
Querying Typed Hypertexts in Multicard/O ���

Bernd Amann, Michel Scholl
Cedric CNAM

292 Rue St. Martin
75141 Paris Cedex 03 France

INRIA
Rocquencourt

78153 Le Chesnay Cedex France
e-mail: � amann,scholl � @cnam.fr

Antoine Rizk
Euroclid

12 Avenue des Près
78180 Montigny le Bretonneux France

e-mail: Antoine.Rizk@inria.fr

ABSTRACT

Due to the growing complexity of modern hypertext appli-
cations, current hypertext systems require new mechanisms
to support authoring and user navigation through large sets
of documents connected by links. A general solution is to
extend hypertext systems to cater for semantics of applica-
tion domains. This requires new hypertext models provid-
ing strongly typed documents and links. Such models have
been proposed and put to use in systems such as HDM and
MacWeb to facilitate authoring of large hypertexts. In addi-
tion, Gram and MORE use typing and graph-based hypertext
schemas for querying hyperdocuments. In this paper, we will
show how query languages could be further exploited for de-
signing sophisticated general query-based navigation mech-
anisms. We illustrate our examples using the Gram model
and describe an implementation with the hypermedia system
Multicard connected to the object-oriented database manage-
ment system O2.

KEYWORDS: hypertext querying, browsing, hypertext
schema, visual interface

1 INTRODUCTION

Hypertext systems are generally viewed as an example of
graph structured information systems based on navigation.
(Multimedia) data is stored in nodes or documents which are
connected by links. Browsing is the typical way of accessing
data in hypertext systems. In contrast with Database Man-
agement Systems (DBMS) which are based on data mod-
els with strong typing (relations, classes), hypertext docu-
ments have so far been viewed as weakly typed [18, 28],
and users not only traversed hypertext links independently
�
This article appeared in “ECHT’94, Edinburgh, Scotland, September

1994

of their type, but also could add new documents and links
without necessarily specifying their semantics in form of a
type.

It has now become clear that the above distinction be-
tween hypertext systems and DBMS is oversimplified and
no longer valid. A first step towards “typed” hypertexts were
formal models [24, 15] based on the semantic data model
IFO [1]. Subsequent implementations like HDM [16] and
MacWeb [22] have then demonstrated that the best way for
managing “real-size” hypertexts is by generating them ac-
cording to a schema describing the hypertext application.
Hypertext schemas have therefore been put to complemen-
tary use in authoring hypertext applications. Other data mod-
els, such as Gram [4] and MORE [20] have moreover ex-
ploited schemas for querying the resulting hyperdocuments
in a more structured way.

The use of graphs for describing the structure of informa-
tion as well as for formulating complex queries in large ap-
plications is not new. Semantic data models such as the
Entity-Relationship model [7] and IFO [1] are examples of
paradigms which make intensive use of graph based dia-
grams, useful not only for representing database schemas,
but also as a help for navigating through data. Although
database query languages such as SQL [29] are declara-
tive, a complex query including a large number of rela-
tions, say more than 3, is more naturally conceptualized and
prepared by navigating among relations. Visual query in-
terfaces [6] based on graph representations of the schema,
then, become extremely useful. This is even more obvi-
ous in object-oriented databases. With object-oriented query
languages such as O2SQL [5] or XSQL [19] users traverse
composition links between classes by means of path ex-
pressions. The application of path expressions for querying
structured (SGML) documents without exact knowledge of
their schema is studied in [8]. MORE [20], GraphLog [9]
and GOOD [17] are also based on a graph representation of



data, but in contrast with other query languages, queries are
graph patterns matched against subgraphs of the database.

Querying in this way allows us to define a variety of naviga-
tion strategies. The objective of this paper is to investigate
some query-based browsing mechanisms for implementing
such strategies. While we shall use the Gram path algebra [4]
for the presentation of these mechanisms, they should also
be applicable on top of other data models such as MORE,
GraphLog or any relational or object-oriented data model.

We first introduce Gram through examples of data and
queries in Section 2. For a complete formal presentation
of Gram, see [4]. Section 3 is devoted to the application
of query languages to hypertext navigation. We introduce
a few basic mechanisms, namely virtual link, reverse link
and user history. Section 4 introduces a better information
structuring through the definition of a zooming function for
connecting several hypertexts. Zooming allows us in partic-
ular reutilization of existing hypertexts. It is also useful for
modeling hierarchical relationships. The implementation of
several of these mechanisms on top of the hypermedia sys-
tem Multicard [25] and the object-oriented DBMS O2 [13]
is described in Section 5.

2 THE GRAM MODEL

A Gram schema is a directed labeled graph where nodes rep-
resent document types and edges correspond to the possi-
ble types of links between documents. Figure 1 shows the
schema of a hypertext storing multimedia information about
cinemas, movies and artists.

Cinema Movie Artist

Scene

author

directorscript

actor

next

show

Figure 1: A Movie Guide Schema

A document can have one of the types Cinema, Movie,
Artist and Scene. Cinemas (documents of type Cin-
ema) are connected to the featured movies (documents of
type Movie) by links of type show. Each movie is con-
nected to its director and its authors by links of type di-
rector and author respectively. A movie’s script is a
sequence of scenes connected by links of type next. Fi-
nally, one may obtain information about a movie’s actors by
following links of type actor starting from its Scene doc-
uments. Note that links may contain information such as a
room number (type show) or an actors role (type actor).

The Gram query language is based on a path algebra and

makes it possible to

� select paths according to regular expressions over doc-
ument and link types,

� select paths according to document and link values,

� construct new paths by projection and concatenation,

� join paths sharing document.

For illustration, assume a user is interested in all cinemas
featuring a movie directed by Alfred Hitchcock (an SQL like
syntax is used for clarity):

SELECT Cinema
FROM Cinema show Movie director Artist

WHERE Artist.name = ‘‘Alfred Hitchcock’’

Paths satisfying the regular expression Cinema show
Movie director Artist are selected (FROM-clause)
and restricted to the WHERE-clause condition.

The answer to the following query contains all authors of
movies directed by Ingmar Bergman. Note that the paths in
the range of the query (FROM-clause) have to share the doc-
ument of type Movie, and authors are distinguished from
directors by renaming one occurrence of type Artist into
Artist 2:

SELECT Artist
FROM Movie author Artist+Movie director Artist_2

WHERE Artist_2.name = ‘‘Ingmar Bergman’’

The hypertext schema shown in Figure 1 is cyclic (edge type
next). This allows the application of Kleene closure, as it is
illustrated in the next query that gets all movies with Romy
Schneider:

SELECT Movie
FROM Movie script (Scene next)*Scene

actor Artist
WHERE Artist.name = ‘‘Romy Schneider’’

Kleene closure introduces a restricted form of recursion into
the Gram algebra. Gram has less expressive power than first-
order logic with transitive closure (FO+TC) since it is sup-
posed [2] that hypertexts are connected graphs. However
Gram allows us to keep the whole information about paths
and not only about their extremities.

3 QUERY-BASED NAVIGATION

This section is devoted to the application of query languages
to user navigation in hyperdocuments. We shall describe
several query-based browsing mechanisms for implementing
high-level hypertext navigation strategies.

2



3.1 Virtual links

Existing hypertext systems such as the Dynamic Medical
Handbook [14], I

�
R [11], Intermedia [10] or MacWeb [23]

support advanced information retrieval and indexing mech-
anisms for the definition of virtual or intensional links [12].
Opposed to extensional “hard-wired” links that are defined
by two extremities, virtual links are the result of queries on
the hyperdocument contents and structure. Independently of
the underlying data model, we suppose that all queries return
sets of paths in some hypertext network.

A virtual link defined by a (path) query Q and denoted by
link(Q), is the set of node (document) pairs connected by
paths in Q:

link(Q) =
�
(d � , d � ) � d � l � ...l ����� d �	� Q 
 .

Any such documents d � and d � are said to be connected by a
virtual link � link(Q). While Q brings complete information
on its paths, link(Q) only keeps the paths end nodes. A vir-
tual link � link(Q) is followed from some document d by the
operation goto:

goto(d, Q) =
�
d’ � (d, d’) � link(Q) 
 ,

i.e. goto(d, Q) displays all destination documents of paths
contained in Q and starting in document d. In the following,
document d will be called the active document.

Instead of opening all documents related to d simultaneously,
some control strategy has to be used to avoid an “explosion”
of the number of windows displayed on the screen: if the
number of documents found is less than some limit, say 4,
all documents are opened and displayed on the screen simul-
taneously. Otherwise, the user gets some menu where he can
choose the documents to be opened.

Virtual links introduce flexibility and allow the control of the
hypertext size by avoiding unnecessary extensional links be-
tween documents. Note also that (1) goto(d, Q) might be
precomputed for faster navigation - which implies recalcu-
lation when the hypertext graph is modified - and (2) this
mechanism could be implemented in a relational model by a
view mechanism.

Example 3.1 In order to obtain the actors playing in the
movie Jurassic Park, a user might read the scenario by fol-
lowing links of type next and display documents about ac-
tors by traversing links of type actor. A better solution
is to use the following query for traversing the virtual link�

(Jurassic Park, Jeff Goldblum), (Jurassic Park, Richard At-
tenborough), (Jurassic Park, Greg Burnson), ... 
 :

SELECT Artist
FROM Movie script(Scene next)*Scene

actor Artist
WHERE Movie.title = ‘‘Jurassic Park’’

Instead of selecting the document Jurassic Park by the con-
dition Movie.title = ‘‘Jurassic Park’’, one

might also define a “generic” query, where the formal pa-
rameter Active Document is replaced by the active doc-
ument (here Jurassic Park):

SELECT Artist
FROM Movie script(Scene next)*Scene

actor Artist
WHERE Movie = Active Document

Afterwards, in order to display all actors playing in a differ-
ent movie, the user only has to activate the corresponding
document before evaluating the same query.

This example also illustrates how virtual links prevent un-
necessary navigation by following several paths to the same
document: although there exist different scenes with the
same actor, the latter appears only once in the result of the
query.

Hypertext browsing implies an asymmetric view of data:
documents are accessed through directed paths in a graph.
However, this asymmetry is only apparent and we can al-
ways obtain the set of starting nodes of paths satisfying some
query Q and leading to a given node. This corresponds to the
projection of the paths in Q on their source nodes:

comingfrom(d, Q) =
�
d’ � (d’, d) � link(Q) 


3.2 Schema browsing

A virtual link goto(d,Q) can be attached to a button ��Q in
some document d. Clicking on this button then triggers the
interpretation of Q and opens the documents in goto(d, Q).
Another solution is to provide a high-level user interface for
ad-hoc querying during hypertext browsing. Such an inter-
face can be implemented in the form of a schema browser
where users interactively select node and link types in order
to create path expressions �

Example 3.2 For displaying all cinemas featuring a movie
directed by Alfred Hitchcock, the user activates the docu-
ment Alfred Hitchcock and selects the link types director
and show in the schema graph representation of the movie
guide (Figure 1). This selection is translated automatically
into the following query finding the corresponding Cinema
documents:

SELECT Cinema
FROM Cinema show Movie director Artist

WHERE Artist = Active Document

The implementation of a schema browser on top of the O2
DBMS and the Multicard hypertext system will be described
in Section 5.
�
Observe that we use the term schema browsing in the sense of following

link types in the graph representation of the hypertext schema.

3



3.3 Navigation space restriction

Navigation, even when query assisted, becomes extremely
complex when the number of displayed nodes and edges
passes some limit. Navigation space restriction is then nec-
essary. Several mechanisms have been proposed [30, 26].
We suggest to restrict navigation to paths defined by a query
Q. Then the user navigates step by step but only in the pre-
defined space: in each document only buttons corresponding
to the paths of Q are active, the others being disabled. As for
virtual links this mechanism can be implemented either by
storing Q with a button � �Q or by ad-hoc querying.

3.4 Querying history

Most hypertext systems allow to return to some previ-
ously visited document by using a special “back” button��� . Reverse links as defined above (comingfrom) are in-
sufficient for implementing history mechanisms. For ex-
ample, after having followed a link of type director
from the movie Le Dernier Metro to the document
about François Truffaut, the activation of the button� ,Movie director Artist in this document does
not return only to the previous movie Le Dernier Metro, but
to all movies directed by François Truffaut.

We shall implement user history as follows. Each time a
link is followed, the source document (active document) is
pushed onto a stack H. Upon the display of a document,
thanks to the above stack mechanism, the user can navi-
gate back to the previous document (pop(H)) or to the first
one (empty(H)). Combined with some query language it is
then possible to implement more sophisticated reverse strate-
gies: instead of following the history step by step (button��� )), a whole path p returned by a query Q might be popped
from the history: let p be a path connecting documents d � ,
d � ,...d � in the same order as they were pushed onto H. We
assume that d � is the active document and has already been
pushed on H. Then p can be popped from H and d � becomes
the active document: pop(H, p).

As we have done for the definition of virtual links, we can
use a “back” button attached to a query Q: ��� ,Q . By click-
ing on this button, the starting documents of the paths p in Q
that can be popped from H will be displayed.

Example 3.3 A user reading the script of the movie Germinal
(following a path satisfying the regular expression Movie
script (Scene next)* Scene
actor Artist) has obtained the document about some
actor by following a link of type actor. Clicking on��� ,Movie script (Scene next)* Scene actor Artist then al-
lows to return immediately to the document Germinal.

4 HYPERTEXT REUTILIZATION

The following mechanism allows a better connection and
structuring between separate hypertexts. In particular, it be-
comes possible to “call” a hypertext H from some document
in another hypertext H’. Looking at the schema in Figure 2,
we can think of one hypertext on cinemas and their sched-
ules and one on movies, directors, authors and actors. Each
document of type Schedule now contains a button � that
can be activated in order to enter the corresponding hypertext
about the featured movies.

Cinema

Schedule

Scene

Movie

Artist

script

next

director

room

author

actor

Figure 2: Cinemas and Movies

Zooming Function: Let S be a hypertext schema, t be a
node type, and I(S) denote the set of hypertexts with schema
S. Then zoom: I(t) � I(S) associates with a node of type t a
hypertext with schema S.

Clicking on button � in schedule s activates the zoom and
opens the hypertext zoom(s). Instead of following a path
from some schedule s into zoom(s) and navigate, say from
a schedule to the directors of the movies, we might directly
apply a query on zoom(s): the activation of the zooming but-
ton � �Q enters hypertext H = zoom(s) and applies query Q
on H.

However, a query might involve both, a path p on cinemas
and schedules as well as a path p’ on movies and artists em-
bedded in p.

Embedded Paths: Let Q be a set of paths satisfying some
regular expression r. Let t be a type in r and zoom: I(t) �
I(S) be a zooming function. Let Q’ be a query on hypertexts
with schema S. Then we can enter a path p’ � Q’ from a path
p’ � Q if p contains a document d such that p’ is a path in
zoom(d):

���
	������� � ������� � ��� � ����� � � � ���
��� � �
�! "���#�$�&%'�
��� � ���(�*)#+,+�-���#�.� 


defines all pairs of paths (p, p’) such that p’ can be entered
from path p.

For representing such pairs of paths, we will use the follow-
ing rewriting rule where a dot notation is used to indicate the
document to be zoomed:

4



Rewriting: Let (p, p’) � embed(Q, Q’) be a pair of paths such
that p satisfies r = u t v and p’ satisfies r’. Then (p, p’) is said
to satisfy the regular expression s = ut.(r’)v.

Example 4.1 The following query gets all cinemas showing
films with the participation of Woody Allen (as actor, direc-
tor, or author). Observe that we do not specify the paths
leading to this artist inside the movies hypertext:

SELECT Cinemas
FROM Cinema room Schedule.Artist

WHERE Artist.name = ‘‘Woody Allen’’

The dot notation is used for accessing attribute values
(Artist.name) as well as paths in the “zoomed” hyper-
texts (Cinema room Schedule.Artist).

An alternate (O2SQL like) syntax for this query might be the
following:

SELECT p.Cinema
FROM p IN Cinema room Schedule

p’ IN p.Schedule.Artist
WHERE Artist.name = ‘‘Woody Allen’’

Here p is a path in the Cinemas hypertext and satisfies the
regular expression Cinema room Schedule. The sec-
ond path p’ consists of one document of type Artist con-
tained in the movies hypertext that can be accessed (zoomed)
from the Schedule document in p.

5 IMPLEMENTATION

Several of the presented mechanisms (virtual links, schema
browser) have been implemented and validated on top of the
hypermedia system Multicard [25] and the object-oriented
DBMS O2 [5]. The overall system architecture is shown in
Figure 3.

In a first step, we have connected Multicard with O2 by us-
ing the C++ programming interface of O2 [3]. According to
the Dexter Hypertext Reference Model [18] this integration
provides a clean separation of the hypertext structure (stor-
age layer) stored in an O2 database from the node contents
(within-component layer) manipulated by Multicard compli-
ant editors (MCEditor, Emacs, Go, ...) [25]. Afterwards, in
order to introduce new hypertext query facilities, we have ex-
tended the Multicard data model with typed nodes and links
(each type corresponds to an O2 class definition).

Prior to the implementation of a complete query language
based on complex path expressions (such as Gram), we
decided to use O2SQL for querying Multicard hypertexts
and to concentrate our attention to the implementation of a
schema browser on top of O2. O2SQL is a high-level query
language for querying O2 databases. It can be used as an ad-
hoc query language, but also be embedded into code written

MultiTalk
Hypermedia

Toolkit

Hypermedia Application

Schema Browser

O2Graph O2SQL Hypermedia Basic Classes

O2C++

O2Engine

O2Multicard

Figure 3: Multicard / O �

in the O2C programming language. An important generic
feature of the O2SQL language is the possibility to construct
new values from existing objects and values. In our con-
text, this feature is especially useful for creating paths (vir-
tual links) between nodes in the form of lists of link objects.

Hypermedia applications are built by using the Multicard hy-
permedia toolkit, the Multicard script language Mul-tiTalk
and the schema browser that is composed of three win-
dows containing (1) a visual representation of the hypertext
schema graph, (2) the active document (node) and (3) the
generated O2SQL query that can be used ad-hoc or stored in
a MultiTalk script, attached to a button in the active docu-
ment.

Example 5.1 An example of an ad-hoc definition of a re-
verse link by using the schema browser is shown in Figure
4 (Example 3.2). In order to display all cinemas featuring a
movie directed by Alfred Hitchcock, the user has activated
the document Alfred Hitchcock and selected the link types
show and director in the schema graph representation
of the movie guide. This graphical selection has then been
automatically translated into an O2SQL query shown in the
bottom window of the schema browser:

select show.source
from show in Cinema show Movie,

director in Movie director Artist

5



Figure 4: All cinemas showing a movie of Alfred Hitchcock

where show.destination = director.source
and director.destination = Browser.ActiveNode

The from clause of the query defines two data variables
show and director that range respectively over all links of
type show and director (defined by the O2 classes
CinemashowMovie and MoviedirectorArtist).
The where clause selects those couples of links (show,
director) that describe paths satisfying the regular ex-
pression Cinema show Movie director Artist.
The destination documents of these paths have to be the ac-
tive document Alfred Hitchcock. Finally, the answer to this
query (show.source), i.e. the document St. André des
Arts, is displayed on to the screen.

Example 5.2 The definition of a virtual (reverse) link by us-
ing the schema browser is illustrated in Figure 5. In order
to define a virtual link from the document Twin Peaks to the
cinemas featuring this movie, the author has created a button
Cinemas and attached to it a Multicard script (displayed by
the Multicard script editor) that includes the O2SQL query
generated by the selection of the link type show in the hyper-
text schema.

Such an intensional browsing [6] reconciles hypertext brows-
ing with querying in several ways:

� The user is not obliged to learn any formal query lan-
guage, but keeps the same interaction style, both for fol-
lowing hypertext links and virtual links.

� The conceptual schema of the application is displayed
on the screen and can be manipulated under a uniform
interface.

� In order to define virtual links, the queries generated
by the schema browser can automatically be attached to
buttons inside the hyperdocument.

6 CONCLUSIONS

The general problem of creating large-scale hypertext appli-
cations while minimizing complexity of use remains one of
the key issues for the next generation of hypertext systems. It
has already been shown that the integration of hypertext sys-
tems and existing technologies for handling large volumes
of data (database systems) and documents (information re-
trieval) results in more powerful information systems provid-
ing new facilities for representing and exploring information.

An important step in this direction was the description of
explicit semantic properties by hypertext schemas [16, 22].
This extension not only allows the creation of coherent hy-
perdocuments in a systematic way, but also the design of new
query languages and user interfaces based on graphical rep-
resentations of hypertext schemas [4, 20].

This work shows how query languages for typed hypertexts
can be used for implementing high-level query-based hyper-
text browsing. The answer of some query Q can be used as a
virtual link allowing multiple-steps navigation. This mech-
anism introduces flexibility and allows control of the hyper-
text size. Similar to views in relational databases, it avoids
the creation of actual edges between nodes. By restricting
user navigation space to paths of a query Q, browsing in
complex graphs becomes easier, especially for casual users.
The well-known user history mechanism not only allows to

6



Figure 5: Defining a reverse link from a movie to its cinemas

return to previous documents step by step, but also to create
virtual links to already visited documents.

Finally, zooming was introduced as a useful information
structuring mechanism. In particular, it allows a better re-
utilization of existing hypertexts and the modeling of hier-
archical relationships. This seems to be especially useful
for querying distributed hypertexts like the World Wide Web
(WWW) [27] where users organize and access information
without concern of its distribution (hypertext links connect
documents on different hosts connected by the Internet net-
work). Similar to index servers like WAIS [21], we might
suppose the creation of schema servers that might be ac-
cessed for querying locally stored hypertexts. By using the
presented zooming mechanism users might, then, not only
query the contents of the documents managed by a server,
but also navigate by using embedded queries.

Most of these mechanisms have been implemented on top of
the hypermedia system Multicard/O2. An important feature
of this prototype is a schema browser for ad-hoc querying
during hypertext navigation. We plan to extend the graphical
query interface and to define all operations of the Gram alge-
bra (join, concatenation, projection, selection) by a graphical
query language.

7 ACKNOWLEDGMENTS

We wish to thank V. Christophides and A.M. Vercoustre,
who helped improving the quality of this paper. Thanks are
also due to the Bull company, and in particular to M. Ahedo,
L. Sauter, P. Dagand and F. Thorel.

References

[1] S. Abiteboul and R. Hull. IFO: A formal seman-
tic database model. ACM Trans. on Database Systems,
12(4):525-565, December 1987.

[2] B. Amann. Interrogation d’Hypertextes. PhD thesis,
Conservatoire National des Arts et Métiers, Paris, France,
February 1994.

[3] B. Amann, V. Christophides, and M. Scholl. Hy-
perPATH/O2: Integrating hypermedia systems with object-
oriented database systems. In Proc. of the 4th Int. Conf. on
Data and Expert Systems Applications (DEXA93), Prague,
Czech Republic, September 1993.

[4] B. Amann and M. Scholl. Gram: A graph data model and
query language. In Proc. of the 4th ACM Conf. on Hypertext
and Hypermedia (ECHT’92), Milano, Italy, December 1992.

[5] F. Bancilhon, S. Cluet, and C. Delobel. A query language
for the O2 object-oriented database system. In Proc. of the
2nd Int. Workshop on Database Programming Languages
(DBPL’89), 1989.

[6] C. Batini, T. Catarci, M.F. Costabile, and S. Levialdi.
Visual strategies for querying databases. In IEEE Workshop
on Visual Languages, pages 183-189, 1991.

[7] P.P. Chen. The entity-relationship model: Toward a uni-
fied view of data. ACM Trans. on Database Systems, 1(1):9-
36, 1976.

[8] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.
From structured documents to novel query facilities. In Proc.
of the ACM SIGMOD Conf. on Management of Data, Min-
neapolis, Minnesota, May 1994.

[9] M.P. Consens and A.O. Mendelzon. GraphLog: a vi-
sual fromalism for real life recursion. In Proc. of the ACM
SIGACT-SIGMOD Symp. on Principles of Database Sys-

7



tems, pages 404-416, Nashville, Tennessee, 1990.

[10] J.H. Coombs. Hypertext, full text and automatic link-
ing. (SIGIR 90) Research and Development in Information
Retrieval, pages 83-98, 1990.

[11] W.B. Croft and H. Turtle. A retrieval model for incor-
porating hypertext links. In Proc. of Hypertext’89, pages
213-224, November 1989.

[12] S.J. DeRose. Expanding the notion of links. In Proc. of
Hypertext ’89, pages 249-257, November 1989.

[13] O. Deux. The Story of O2. IEEE Trans. on Knowledge
and Data Engineering, 2(1), March 1989.

[14] M.E. Frisse. Searching for information in a hyper-
text medical handbook. Communications of the ACM,
31(7):880-886, July 1988.

[15] P.K. Garg. Abstraction mechanisms in hypertext. Com-
munications of the ACM, 31(7):862-870, July 1988.

[16] F. Garzotto, P. Paolini, and D. Schwabe. HDM - a
model-based approach to hypertext application design. ACM
Trans. on Information Systems, 11(1):1-26, January 1993.

[17] M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-
oriented object model for database end-user interfaces. In
Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 24-33, May 1990.

[18] F.G. Halasz and M. Schwartz. The Dexter Hypertext
Reference Model. In Proc. Hypertext Standardization Work-
shop, NIST, pages 95-133, January 1990.

[19] M. Kifer, W. Kim, and Y. Sagiv. Querying object-
oriented databases. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 393-402, 1992.

[20] D. Lucarella, S. Parisotto, and A. Zanzi. MORE: Mul-
timedia object retrieval environment. In Proc. of Hyper-
text’93, pages 39-50, Seattle, Washington, November 1993.

[21] P. Marshall. WAIS: The Wide Area Information Server
or Anonymous What??? available by anonymous ftp:

quake.think.com/pub/wais/doc/UWO-wais-paper.ps, June
1992.

[22] J. Nanard and M. Nanard. Using structured types to in-
corporate knowledge in hypertext. In Proc. of Hypertext’91,
pages 329-343, December 1991.

[23] J. Nanard and M. Nanard. Should anchors be typed too ?
In Proc. of Hypertext ’93, pages 51-62, Seattle, Washington,
November 1993.

[24] G. Richard and A. Rizk. Quelques idées pour une
modélisation des systèmes hypertextes. T.S.I. (Technique et
Science Informatiques), 9(6):505-514, June 1990.

[25] A. Rizk and L. Sauter. Multicard: An open hypermedia
system. In Proc. of the 4th ACM Conf. on Hypertext and
Hypermedia (ECHT’92), December 1992.

[26] P.D. Stotts and R. Furuta. Petri-net-based hypertext:
Document structure with browsing semantics. ACM Trans.
on Information Systems, 7(1):3-29, January 1989.

[27] Berners-Lee T, R. Cailliau, J.F. Groff, and B. Poller-
mann. World-Wide Web: The information universe. Elec-
tronic Networking: Research, Applications and Policy, 1(2),
1992.

[28] F.W. Tompa. A data model for flexible hypertext
database systems. ACM Trans. on Information Systems,
7(1):85-100, July 1989.

[29] J.D. Ullman. Principles of Database and Knowledge-
base Systems, volume 1. Computer Science Press, 1988.

[30] P.T. Zellweger. Scripted documents: A hypermedia path
mechanism. In Proc. of Hypertext ’89, November 1989.

8


