ii xWL

1
~)(

2
1

+ i
n
i Tjij ijjiTijj jij xWLxwxw ~))(~~(

2
1

1 ),(: ,),(: ,� ��= ∈∈ −+ =

� ∈Tji jiji xxw),( ,
~~ . Conversely, let )~,~( tx  be an optimal solution to MIP2’. Obviously x~  is

a feasible solution of Q and if 0~ =ix  then 0~ =it  because of constraints (10)-(11). Since

the objective function has to be maximized, if 1~ =ix  then the variable it  takes the greatest

possible value, i.e. .)(~~~
),(: ,),(: , �� ∈∈ −+=

Tjij ijjiTijj jiji WLxwxwt  Finally we get

))(~~(~~
),(: ,),(: , �� ∈∈ −+=

Tjij ijjiTijj jijii WLxwxwxt  and the objective value in MIP2’

corresponding to the optimal solution )~,~( tx  is equal to

� =
n
i ii xWL

1
~)(

2
1

+ i
n
i Tjij ijjiTijj jij xWLxwxw ~))(~~(

2
1

1 ),(: ,),(: ,� ��= ∈∈ −+ =

� ∈Tji jiji xxw
),( ,

~~ , the objective value associated with solution x~ of Q.

The linearization technique allowing to formulate HSP as MIP3 is well known. It

was proposed in [Adams and Sherali, 1986] for the general linearly constrained 0-1

quadratic programming problem and it is proved in [Billionnet and Faye, 1997] that the

optimal value of the continuous relaxation of MIP3 is equal to the value of the greatest
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constant c such that there exist a quadratic posiform φ  satisfying φ+= cf  for all

{ }nx 1,0∈  with � =
=n

i i kx
1

 ( mmTcTcTc +++= ...2211φ , where each term iT  is a literal ,i.e.

ix  or ii xx −=1 , or a product of two literals and the ic  are all positive, is called a

quadratic posiform). Earlier, this linearization technique was used in [Frieze and Yadegar,

1983] for the quadratic assignment problem. This formulation contains n  0-1 variables,

2/)1( −nn  positive variables, and 12 ++ nE  constraints.  As in MIP1, the variables jiy ,

correspond to the products ji xx .
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MIP3 is obtained by adding constraints (12) to MIP1. These constraints are obtained by

multiplying both sides of the constraint � = =n
i i kx

1
 by ix , ni ,...,1= , and then by

linearizing the obtained equalities. Note that in this formulation all the products

ji xx , ji < , and therefore all the variables jiy ,  have to be considered

3. Theoretical comparison of the formulations of HSP

It is well-known that the effectiveness of the resolution of a combinatorial optimization

problem by (mixed) integer linear programming strongly depends on the quality of the

continuous relaxation ( 10 ≤≤ ix  in place of { }1,0∈ix ) of the considered program. In this

section we compare continuous relaxations of the programs MIP1, MIP2, MIP2’ and MIP3

which we will denote by MIP3 and ,MIP2',MIP2 ,MIP1 , respectively. For a mathematical

program Π we will denote by opt(Π) its optimal value.
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Proposition 2

(i)  )MIP2opt( )MIP2'opt( ≤ ;

(ii) there exists some instances for which this inequality is strict.

Proof

(i) Let )~,~( tx  be a feasible solution of  MIP2'. Its value is equal to

)~~)((
2
1

1 1� �= =+n
i

n
i iii txWL . From this solution let us build a solution to  MIP2 : )~,~( zx

such that iiii xWLtz ~)(~~ +=  for all i { }n,...,1∈ . Obviously, the value of this solution is also

equal to )~~)((
2
1

1 1� �= =+n
i

n
i iii txWL . So, we have just to prove that )~,~( zx  is a feasible

solution to  MIP2 . Constraint (9) in  MIP2' implies )(~
ii WLt + � ∈≤

Tijj jij xw
),(: ,

~

� ∈+
Tjij jji xw

),(: ,
~ � � ∈ +≤+

Tijj jijiii xwxWLt
),(: ,

~~)(~ � ∈Tjij jji xw),(: ,
~  since 10 ≤≤ ix

and 0)( ≥iWL . Constraint (6) of MIP2  is satisfied. Constraints (10) in  MIP2' imply

iiiii xWUxWLt ~)(~)(~ ≤+  and since, by definition, � �∈ ∈+≤
Tijj Tjij jiiji wwWU ),(: ),(: ,,)( ,

we get � �∈ ∈+≤
Tijj Tjij ijiijii xwwxWU

),(: ),(: ,,
~)(~)(  and constraint (7) of MIP2  is

satisfied.

(ii) Consider the instance corresponding to a complete graph of 4 vertices with k=3. The

values associated with the edges are: 6,0,9,9,5 4,23,24,13,12,1 ===== wwwww  and

64,3 =w . We obtain for this instance  25.26)MIP2opt( = with )75.0,75.0,75.0,75.0(=x

and  24)MIP2'opt( = with )1,1,0,1(=x .

Proposition 3

(i)  )MIP2opt( )MIP1opt( ≤ ;

(ii) there exists some instances for which this inequality is strict.
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Proof

(i) Let )~,~( yx  be a feasible solution of  )MIP1( . Its value is equal to � ∈Tji jiji yw
),( ,,

~ .

From this solution let us build a solution to  )MIP2( : )~,~( zx  such that

�� ∈∈ +=
Tjij jijiTijj jiiji ywywz ),(: ,,),(: ,,

~~~  for all i { }n,...,1∈ . The value of this solution is

equal to =� =
n
i iz

1
~

2
1

� ∈Tji jiji yw
),( ,,

~ . So we have just to prove that )~,~( zx  is a feasible

solution to  )MIP2( . Since jji xy ~~
, ≤  for all Tji ∈),(  we get

�� ∈∈ +=
Tjij jijiTijj jiiji ywywz

),(: ,,),(: ,,
~~~ �� ∈∈ +≤

Tjij jjiTijj jij xwxw ),(: ,),(: ,
~~  and

constraint (6) of  MIP2  is satisfied. Since iji xy ~~
, ≤  for all Tji ∈),( , we get

�� ∈∈ +=
Tjij jijiTijj jiiji ywywz ),(: ,,),(: ,,

~~~ �� ∈∈ +≤
Tjij ijiTijj iij xwxw ),(: ,),(: ,

~~  and

constraint (7) of  MIP2  is satisfied.

(ii) Consider the graph of 6 vertices with the edges ],[ 21 vv ,

],[],,[],,[],,[],,[ 6564424131 vvvvvvvvvv  and k=3. All these edges have a value equal to 1.

We obtain for this instance  25.3)MIP2opt( = with )5.0,0,1,0,875.0,625.0(=x  and

 3)MIP1opt( = with )0,0,1,0,1,1(=x .

Proposition 4   MIP2'and  MIP3 are not comparable in the sense that some HSP instances

are such that MIP2' yields a tighter upper bound (of lower value) that the one given by

 MIP3 , while other instances can yield the inverse result.

Proof

This result can be checked in Tables 1.a and 1.b. Indeed for a density of 25% and k=10 the

relative gap associated with  MIP2'is equal to 59.4% while the one associated with  MIP3

is equal to 55%. Conversely, when the density is 50% and k=30 the relative gap associated

with  MIP2'is equal to 4.7% while the one associated with  MIP3 is equal to 15.2%.
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Proposition 5   MIP1 and MIP2' are not comparable in the sense that some HSP instances

are such that  MIP1  yields a tighter upper bound (of lower value) that the one given

by  MIP2', while other instances can yield the inverse result.

Proof

One can check in Table 1.a that, for a density of 25% and k=10, the relative gap associated

with  MIP1 is equal to 76.3% while the one associated with  MIP2' is equal to 59.4%.

Conversely, consider a  graph of 6 nodes with the edges ],[ 41 vv , ],[ 51 vv , ],[ 32 vv , ],[ 52 vv ,

],[ 64 vv , and ],[ 65 vv  of value 1, and k=4. For this particular instance 4)MIP1opt( =  with

)67.0,67.0,67.0,67.0,67.0,67.0(≈x  and 17.4)MIP2'opt( =  with ,89.0,0,44.0,89.0(≈x

)89.0,89.0 .

Proposition 6

(i)  )MIP1opt( )MIP3opt( ≤ ;

(ii) there exists some instances for which this inequality is strict.

Proof

(i) is obvious since MIP3 is obtained by adding supplementary constraints to MIP1. One

can check in Tables 1.a  and 1.b that (ii) is true since, for a density of 25% and a value of k

equal to 10, the relative gaps for MIP1 and MIP3 are 76.3% and 55%, respectively.

Figure 1 summarizes the relationships between the four relaxations  MIP1 ,  MIP2 ,
 MIP2' and  MIP3 .

 MIP2

 MIP1            MIP2'

 MIP3

Figure 1. Relationships between different relaxations of HSP
a                          b : formulation “a” is tighter than formulation “b”
a                          b : formulations “a” and “b” are not comparable
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4. Mixed integer linear programming formulations of DSP

In this section we present 3 formulations which are specific of DSP. They do not allow

to model HSP directly. MIP4 consists in minimizing the number of edges that are not in

the k-subgraph. Let { }{ }EvvjinjiT ji ∉<∈= ],[,:,...,1),( 2 .
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The constraints jiji yxx ,1+≤+  express the fact that if both vertices iv  and jv  are in the k-

subgraph, then the variable jiy ,  must take 1 as value which means that the edge ],[ ji vv

misses compared to a complete k-subgraph. The experiments showed that this formulation

is particularly interesting in the case of dense graphs. Indeed the number of variables in

MIP4 is equal to Ennn −−+ 2/)1(  and the number of constraints is Enn −−+ 2/)1(1 .

Formulation MIP5 consists, as MIP4, in minimizing the number of edges that are not in the

k-subgraph but the number of variables in MIP5 is n2  and the number of constraints is

n+1 . For all i , id  is the degree of vertex iv  and constraints (18) express the fact that if

vertex iv  is in the k-subgraph S , i.e. 1=ix , then the set of edges

{ }TvvvvSvvvE ijjijjii ∈∈= ],[or ],[,:],[  misses compared to a complete k-subgraph.

Due to the fact that one minimizes the quantity � =− n
i iu

12
1

, iu  will be equal to the

smallest possible value, i.e. the cardinality of iE , in all optimal solutions of MIP5.
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Formulation MIP6 consists in adding to MIP4 )( 3nO  cuts :

kikjjikji yyyxxx ,,,1 +++≤++  for all ),,( kji  such that kji <<  and the three edges

],[],,[],,[ kikjji vvvvvv  are not present in the graph G . One can easily check that these

constraints are valid inequalities. They express the fact that if two vertices among kji xxx ,,

are in the k-subgraph then 1,,, ≥++ kikjji yyy  and if the three vertices kji xxx ,,  are in the

k-subgraph then 2,,, ≥++ kikjji yyy .
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5. Theoretical comparison of the formulations of DSP

We compare in this section continuous relaxations of programs MIP4, MIP5, and MIP6

which we will denote by  MIP6 and  MIP5, ,MIP4 , respectively. Recall that the optimal

value of the program Π is denoted by opt(Π).

Proposition 7

(i)  )MIP5opt( )MIP4opt( ≤ ;

(ii) there exists some instances for which this inequality is strict.
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Proof

(i) Let )~,~( yx  be a feasible solution of MIP4 . Its value is equal to

� ∈−−
Tji jiykk

),( ,
~)1(

2
1

. From this solution let us build the following solution to

 MIP5 : )~,~( ux  such that �� ∈∈ +=
Tjij ijTjij jii yyu

),(: ,),(: ,
~~~  for all i { }n,...,1∈ .

Obviously, the value of this solution is also equal to � ∈−−
Tji jiykk

),( ,
~)1(

2
1

. So, we

have just to prove that )~,~( ux  is a feasible solution to MIP5 , i.e. that constraint (18) is

satisfied. Let ii dnd −−= 1 .

(18) ⇔ � ∈+−−
Tjijij jii xxdn ),(or ),(:)1( ≤ � ∈+−−

Tjij jii ydn
),(: ,

~1 +� ∈Tijj ijy
),(: ,

~

⇔ � ∈+−−
Tjijij jii xxdn ),(or ),(:)1( ≤ iiiTijjij ji dxdxdn −++−− � ∈),(or ),(:

1

⇔ )()1()()1( iiiiii ddnxddxn +−−≤+−− . This last inequality is true since )( ii dd + =
1−n .

(ii) One can check in Tables 1.b and 1.c that for a density of 50% and k=30 the relative gap

associated with MIP4  is equal to 4.9% while the one associated with MIP5  is equal to

8.4%.

Proposition 8

(i)  )MIP5opt( )MIP6opt( ≤ ;

(ii) there exists some instances for which this inequality is strict.

Proof

(i) It is a direct consequence of Proposition 7 since )MIP6(  is built by adding constraints
to )MIP4(
(ii) It is easy to verify (ii) by observing in Table 1.c that for a density of 50% and k=30 the

relative gap of MIP5  is equal to 8.4% while the relative gap of MIP6  is equal to 0.5%.

Proposition 9

(i)  )MIP4opt( )MIP6opt( ≤ ;

(ii) there exists some instances for which this inequality is strict.
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Proof

(i) it is obvious since MIP6 is built by adding cuts to MIP4;

(ii) We can see in Tables 1.b and 1.c that, for a density of 75% and a value of k equal to

20, we get a relative gap of 11.3% for MIP4  and a relative gap of 0.25% for

MIP6 .

Figure 2 summarizes the relationships between the linearizations of DSP.

 MIP4            MIP5

 MIP6

Figure 2. Relationships between different relaxations of DSP
a                             b : formulation “a” is tighter than formulation “b”

6. Computational results

The experiments have been carried out on the dense subgraph problem (all the edges

have the same weight). The six programs MIP1, MIP2’, MIP3, MIP4, MIP5 and MIP6

have been solved using XA solver [XA, 1994] on a pentium II 300Mhz computer. The

experiments have been performed on randomly generated graphs. In Table 1 we compare

the six mixed integer linearizations on instances with 40 nodes (n=40) for three values of

the graph density (d=25%, 50%, 75%), and three values of k (n/4, n/2, 3n/4) (the density of

a graph with n vertices and E  edges is equal to )1(/2 −nnE ). Each line of this table

gives average results for 5 randomly generated instances. When the 5 instances could not

be exactly solved within the time limit, fixed to 900 s. (15 minutes), the presented results

only concern the solved instances.
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10 76.3 5046.8 119.8 5 59.4 109977 411.7 4

0.25 20 27.2 3024.8 76.6 5 26.9 74775 334.7 4

30 7.3 223.6 7.0 5 7.1 2622.8 11.0 5

10 12.5 32377 105.0 5

0.50 20

30 16.0 3120.2 242.2 4 4.7 1568.2 6.0 5

10 0.0 92.0 1.0 5

0.75 20

30 3.2 1289.2 4.8 5

Table 1.a
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10 55.0 3180.8 326.4 5 22.9 17665 525.6 5

0.25 20 25.1 1262.0 262.2 4

30 7.3 260.6 44.0 5 18.6 1752.0 68.4 5

10 12.5 840.7 515.0 3 12.5 984.2 18.4 5

0.50 20 46.2 14322 556.0 1

30 15.2 1787.0 647.0 1 4.9 74.4 2.6 5

10 0.0 11.2 8.8 5 0.0 20.6 1.0 5

0.75 20 11.3 390.2 7.2 5

30 1.2 14.2 1.0 5

Table 1.b
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10

0.25 20

30 23.9 85733 161.4 5

10 12.5 24088 47.0 5 12,5 166.0 52,8 5

0.50 20 3.9 34.0 127.6 5

30 8.4 2566.6 4.8 5 0.5 4.4 26.2 5

10 0.0 271.4 0.3 5 0.0 3.8 0.1 5

0.75 20 10.7 140577 429.7 3 0.25 5.0 0.7 5

30 3.2 343.6 0.6 5 0.0 0.2 0.4 5

Table 1.c

Table 1.a, 1.b and 1.c. Numerical comparison between MIP1, MIP2’, MIP3, MIP4, MIP5 and MIP6 for the
dense k-subgraph problem on randomly generated graphs with 40 vertices. For a mathematical program Π,
the relative gap is equal to the ratio )(/))()(( ΠΠ−Π optoptopt  where Π  is the continuous relaxation
of Π ; # nodes is the number of nodes considered in the search tree of the branch and bound procedure.

: 5 instances out of 5 are solved in less than 900s
: 4 instances out of 5 are solved in less than 900s
: 3 instances out of 5 are solved in less than 900s
: 2 instances out of 5 are solved in less than 900s
: 1 instance out of 5 is solved in less than 900s
: none of the 5 instances is solved in less than 900s

For d=0.25, only MIP1 allows all instances to be solved in less than 15 minutes of CPU

time. However, for k=30, MIP2’, MIP3, MIP4 and MIP5 are also efficient formulations.

For d=0.50, only MIP6 allows all the instances to be solved. None of the other methods

allows the considered instances with k=20 to be solved in less than 15 minutes of CPU

time (only one instance over 5 is solved by MIP4).

For d=0.75, MIP4 and MIP6 allow all the considered instances to be solved. For this

density, MIP1 is a bad choice since none  of the 15 instances can be solved in this way.

However, for k=10, MIP2’, MIP3 and MIP5 are also efficient formulations and, for k=30,

the other interesting formulations are MIP2’ and MIP5. Table 2 summarizes the numerical

comparisons between all the linearizations, with regard to CPU time, by presenting the
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formulation recommended  for solving DSP taking into account d, the density of the graph

and k, the number of nodes in the subgraph.

d=0.25 d=0.50 d=0.75

k=10 MIP1

(120 s.)

MIP4

(18 s.)

MIP2’

(1 s.)

MIP4

(1 s.)

MIP5

(0.3)

MIP6

(0.1)

k=20 MIP1

(77 s.)

MIP6

(128 s.)

MIP6

(0.7 s.)

k=30 MIP1

(7 s.)

MIP2’

(11 s.)

MIP2’

(6 s.)

MIP4

(3 s.)

MIP5

(5 s.)

MIP2’

(5 s.)

MIP4

(1 s.)

MIP5

(0.6)

MIP6

(0.4)

Table 2. Mixed integer linear formulations recommended

for solving DSP (n=40) and associated CPU times

7. Conclusion

There are in general several formulations of the same combinatorial optimization

problem by mixed integer linear programming. In this paper we proposed 3 different

formulations of DSP and 4 different formulations of HSP which also are formulations of

DSP. The experiments showed that no formulation can be regarded as the best one and that

the effectiveness of a formulation strongly depends on the instance structure.  As shown in

Table 2, according to the type of considered instance (density of the graph and number of

vertices in the subgraph), it is necessary to choose one or the other formulation.  For

example, MIP1 which is the best formulation for a graph of density 25% proves to be very

bad for the densities 50% and 75%. Table 2 shows that all the considered instances with 40

vertices (density equal to 25%, 50%, 75% and k equal to 10, 20, 30) can be solved

provided that one chooses the good formulation. The most difficult instances of DSP seem

to be, at least for this approach by mixed integer linear programming, the graphs of density

50% with k=n/2. As it is well known, the solution of a combinatorial optimization problem

by this approach has many advantages compared to specific algorithms: simplicity of

implementation, robustness of MIP professional software and possibility of easily adding

new constraints to the problem. On the other hand, the results obtained in this work

confirm that an important difficulty that arises when solving a combinatorial optimization

problem by using mixed linear programming is the choice of a good formulation. Indeed it
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seems that this choice is often difficult to make before a large number of experiments have

been carried out
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