
Querying XML sources using an Ontology-based
Mediator

Bernd Amann
�
, Catriel Beeri

���
, Irini Fundulaki

�
, and Michel Scholl

�

�
Cedric-CNAM Paris and INRIA-Futurs, France

amann@cnam.fr, fundulak@cnam.fr, scholl@cnam.fr�
The Hebrew University, Jerusalem, Israel

beeri@cs.huji.ac.il

Abstract. In this paper we propose a mediator architecture for the querying
and integration of Web-accessible XML data sources. Our contributions are (i)
the definition of a simple but expressive mapping language, following the local
as view approach and describing XML resources as local views of some global
schema, and (ii) efficient algorithms for rewriting user queries according to exist-
ing source descriptions. The approach has been validated by the

���
	��
prototype.

1 Introduction

During the last decade, there has been a significant focus on data integration. In a
nutshell, data integration can be described as follows: given heterogeneous and au-
tonomous information sources in a specific domain of interest, the goal is to enable users
to query the data as if it resides in a single source, with a single schema. To achieve this
goal, a global schema of the data is defined, and related to the schemas of the individual
sources. Queries are formulated in terms of this global schema. Since the actual data
resides in the sources, queries are rewritten into queries over the source schemas, which
are then evaluated at the sources. The answers returned from the sources are combined,
transformed to be compatible with the global schema, and presented to the user. The in-
tegration facilities, namely the global schema, the query translation and query process-
ing algorithms, are performed by a mediator, whose main task is to provide users with
a unique interface for querying the data. The fact that the sources concern a restricted
domain of interest, is crucial for the successful deployment of integration systems.

Well-known projects that deal with data integration include Information Manifold [12],
Tsimmis [14], Picsel [10], Agora [13] and MIX [3]. As the goal of integration is to sup-
port declarative querying and automatic query and result transformations, a number of
data integration systems use the well-established tools available for such purposes in
the relational model, such as query and transformation languages.

Recently, XML [1] has emerged as the de-facto standard for publishing and ex-
changing data on the Web. Many data sources export XML data, and publish their con-
tents using DTD’s or XML schemas. Thus, independently of whether the data is actually
stored in XML native mode or in a relational store, the view presented to the users is
XML-based. The use of XML as a data representation and exchange standard raises

Research supported by grant 018-019 by the Israeli Ministry of Science.

new issues for data integration. A significant issue, as argued in [2], is the inadequacy
of XML to serve as a global integration schema.

In this paper we describe an approach to the integration of XML sources, based
on the local-as view [11] approach to data integration. Our main contributions are as
follows: (i) the use of ontologies for the global schema; (ii) the definition of a simple
but expressive language for describing XML resources as views of the global schema;
(iii) an approach to query processing, that includes query rewriting from the terms of
the global schema into one or more XML queries over the local sources, and (iv) the
generation of query execution plans that may decompose a single query into queries
over multiple sources. The approach has been validated by the ������� prototype [9].

The paper is organized as follows : in Section 2 we illustrate the main ideas of the
approach by an example. Section 3 presents the integration data model, and the map-
ping language for the description of XML resources as views over the global schema.
The query language, and the query processing algorithms are given in Section 4. The
������� prototype is sketched in Section 5. Related work is presented in Section 6, and
Section 7 presents our conclusions.

2 System Overview

We illustrate our approach via an example dealing with the integration of XML-based
information sources on art and culture. Formal definitions and technical details are
deferred to subsequent sections.

2.1 XML resources

Source � � , located at http://www.paintings.com is an XML resource about painters and
their paintings; its XML DTD is illustrated in Fig. 1.

<!ELEMENT Painter (Painting+)>
<!ATTLIST Painter name CDATA #REQUIRED>
<!ELEMENT Painting EMPTY>
<!ATTLIST Painting title CDATA #IMPLIED

year CDATA #IMPLIED>

Fig. 1. XML DTD for source
� � , located at URL http://www.paintings.com

The XML DTD for the second source � � , located at URL http://www.art.com, is
described in Fig. 2.

As is common in data integration scenarios, a single source may provide only part of
the information available on a subject. Furthermore, sources differ not only in terms of
contents, but also in terms of structure and terminology. Given the hierarchical structure
of XML, such differences of structure may be more significant that those that exist
in relational sources. For an example of a difference of contents, note that source � �

might record information on the location of paintings, which is absent in source � � . As
for structure, note that in source � � paintings are organized by museums, not by their

<!ELEMENT Museum (MuseumName, City, Painting+)>
<!ELEMENT Painting (Title)>
<!ELEMENT MuseumName #PCDATA>
<!ELEMENT City #PCDATA>
<!ELEMENT Title #PCDATA>

Fig. 2. XML DTD for source
� � , located at http://www.art.com

painters as in source � � . Consequently, while in the hierarchy of � � a painting occurs
below its painter, in source � � , if the source were interested in adding the painter for
each painting, the painter would occur below the painting.

2.2 The Global Schema

The main task of an integration mediator is to provide users with a unique interface
for querying the data, independently of its actual organization and location. In our ap-
proach, this interface, or global schema, is described as an ontology. As used here,
an ontology denotes a light-weight conceptual model and not a hierarchy of terms or a
hierarchy of concepts.

String

String
city

String
museumName

String

image
Image

url
String

String
type(image of)

(location of)

located_at

has title

Museum

Person
has name

influenced_by (influenced)

produced

(produced_by)

carried_out

(carried_out_by)

Event

Actor Activity Man Made Object

Date
created_by (created)dateyear

String

String

day

month
String

Fig. 3. An Ontology for Cultural Artifacts

Fig. 3 illustrates (part of) a global schema for cultural artifacts inspired by the
ICOM/CIDOC Reference Model3, an international standard for museum documenta-
tion. The schema is represented as a labeled graph. In this graph, the nodes correspond
to concepts and value types, and the edges depict roles, attributes, and simple inheri-
tance (i.e., �����) links. Roles are binary relations between concepts; attributes connect
concepts to value types. Both are depicted by solid arcs. Inheritance (�����) links connect
concepts and are depicted by dashed arcs. Each role has an inverse depicted in Fig. 3
within parentheses.

The concepts in this schema include Actor, its subconcept Person, and Man Made-
Object. An actor (instance of concept Actor) carries out an activity (instance of con-

cept Activity) to produce a man made object (instance of concept Man Made Object).
3 http://cidoc.ics.forth.gr/crm intro.html

These relationships are represented by roles carried out and produced, respectively.
The name of a person (instance of concept Person) is represented by the attribute
has name.

The global schema can be viewed as a simple object-oriented data model. Hence, a
global schema can be viewed as defining a database of objects, connected by roles, with
the concept extents related by subset relationships as per the ����� links in the schema.
Since it is an integration schema, this is a virtual database. The actual materialization
exists in the sources.

Roles can be composed, provided they satisfy certain compatibility constraints.
Such compositions are derived roles. For example, carried out.produced is a derived
role that connects Actor to Man Made Object. Combining concepts with (simple or
derived) roles induces derived concepts. For example, Actor.carried out.produced can
be viewed as the sub-concept of Man Made Object made of those objects that are
reachable from some actor by an instance of this derived role. Both derived roles and
derived concepts are referred to as schema paths.

The augmentation of the given schema with the derived roles and concepts gives a
derived schema. It is significant for the integration, since it provides an interpretation
for the mapping rules (see the following) that describe the sources in terms of schema
paths, hence for query processing, as discussed next.

2.3 Mapping Rules

Our integration approach describes XML sources as local views on the global schema.
Among the different possibilities listed in [7] for defining such mappings, we have
chosen the path-to-path approach. The description of a source consists of mapping
rules that associate paths in the source DTD, expressed in XPath [6], with paths in the
global schema (schema paths). For example, the rules illustrated in Fig. 4 map paths in
the source � � described in Fig. 1 to paths in the global schema of Fig. 3.

� � : http://www.paintings.com/Painter as � ��� Person� � : � � /@name as � � � has name���
: � � /Painting as � � � carried out.produced���
: � � /@title as � � � has title���
: � � /@year as � � � created by.date.year

Fig. 4. Set of Mapping Rules for source http://www.paintings.com

A rule consists of a name, a left hand side (LHS) and a right hand side (RHS). The
LHS contains an XPath pattern [6] that starts at a context which is either a concrete
URL, as in rule 	 � or a variable, as in rule 	 � . The XPath pattern is called the location
path of the rule. The LHS of a rule also contains a variable declaration (the use of
variables will be explained later). The RHS of a mapping rule is a path in the global
schema, called the schema path of the rule.

Mapping rules define instances of concepts and relationships between them. As an
example for the first case, consider the rule 	 � in Fig. 4. It states that the elements

of type Painter, children of the root elements of the XML documents in � � are
(descriptions of) instances of concept Person. As an example for the second case, rule
	 � specifies that the value obtained by evaluating XPath pattern @name on some XML
element � returned by rule 	 � , corresponds to a value of attribute has name of � (� is an
instance of concept Person). In the same way, rule 	�� connects all instances obtained
by rule 	 � to all instances of concept Man Made Object obtained by following the
path carried out.produced.

This view of mapping rules allows us to define the semantics of XML fragments and
their structural relationships in terms of the global derived schema. Thus, 	 � defines a
subset of the extent of concept Person, while rule 	�� relates elements in this subset by
the derived role carried out.produced to a subset of the extent of Man Made Object.

2.4 Query Processing

Users formulate queries on the global schema using a simplified variant of OQL, the
standard for querying object databases. For example, here is a query

� � that asks for
“titles of the man made objects created by Van Gogh ” :� � : select �

from Person � , � .has name � ,
� .carried out.produced.has title �

where � = “Van Gogh”

We now discuss the options available for answering such a query, given a set of
sources � and mapping rules that relate them to the global schema.

The first, simple, solution is to evaluate this query over each source in � . This
means that, given a source ��� � , we need to rewrite it into an XML query that � can
answer. The idea behind this rewriting is the following: Each variable in the query is
bound to some schema path. We search for mapping rules or concatenations of mapping
rules, that can be used to translate these schema paths to local paths in the source DTD.
This is done by matching the schema paths in the query against the schema paths of
the mapping rules. A successful matching associates a query variable with a rule, or a
concatenation of rules. A binding is a vector of such associations for query variables. A
full binding associates each variable in the query to some rule or concatenation of rules.
It can be used to rewrite the query into a query to be evaluated by the XML source.

For example for
� � above and for source � � we see that instances for variable �

are found by rule 	 � , for variable � by 	 � and for variable � by the concatenation of
rule 	 � with rule 	�� . The resulting binding is 	 ��
 	 �
� ��
 	 � � ��
 	 ��� 	���� . By
substituting the schema path of each query variable with the location path (LHS) of the
corresponding rule, we obtain query

� �
� ��� :
� ��� ��� : select �

from http://www.paintings.com/Painter � ,
� ./@name � , � ./Painting/@title � ,

where � = “Van Gogh”

Query
� � � ��� can be easily translated into the XQuery expression

� � � ��� :

� ������� : FOR $a IN document(’http://www.paintings.com’)/Painter,
$b IN $a/@name,
$c IN $a/Painting/@title

WHERE $b = “Van Gogh”
RETURN $c

Such a matching/rewriting process should be attempted for each source. Then the
answers are gathered and returned to the user.

In some cases, however, we cannot obtain a full binding for a given source. Then
a second solution for query evaluation is to decompose the query into several queries
that are evaluated against different sources. Consider the following query

�
� , which

asks for “titles of objects created by Van Gogh, as well as the name and the city of the
museum where they are exposed” :

� � : select � , � , 	
from Person � , � .has name � ,

� .carried out.produced � , � .has title � ,
� .located at
 ,
 .museumName � ,
 .city 	

where � = “Van Gogh”

Source � � cannot provide information about the locations of objects, hence there
is no mapping rule whose schema path (RHS) matches the schema path located at
of query variable
 . Thus, we can only obtain a partial answer from this source, by
evaluating the query

�
� � ��� illustrated in Fig. 5. To obtain a full answer we have to join

partial answers from different sources.
For the example, the missing information is represented by subquery

� � � ��� illus-
trated also in Fig. 5, that involves the variables � ,
 , � , 	 . The variable � is included in�
� � ��� since it is the join variable between the two queries. Thus, we have decomposed

the initial query into two subqueries
�
� � ��� and

�
� � ��� . Assuming the latter query is

successfully evaluated over some source (e.g., source � �), the results of the two queries
are joined on � to provide a complete answer to the original query. If such a decomposi-
tion cannot be found, the best we can do is to present to the user only the partial results
from

� � � ��� evaluated against the first source.
Note that to join two fragments from different sources requires to decide whether

the two fragments represent identical objects. Keys are introduced to identify objects.
In particular, results of queries

�
� � ��� over a source � � and of

�
� � ��� over a source � �

can be joined only if the same key for man made objects can be provided by these two
sources. This implies the use of keys, both in the global schema and in the sources (the
DTD’s in Fig. 1 and Fig. 2 do not define such keys). We introduce keys and their usage
in Section 3.2.

3 Integration Model

This section is devoted to the detailed presentation of our integration model. Due to
space limitations we leave out a detailed discussion concerning the choices of the in-
tegration method, and the choice of having a light weight conceptual schema for the
mediator schema instead of an XML-based model. A detailed presentation of these

� � � � � : select
� � � ����� : select � , �

from Person � , � .has name � from Man Made Object � ,� .carried out.produced � , � .located at � ,
� .has title

� � .museumName � , � .city �
where � = “Van Gogh”

Fig. 5. Queries
� � � � � and

� � �����

choices is given in [2]. We first provide a formal definition of the global schema and
introduce the notion of derived schema. Mapping rules are described afterwards and we
finish this section with a short discussion on keys.

Global Schemas

A global schema is a 6-tuple �	� ��
 � 	 �
� � ��� � � ���������
 ��� ��� 	
 � � , where: (i)
 is a set
of concepts, (ii) 	 is a set of typed binary roles connecting concepts in
 , (iii) � is a
set of attributes of type String4, (iv) ����� is a binary relationship between concepts in

 , (v) ���������
 and � ��� 	
 � are two typing functions returning for each role/attribute its
domain concept and its range concept/type respectively.

A global schema can be represented as a graph of concepts connected by roles. The
semantics of a schema is defined by the set of databases that conform to it. Each such
database contains a set of objects (instances) for each concept in
 . These objects are
related to each other by instances of roles in 	 , and to values by instances of attributes
in � . Instances of roles and attributes satisfy the typing constraints implied by ������� �

and � ��� 	
 � . Roles and attributes are multi-valued and optional. The ����� relationship
defines a partial order in � , namely a directed acyclic graph. It carries subset semantics
and supports role and attribute inheritance. Namely, if � ��� � ��� , then the set of objects
of � is a subset of the set of objects of ��� and all roles/attributes defined in ��� are also
defined in � (and its subconcepts). However, if � is not a subconcept of ��� such that
���������
 � �
��� � � for a role � or ���������
 � ����� � � for an attribute � , then no object � � of �
is related by an instance of � or � to any object, or value respectively. We say that � � ���
are isa-related if either � = ��� , � ����� ��� or ��� ������� .

Finally, we consider schema graphs to be symmetric : each role � � 	 has an in-
verse role, denoted �� , in 	 . Obviously, � ��� 	
 � � �� �!� ���������
 � ��� , and ������� �
 � �" �!�
� �#� 	
 � � �
� . This is useful for modelling the contents of XML resources as well as for
query formulation and, hence, beneficial to have in a conceptual schema.

Schema Paths and Derived Schemas We distinguish two kinds of paths in a schema :

– A role path is a sequence of roles �$�%� � � � � ��& , where for all roles �(' ()+* �,*-/.)), � ��� 	
 � � ��' � ����� ������� �
 � ��'10 � � . Given a role path �+�2� � � � � ��& , we define
its inverse role path �3 4�5�� & � � � � � where � ' is the inverse role of �('

4 Wlg. we assume that all attributes are of type string; an extension to the types proposed by the
XPath model or XML schema should be straightforward.

– A concept path � is either of the form � , or a sequence � � � , where � is a concept and
� is a role path, such that � � ��� ���������
 � �
� . The source of � is � and its � ��� 	
 � is �
in the first case, and � �#� 	
 � � �
� in the second case.

The composition of a concept path � and a role path � , denoted ��� � , is well-defined
provided that � �#� 	
 � � � � ����� ���������
 � �
� .

A concept path � � � � � can be viewed as a derived concept (denoted by conc(p)),
standing for “the instances of � ��� 	
 � � � � that can be reached from instances of
���������
 � � � by following the roles in � , in order”. Obviously, every concept is also a
derived concept.

In the same way, a role path � � � � � � � � � & can be viewed as a derived role (de-
noted by role(r)) connecting instances of concept ���������
 � � � � to instances of concept
� �#� 	
 � � � & � . Similarly to derived roles, we can define derived attributes, by a role path
followed by an attribute. Like attributes, these do not have inverses. Clearly, every role
(attribute) is also a derived role (attribute).

Let � � � � � be a concept path, � be a prefix of � , and ��� � denote � with � removed.
If ��� is either � ��� 	
 � � � � �
� or a superconcept thereof but a subconcept of ���������
 � ��� �
� ,
then ��� � � ���!�
� is called a suffix of � � � . Obviously, � �#� 	
 � � � � is a suffix of � .

Given ��� , a database of � , we can associate extents with derived concepts in a
straightforward manner. We note the following facts concerning these extents. First, the
extent of conc(p) is a subset of the extent of � �#� 	
 � � � � , hence also of its superconcepts
in � . Second, the extent of conc(p) is a subset of the extent of each of its suffixes. For
example, it is easy to see that � � =Activity.produced is a suffix of � =Person.carried out-
.produced and all instances of � (objects produced by an activity carried out by a person)
are instances of � � (objects produced by activities).

Given a global schema � , the derived schema (or extended schema) �
	 ���
 	 � 	�	 �
� 	 � ���������
 ��� ��� 	
 � � ������	 � is defined as follows : (i)
 	 is the set of all
derived concepts, defined by the concept paths definable in � ; (ii) 	
	 (�) is the set
of all the derived roles (attributes) defined by the role (attribute) paths definable in � ,
and ���������
 and � ��� 	
 � are defined as above; (iii) the � ����	 relation contains the �����
relations from � , and additionally each pair � � �"� , where � is a derived concept defined
by a concept path � in � , and � � is the derived concept defined by a suffix of � .

Our interest in the derived schema is motivated by the fact that some sources may
provide data only for derived concepts. The ����� relationships in the derived schema en-
able us to use these sources to provide answers in terms of the original concepts. For ex-
ample, even if a source provides only information about Person.carried out.produced,
this allows us to obtain some instances of Man Made Object, although not necessarily
all. Note that answers obtained from sources in the local as view approach are partial
answers in any case.

3.1 Mapping Rules

A source is integrated to the system, by providing a set of mapping rules that describe
the relationships between the source schema and the global schema. There exist differ-
ent ways for defining such views varying in terms of size and preciseness of the defi-
nition but also in the complexity of the query rewriting algorithm [7]. We have chosen

essentially the same approach as in [7], namely to associate paths in the global schema
with paths in the source schemas. This allows us to both associate concepts with XML
nodes in the sources, and to associate relationships among concepts (expressed as roles
or derived roles in the global schema) with XPath location paths in the XML sources.

Paths in a source are described in terms of XPath [6] location paths. We assume
familiarity with the XPath language. Described in a nutshell, an XPath location path
is composed of a sequence of location steps. Location steps have three parts: (i) an
axis specifies the relationship (child, descendant, ancestor, attribute etc.) between the
nodes selected by the location step and the context node, (ii) a node test specifies a
node’s XML type (element, attribute, and so on) and possibly its name, and (iii) optional
predicates which use XPath expressions to further refine the set of selected nodes.

Let � be a set of variables, and � be a set of URLs. A mapping rule is an expression
of the form 	��(��� � � ���
 � , where : (i) 	 is the rule’s label; (ii) � ���
	�� , the rule’s
root, is either a variable or a URL (� is called the root of); (iii) � is an XPath location
path, called the location path of the rule; (iv) � ��� is a binding of � (is called the
binding rule of �), where ���
� is a variable; (v) � is a schema path. More precisely, it
is a role path if � is a variable and a concept path otherwise. A rule 	 is called a relative
mapping rule if its root is a variable � , and an absolute mapping rule otherwise. In the
first case, � is the root variable of 	 , and this occurrence of � is a use of the variable.
Let � � � 	 � � � � � 	 � denote 	 ’s location path and schema path, respectively.

Given a set of mapping rules for a source � , we define reachability (in �) for rules
and variables, as follows : (1) each rule whose root is a URL (the URL of �) is reachable;
(2) each variable bound by a reachable rule is reachable; (3) finally, each rule whose root
is a reachable variable is reachable. The set of mapping rules is cyclic if this definition
of reachability leads to a cycle. The simplest case of a cycle is a rule whose left-hand-
side contains ��� � � ��� (provided that � can be reached from a URL by other rules). In
this work we consider only acyclic mappings.

A mapping � over � 	 and for a source � is a set of mapping rules such that 1)
labels are unique (that is, no two rules have the same label), 2) all rules and variables
are reachable in � , 3) the concepts, roles and attributes used in its rules occur in � 	
and 4) it contains no cycles.

The concatenation of mapping rules is defined as follows : two rules 	 � �
��� � � � ��� �
 � � , 	 � ��� � � � � � ��� �
 � � , can be concatenated, if the composi-
tion of their schema paths, � � � � � is well defined5. Note the constraint that the root of
	 � is bound in 	 � and that concatenation is possible only if � � is a role path. The result
of the concatenation is the rule 	 � � 	 � � ��� � � � � � � ��� �
 � � � � � .

Given a mapping � , its closure is the set of all rules that can be obtained from
� by repeated concatenation. It is denoted by ��� . Its expansion, denoted �� , is the
set of absolute rules in ��� (��������) and can be computed by a bottom-up fixpoint
computation (since we only consider acyclic mappings, we are sure that a finite fixpoint
exists).

Given a global schema � , a mapping � over � can naturally be interpreted in
the derived schema ��	 . Each absolute rule in �� defines a derived concept, and each

5 We do not define any restriction on the concatenation of the rules’ location paths.

relative rule in ��� defines a derived role (attribute). Let us denote by ��� the restriction
of � 	 to the derived concepts, roles and attributes of � � .

For example, rule 	 � � 	�� defines a derived concept, conc(Person.carried out.-
produced) subconcept of Man Made Object, and rule 	 � defines a derived role,
role(carried out.produced), between concept Person and concept Man Made Object.
Rule 	�� � 	 � defines a derived attribute attr(carried out.produced.has title) of concept
Person.

A mapping � for a source � associated with URL � , allows us to view a collection
of XML fragments reachable from � as a database that conforms to ��� . To define this
database, the population of each derived concept, conc(p), is defined as the union of the
set of fragments returned by all absolute rules 	 in �� where � � � 	 � � � or � is a suffix
of � � � 	 � .

The set of fragments ��� returned by some absolute rule 	 in �� is defined as
follows. The root of an absolute rule 	 is the URL � . Hence ��� is assigned the set
of XML fragments that can be obtained by applying the location path � � � 	 � to the
XML document identified by � . The set ��� can be computed by a simple fixpoint
computation, using rules in � . Since � � is finite, alternatively the rules of �� can be
used directly.

Similarly, the relative rules of � � are interpreted as roles (or attributes) of ��� in
this database of XML fragments, represented by location paths.

Before leaving this subject, we note that according to the LAV approach, XML
extents defined as above for the concepts are viewed as subsets of the real (but unknown)
extents. Indeed, as sources are added, and rules are added to a mapping, the extents
grow. In the LAV approach, any set of answers returned for a query is assumed to be a
subset of the full (but unknown) answer.

3.2 Keys

As illustrated in Section 2, keys are essential to decide whether two XML fragments
describe the same concept. We assume that sources are heterogeneous and autonomous,
and we do not expect that they provide us with persistent object identifiers that are
valid for all sources. The ID/IDREF XML attribute mechanisms are used for internal
references, but cannot serve for a key mechanism to perform joins between objects
that originate from different sources. Sources might specify meaningful keys in terms
of XML elements/attributes as proposed in [4, 8, 16], but one cannot expect different
autonomous sources to always use the same keys. For example a painting might be
identified by its title in one source, by its title and the year of creation in another source.

A way to overcome this problem is to define global keys for concepts in the global
schema. A

�

	 for a concept � is defined as a list of derived attributes (called key paths)
that originate from concept � and is denoted by

�
�	 � � � �
� � � � � � � � � � ��&�� . W.l.g
we assume in this paper that a concept is associated with at most one key, and all its
subconcepts (including the derived ones) share the same key.

In our global schema, we could state for example, that an instance of concept
Person is identified by attribute has name :

�
�	 (Person)= ��� � � - ���
�� . Instances of
concept Man Made Object are identifiable by their title and their year of creation :

�
�	 (Man Made Object)= � � � � � � � �
 � � �
 � �
 � � 	 � � � �
 � 	
 ����� . Images have no key,
i.e.

�

	 (Image)=
�
.

4 Query Processing

Our query processing approach is presented in this section. We first introduce the user
query language (section 4.1). Two query processing strategies are then discussed. In the
first approach (section 4.2), the solution to a query is the union of the complete answers
from individual sources. If no complete answer can be obtained from a source, then
the source is abandoned. In contrast, the second approach (section 4.3) allows also for
incomplete answers from a given source. If a source � can only partially answer a query,
then the query is decomposed in two parts one to be fully answered by � and the other
part being sent to the other sources. The partial results from different sources are then
joined by the mediator using global keys.

4.1 Query Language

The users query the virtual database as presented via the global schema, using simple
tree queries, based on select-from-where clauses following an OQL-like syntax.
Queries are of the form:

Q: select � ' , ��� , ...
from � � � � ,

����� � � � � � , ...
����� � � ' � ' , ...

where �	� and � � and ...

The ��' ’s are query variables and each � ' in the from clause is a path in the global
schema (schema path), called the binding path of �!' and denoted � � � � ' � . The first vari-
able � � is the root variable of the query, and its binding path � � is a concept path. For
each ��
) , there is a single clause ���
� � � ' � ' , and � ' is a role path. We call ����� the
parent of � ' . We assume the parenthood relation between variables forms a tree, with
� � as its root. � � ranges over the extent of the derived concept conc(� �), and � ' � ��
) ,
ranges over the instances defined by traversing instances of the derived role � ' from the
instances of its parent.

We assume queries satisfy the following restrictions. First, no restructuring is al-
lowed in the select clause. Although this may add expressive power to the language, we
feel it is not strictly needed for our application. Certainly, it is orthogonal to the issue
of retrieving data from sources, addressed in this paper. Second, the where clause is a
conjunction of simple predicates, where a simple predicate is of the form ��'�� � in which
� � � � ��� �
 � * ��� � and � is an atomic value. Thus, it is not possible to express joins
by equalities between variables, i.e., by predicates of the form ��'�� � � . This restricts
the expressive power of the query language but simplifies the rewriting and evaluation
of queries. Third, schema paths occur in the from clause, but not in the select clause or
the where clause of a query. It is easy to show that a query with schema paths in the se-
lect and the where clause can be rewritten into an equivalent query in which they appear

only in the from clause. Last, the language has no quantifiers, aggregates, or subqueries.
However, a variable � � present in the from clause is implicitly existentially quantified.
Thus, queries with certain kinds of existential quantification can be expressed in the
above form.

Since no joins are allowed in the where clause, a query whose variables form a
forest can be decomposed into a cross product of several tree queries: the restriction to
tree rather than forest queries results in no loss of expressive power.

The result of a such a query is a set of tuples of the form � 	 � ' � � � � � � � � � � � where
� ' � � � � � � � � � are instances of the variables in the query’s select clause and can be either
atomic values, or XML fragments.

In the sequel, the following representation of tree queries is used. A tree query
�

is represented as a labeled tree, � � � � � � � � � ��� � � � � � � � � where � is the set of query
variables (tree nodes), � �#� is the parent binary relation between nodes defined above,
� � � � � is the binding path of � and � � � is a set of operations associated with variable
� , defined as follows : for a variable � in the select clause � �5� � � � � � , and for each
condition ��� � in the where clause, �����	� � � � � � � � .

4.2 Variable to Rules Bindings

We now proceed to the details of query processing. We first present a simple approach
in which a source contributes to the answer only if it can fully answer the query.

To evaluate a query, we need to rewrite it into an XML query that some sources can
answer. Obviously, in general only some of the sources contain the data requested in
the query. Each such source returns a subset of the possible answers; the union of the
answers from all relevant sources is presented to the user (see Section 5).

For this rewriting, we use the mapping rules. For a query
�

and a source � , we
define a variable to rule binding, or shortly variable binding, as a mapping

from a set

of query variables to � �
. We consider only bindings such that ����� �
 � is either empty

or is the set of nodes of some prefix6 of � � � � . The empty binding is denoted by

��

. If

binds all variables in
�

then it is called a full binding, otherwise it is a partial binding.
The properties of a binding

are the following : if �#��� �
 � is not empty, then

associates each variable in it with a rule of � � , such that the following hold:

1. if � is the root of query
�

, then

 � � � is an absolute mapping rule such that

conc(� � �
 � � � �) ����� � conc(� � � � �), i.e., the derived concept defined by � � �
 � � � �
is a subconcept of the derived concept defined by the binding path � � � � � in � � ,

2. else, let � ��� � � � � � � , then

 � � � is a relative rule, and

– the root variable of rule

 � � � is bound in rule

 � � � � ,
– the role path (RHS) of the rule

 � � � is equal to the binding path � � � � � ,
– and finally, the concatenation of the two rules

 � � � � and

 � � � is well-defined.

In the first case, � is the root of
�

and bound to some (possibly derived) concept
by its binding path � � � � � that has the form � or � � � . An absolute rule 	 can provide
instances for this concept if its concept path (RHS) � � � 	 � , viewed as a derived concept,
is a sub-concept of � � � � � (i.e. if the latter is a suffix of � � � 	 � or it defines a superconcept

6 A tree
��

is a prefix of a tree
�

if it is a subtree of
�

and its root is the same as that of
�

.

thereof). Note that we use here both derived concepts and the ����� relationship between
them. Thus, the derived schema defined in Section 3 is essential for our approach to
query processing.

In the second case, the assumption that if

is defined on � then it is defined on the
parent of � follows from the requirement that its domain is a prefix of � � � � . In this
case, the declaration of � in

�
has the form � � � � � , and � � � � � � � . Answers for � can

be obtained from answers for � � , by following the binding path � of � .
A partial binding

is called maximal if there does not exist a binding

 � such that
�#��� �
 ��� ����� �
 � � and

 � � �+�
 � � � � for all � in ����� �
 � . It is evident that a full
binding is a maximal binding.

Variable Binding Algorithm We will now describe a variable binding algorithm� � � � � � which takes as an input a query
�

and a mapping � for a source � and re-
turns a set of maximal bindings. A binding

is represented as a vector of associations

of variables to rules, 	 � ���
 	 ��� � � � � & �
 	 & � . The algorithm is illustrated in more
detail in Fig. 6. First, the variables of the query tree are arranged in pre-order: the root
is first, and every other node occurs after its parent. The algorithm starts from the empty
binding, and once a set of partial bindings have been constructed, it tries to extend each
one, using the ordering of the variables. The extension of a partial binding

by 	 � �
 	��

is denoted

�� 	 � �
 	�� .

In the first step, we extend

 �

to the root variable � � . For each absolute rule 	 in � �
such that the derived concept defined by � � � 	 � is a subconcept of the derived concept
defined by the concept path � � � � � � in � � , we create the binding 	 � ���
 	 � and add it
to the set of bindings for � � . If no absolute rule is found such that the above conditions
hold, then the algorithm stops, and returns the empty set. Then, we iterate through the
sequence of variables, from the left. Let the current, not yet treated, variable be � ' , and
let 	 be its parent. For each binding

constructed so far, if 		�� �#��� �
 � then

cannot

be extended to � ' (recall that a binding is always defined on a prefix of � � � �). Else,
let binding

associate rule 	 � with 	 . Then, for each relative rule 	 of � � , such that

� � � ��' �!� � � � 	 � , if 	 and 	 � can be concatenated (i.e, 	 � binds the variable that is the
root of 	 , and their schema paths can be composed), we extend

by 	 � ' �
 	�� . In this

case,

can be dropped, since the new binding extends it. Note that the edge from 	 to
� ' is traversed in this step, and only in this step.� � � � � � finds the maximal bindings for a query

�
and a mapping � on source � .

The proof is straightforward. Consider a binding

in the result set of
� � � � � � . If there

exists a variable � that we could add in �#��� �
 � , this means that there exists some rule
	 such that

 � � ���
 - � � � � � � 	 is well-defined, then by the algorithm � would already be
in ����� �
 � which is a contradiction, from the above assumption.

Let us illustrate the algorithm with query
�
� presented earlier, and the mapping

rules for source � � illustrated in Fig. 4. Rule 	 � returns answers for variable � . The
rule’s schema path is Person which is equal to � ’s binding path (Person). Rule 	 �

returns answers for � , since (1) its schema path has name is equal to the variable’s
binding path, (2) its root variable � � is bound in rule 	 � , and (3) the composition of the
schema paths of rules 	 � and 	 � is well defined, since attribute has name is defined in
concept Person. In a similar manner, we find that variable � is bound to rule 	 � and

Input : the sequence of variables of query
�

, in pre-order: � ����������� ��� ;
the closure of mapping rules

�	�
of some mapping

�
for source
 ;

Output : the set � of maximal bindings for
�

and
�

Algorithm : �
� ��� ;
for each absolute rule

������
if concept path ��� � � � � is equal to or is a suffix of path
 � � � �

/* ������� �
 � � � � � is a subconcept of ������� ����� � � � � � */
add � � ���� �!

to � ;
for "#�%$ ��������� �'&

/*
� ��(� contains all maximal bindings up to �*),+ � */� �-(� � ��� ;. := parent of �) ;

for each binding / � � ��(� where . � � ��(� / � &
for each rule

�
in
���

where
 � � � � � ��� � �0) �
if the composition of / � . ��� � is well defined

/* / is extended to �) and added to � */
add /213� �) �� �!

to � ;
if / was extended to �4)

remove / from � ;5
5
return � ;

Fig. 6. Variable binding Algorithm 6 � � �
 �

variable � to rule 	 � . For variable
 , we do not find a mapping rule whose schema path
is equal to the variable’s binding path (located at). The result

� � � � � � � � is the singleton
�
 � � � � 	 � �
 	 ��� � �
 	 � � � �
 	 � � � �
 	�� � � .

4.3 Query Decomposition

Let � be the set of sources mapped to the global schema. Algorithm
� � � � � � returns for

each source � in � the set of maximal bindings. Each such binding

is either full, i.e.
�#��� �
 � contains all variables in

�
(then � can answer the query using

), or partial.

In the latter case,

provides us with partial answers, i.e. does not provide answers for
all variables in the query. To complete these partial answers, we decompose the query�

into (i) a prefix query that source � can answer using binding

, denoted
�87 �
 � , and

(ii) a set of suffix queries, denoted 9 � �
 � .
As an example, take the result of algorithm

� � � � � � � � calculated for query
�
� ,

and source � � published by the mapping rules illustrated in Fig. 4. It contains a partial
binding

 � defined on a proper subset of the variables in the initial query : for an instance
of variable � we miss instances for variable
 (and its descendants).

To obtain the complete answer, we define (1) a prefix query that source � � can
answer using

(query

� 7 �
 � � � � � � � � illustrated in Fig. 5) and one suffix query
(query

� � � ��� illustrated in Fig. 5). The prefix query
� 7 �
 � is a prefix of � � � � and is

defined on the set of variables in ����� �
 � . The suffix queries of a prefix
� 7 �
 � in

�

are defined as follows. Let � be the set of variables in
� 7 �
 � which contain at least

one child in
�

but not in
� 7 �
 � (we call � the boundary of

� 7 �
 �). Then we define a
suffix query for each variable � in � as the subtree of

�
rooted at � and containing all

descendants of � not in
� 7 �
 � . It is easy to see that query

�
� � ��� illustrated in Fig. 5 is

a suffix query of
�
� � ��� in

�
� . Observe that for a given prefix query there might exist

zero, one or more suffix queries.

Joining the results The results of the prefix query and the suffix queries must be
joined. In order to perform the join between a prefix and a suffix query the following
two conditions must hold : (1) the concept to which the root of a suffix query is bound,
should have a key, and (2) the sources on which the join is performed should provide
complete values for this key.

The key values of an instance of a concept � are obtained by considering
�
�	 � � �

as a query ranging over all key paths in it. The result of a key query is of the form
� 	 � � � � � � � � � � & � � , where the � �' � are instances of the variables to which the key paths are
bound in the key query. For example, the query illustrated below returns the key values
for an instance � of concept Man Made Object :�
�	 � � � - � � �
 � ���
 � � � : select � , 	

from Man Made Object � ,
� .has title � , � .created by.date.year 	

Given a (prefix or suffix) query
�

whose result is of the form � 	 � � � � � � � � � � & � �
where the � �' � are instances of the variables in the query’s select clause and a key query�
�	 � � � , where � is the concept on which the join will be performed,

�
is extended to

� �
so as to get, as well as the �3' ’s, the key values for the fragments, instances of concept � ,
accessed by

�
. The result of

� � is of the form � 	 � � � � � � � � � �"& � � � � � � � � � � � � 7 � � where
the � � ’s are instances of the key query variables (variables bound to the key paths in�
�	 � � �). For example, the prefix query obtained after extending query

�
� � ��� of Fig. 5

by the key of concept Man Made Object is given below7.

 � � � � � � ��� � : select � , � , 	

from Person � , � .has name � ,
� .carried out.produced � , � .has title � ,
� .has title � , � .created by.date.year 	

where � = “Van Gogh”

Query Execution Plans Let
�

be a query and � be a set of sources. A decomposition
of
�

w.r.t. some maximal binding

is a couple � � � �
 � � 	 � 7 �
 � � 9�� �
 � � such that� 7 �
 � is a prefix query of
�

on source � in � and 9�� �
 � is the set of suffix queries of� 7 �
 � in
�

. For example, � � � �
 � �!� 	 � � � ��� � � � � � � � � � is a decomposition for query�
� and the maximal binding

 � defined on source � � . Observe that 9 � �
 � is empty if

is a full binding for

�
.

Let � � � �
 � � 	 � 7 �
 � � 9 � �
 � � be a decomposition of
�

. Then
� 7 �
 � can be

translated into a source query using binding

. For each suffix query in 9�� �
 � either

7 This query can be optimized by keeping the variables that are common to the key query and
the prefix query (the case of variables

�
and � in the example above).

a full binding is found or the suffix query has still to be decomposed. Let
� ' be a

suffix query in 9�� �
 � and ��� � 	 � ��� � � � � 7 � denote the key query variables bound to
the key paths of concept � � associated to the root variable of

� ' . Then
� 7 �
 ������� � '

denotes the join operation between
� 7 �
 � and

� ' (we assume that both queries are
extended by the appropriate key queries). A prefix query rewriting 	�
 � � �
 � for a
decomposition � � � �
 � is defined as the join between a prefix query and all suffix
queries

� ' ,) * � * - , in 9�� �
 � (if

is a full binding for
�

then 9�� �
 � is empty and	�
 � � �
 � � � 7 �
 �) :

	�
 � � �
 � � � 7 �
 ��� ��
��
 � � � � � ��� ��� � � � � �����
 � � & � � � �
Then the initial query

�
can be rewritten as �
 (Q,S) defined as the union of all

prefix rewritings for sources in � :

�
 � � � � � �������� �� �����! �" �$# 	�
 �
� �
 �

Let a query execution plan (QEP) be defined as follows : (1) a query � that can be
answered by a single source (that is a query for which there exists a full binding) is a(n
atomic) QEP; (2) the union of two QEP’s is a QEP 8; (3) the join of two QEP’s is a
QEP9. Basically, sources answer atomic queries in a QEP and the mediator performs
joins and unions. A QEP can involve several atomic queries sent to a given source. It
might be interesting to combine such queries in a single query. This implies the re-
organization using classical properties such as distributivity of union w.r.t. join. Such
properties and reorganizations as well as other optimizations are beyond the scope of
this paper.

Given a set of sources � and a query
�

, the algorithm % (Q) shown in Fig. 7
computes a query execution plan for

�
. For each source � and maximal binding
 � � � � � � � , a QEP % �
 � of the prefix rewriting 	�
 � � �
 � is computed : if

is a

full binding (i.e. complete answers are obtained), the result is query
�

. Else, if

is a
partial binding, then query

�
is decomposed into a prefix query

� 7 �
 � and a set of suf-
fix queries 9�� �
 � (these queries are also extended by the key queries as shown before).
The query execution plan of

�
against source � is obtained by joining

� 7 �
 � with the
query execution plan for each suffix query

� � � 9 � �
 � (variable
� � denotes the key

query variables of
� �). To calculate the query execution plan of a suffix query

� � the
algorithm is called recursively. Finally the obtained plan is added to the existing plan
by union.

Observe that there are two reasons to interrupt the calculation of a query execution
plan for a given source � and binding

. The most trivial case is that there exists no

maximal binding for
�

in � . The second reason is that there exists at least one suffix
query which cannot be satisfied (empty query execution plan).

8 Remember that union is heterogeneous, that is two sets of tuples answering the same query but
resulting from different sources might have different structures for the " -th component.

9 We restrict join to the non commutative aforementioned definition of join: the root of the sec-
ond QEP should belong to the boundary of the first QEP and each of them should correspond
to a concept for which a key has been defined.

Input: a query
�

and a set of sources
�

Output: a query execution plan for
�

;
Algorithm:

����� � � � � � �	� ;
for all sources
 � � &

if 6 � � �
 ������ &
/* there exists at least one maximal binding for

�
in
 */

for all bindings / � 6 � � �
 � &
if / is a full binding

� � / � � � �
;

else & � � / � � � ��� � / � ;
for all suffix queries

�
 ���
	 � / �
if
� � / ����	�

/* there exists a non-empty query plan */
/* for all subqueries up to

�

*/

if
����� � �
 � � ������

/* there exists a query plan of
�

*/� � / � � � � � / ����
�� ����� � �
 � � � ;
else

� � / � � �	� ;5
����� � � � � � � ����� � � � � ��� � � / �5

5
5
return

����� � � � � � ;

Fig. 7. Query Execution Plans Generation

5 System Architecture

In this section we sketch the architecture of the prototype ��� � � [9] (Fig. 8) that im-
plements the data integration approach described previously. XML Web resources can
be published on the fly by creating/modifying/deleting mapping rules between source
fragments and the global schema using the Source Publication Interface. The global
schema can be consulted through the Schema Manager which is also responsible for its
loading in a � � � � portal. The mapping rules are first validated by the Rules Manager
which is also responsible for their storage. The publication of a resource also consists
in providing an XSLT transformation program 10 that can be used for formatting source
data in the query result11. Query processing is done in several steps: first user queries
can be formulated using a standard Web browser. They are either created by a generic
Query Interface, or simply stored in the form of a hypertext link (URL). The Query
Interface communicates with the Schema Manager allowing the user to browse the
global schema for the formulation of a query. The Query Interface forwards the query
to the Query Parser which performs a syntactical analysis of the query with some type-
checking w.r.t. the global schema and produces a language neutral intermediate repre-

10 XSL Transformations (XSLT : http://www.w3c.org/TR/xslt)
11 If the query result contains XML fragments from a source, then those are transformed using

the source’s XSL Stylesheet.

Portal
Schema

Generator
XSLT Processor

Web Server

Mapping rules

 Kweelt Query Engine

XPath Location PathsXML Fragments

Source Publication Interface

Query Parser

Query Execution Plans

User query

Query Interface

Formatted result

XSL stylesheets

Manager
Schema

Manager

Mapping rules

Rules

Integration Module

Fig. 8.
� � 	 �

Portal Architecture

sentation of it. The query is then forwarded to the Query Execution Plans Generator,
which creates the query execution plan. The Integration Module rewrites the queries
into Quilt Queries and sends them to the Kweelt Query Engine12 for evaluation13. The
resulting XML fragments are sent to the Integration Module that combines the results.
This module, based on the query and the mapping rules, inserts schema specific tags,
and then the XSLT Processor (Cocoon14) finally transforms the result into an HTML
document which is displayed to the browser of the user.

The ��� ��� prototype was implemented in Java JDK 1.2. XML technologies such as
XSLT, XPath and the Xalan XML Stylesheet processor15 were used.

6 Related Work

Data integration has become an important issue during the past years and a large number
of integration systems have been proposed. These systems can be classified according
to the architectures used for query processing : data warehouse systems materialize all
source data before query processing, whereas mediators propose a virtual database and
push queries to the source level based on sophisticated query rewriting algorithms. Our
approach clearly belongs to the second category.

12 Kweelt Query Engine : http://db.cis.upenn.edu/Kweelt/.
13 The Kweelt query engine can evaluate the subset of XQuery expressions presented in this

paper.
14 http://xml.apache.org/cocoon
15 http://xml.apache.org/xalan-j/index.html

Mediator systems are classified according to the way sources are described to the
mediator and queries are evaluated [11]. Tsimmis [14], MIX [3], YAT [5] and Pic-
sel [10] follow the global as view approach and are not directly comparable to ours. On
the other hand, Information Manifold [12] follows the local as view approach. In this
system the global schema is a flat relational schema, and Description Logics is used to
represent hierarchies of classes. The sources are expressed as relational views over this
schema. Query rewriting is done by the Bucket algorithm which rewrites a conjunctive
query expressed in terms of the global schema using the source views. It examines in-
dependently each of the query subgoals and tries to find rewritings but loses some by
considering the subgoals in isolation. The MiniCon algorithm [15] improves the Bucket
algorithm by exploiting the input/output dependencies between the query subgoals for
reducing the search space of possible rewritings. Algorithm

� � � � � � presented in this
paper resembles to MiniCon since it exploits the parent/child dependencies of query
variables for query decomposition.

The Agora [13] system, offers an XML view for relational and XML data and user
queries are XQuery expressions. Although XML is used as the global data model, an
extended use of the relational model is made : the XML view is translated into a generic
relational schema, XML resources are described as relational views over this schema
and XQuery expressions are translated to standard SQL queries which are then decom-
posed, optimized and evaluated. Our system and query rewriting algorithm extensively
exploit the tree structure of XML data which is described as local views of a more
powerful conceptual schema with inheritance.

Last, the Xyleme [7] system is based on a data-warehouse solution for the inte-
gration of XML data (“all XML data of the Web”). However, it can be considered as a
mediator system, since source data is stored without transformation and users can query
this data via different views. Each view is described by a DTD, called abstract DTD,
and source data is mapped to one or several DTDs using path-to-path mapping rules.
These rules are similar to our mapping rules with the difference that they map absolute
source paths (starting from the document root) to absolute paths in the abstract DTD
(starting from the DTD root element).

7 Conclusions

We proposed in this paper an alternate approach for integrating XML sources following
the LAV approach. Instead of choosing for the global view, a relational or XML schema,
we advocated the use of an ontology-based mediation. The global schema is close to an
object-oriented schema on a terminology describing a common domain of interest and
users issue queries on this global schema. Our contributions are (i) a view definition
language, (ii) a rewriting algorithm, (iii) an algorithm for generating execution plans,
and (iv) a prototype validating the approach.

We are currently working on several extensions concerning our integration model.
First, we try to extend the query language by allowing explicit joins in the where clause
of a query. This does not change the binding algorithm, but increases the complexity
of query processing. A second issue we are looking at concerns the usage of maximal
bindings for query decomposition. In fact, the current version of the rewriting algorithm

generates query execution plans which favor information stored locally in the same
document. For example, if some source � provides a single full binding for some query�

, the algorithm will return the result of
�

in � , but will not try to join � with some
other source ��� . This restriction can be removed by allowing also partial bindings that
are not maximal, but will increase the number of possible decompositions significantly.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data On the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann, October 1999.

2. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration of XML Web
Resources. In International Semantic Web Conference (ISWC), Sardinia, Italy, 2002.

3. C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, P. Velikhov, and V. Chu.
XML-based information mediation with MIX. In Demonstrations, ACM/SIGMOD, pages
597–599, 1999.

4. P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. C. Tan. Keys for XML. In Proc.
WWW10, pages 201–210, 2001.

5. V. Christophides, S. Cluet, and J. Simeon. On Wrapping Query Languages and Efficient
XML Integration. In Proc. of ACM SIGMOD, Dallas, USA, May 2000.

6. J. Clark and S. DeRose (eds.). XML Path Language (XPath) Version 1.0. W3C Recommen-
dation, November 1999. http://www.w3c.org/TR/xpath.

7. S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML Repository. In Proc. VLDB,
Rome, Italy, September 2001.

8. W. Fan, G. Kooper, and J. Simeon. A Unified Constraint Model for XML. In Proc. WWW10,
Hong-Kong, China, May 2001.

9. I. Fundulaki, B. Amann, C. Beeri, and M. Scholl. STYX : Connecting the XML World to
the World of Semantics. In Proceedings of EDBT, Prague, Czech Republic, March 2002.
(Demonstration).

10. F. Goasdoué, V. Lattés, and M-C. Rousset. The use of CARIN language and algorithms
for information integration: The PICSEL System. International Journal on Cooperative
Information Systems, 2000.

11. A. Halevy. Theory of answering queries using views. SIGMOD Record, 29(4):40–47, 2000.
12. A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information Sources Using

Source Descriptions. In Proc. VLDB, pages 251–262, Mumbai (Bombay), India, September
1996.

13. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries over Hterogeneous
Data Sources. In Proc. VLDB, Rome, Italy, September 2001.

14. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Heteroge-
neous Information Sources. In Proc. ICDE, pages 251–260, Taipei, Taiwan, March 1995.

15. R. Pottinger and A. Levy. A Scalable Algorithm for Answering Queries Using Views. In
Proc. VLDB, pages 484–495, Cairo, Egypt, September 2000.

16. H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures.
W3C Recommendation, May 2001. http://www.w3.org/TR/XML-schema-1.

