OBJECT ORIENTED TIMED MESSAGING SERVICE

FOR INDUSTRIAL ETHERNET: A FIELDBUS LIKE

ARCHITECTURE FOR POWER PLANT CONTROL
AND FACTORY AUTOMATION

Erwan Becquet, becquet@cnam.fr **
Mazen Abdallah, abdallah@cnam.fr **
Eric Gressier-Soudan, gressier@cnam.fr**
Francois Horn, francois.horn@kelua.com ***
Laurent Bacon, laurent.bacon@edf.fr *

*EDF DRD/EP/CCC/GAS,6 Quai Watier, 78401 Chatou Cedex
France
** Laboratoire CEDRIC-CNAM, 292 rue St Martin, 75141 Paris
Cedex 03 France
*** Kelua Software, 9 chemin de la Brocardiére, 69570 Dardilly
France

Abstract:

This paper describes an object oriented timed industrial messaging service suited
to industrial Ethernet. We use an object oriented middleware technology able to run
over Ethernet and TCP /IP. This framework addresses fieldbus architectures for power
plant control and factory automation. The services provided by our prototype for data
access are similar to the one offered by TASE.2. TASE.2 is a companion standard of
the ISO Manufacturing Message Specification, dedicated to the utility domain. More
precisely our work maps a subset of the TASE.2 specification to an ORB environment.
We are interested to TASE.2 block 1 (periodic data exchange), block 2 (event based
data exchange), and block 5 (device control). Our services are specified with CORBA
IDL. Our result has a general scope and can be used for any factory network built on

top of industrial Ethernet.

Keywords: TASE.2, real-time, object oriented middleware, fieldbus, industrial
Ethernet, process control, factory automation

1. INTRODUCTION

The present economical and technical environ-
ment for power plant control and factory automa-
tion applications is rapidly moving: users ask for
new services (access to monitoring information
via the web, via Personal Digital Assistants, via
mobile devices), as well as the enterprise (tools
for e-business, for rapid prototyping). In this
context, integration and adaptation capabilities
are major factors of success. Industrial Ethernet
(TCP/IP over switched full-duplex Ethernet net-

works) (GGH, 2001) is an emerging technology
seen as an open and unifying solution for this
problem. This paper goes a step further and pro-
poses a general object oriented industrial messag-
ing service for power plant control and factory
automation that can be efficiently implemented on
top of industrial Ethernet. This framework based
on the TASE.2 TEC specification (Telecontrol Ap-
plication Service Element version 2) (UCS, 1996b)
(UCS, 19964a) also known as Inter-Control Center
Communications Protocol (ICCP) introduces a
generic industrial messaging service that can be

used at different levels in industrial application
architectures. The preliminary work presented in
this paper only considers the most important
functions dealing respectively with periodic data
exchange, event based data exchange and device
control. A first implementation of this limited
framework is in progress using an open flexible
ORB (Object Request Broker) called Jonathan
(Dumant et al., 1998). This ORB written in Java
is able to support various personalities (CORBA
2.0, RMI, RMI-IIOP) and to run over diverse
communication protocols including all TCP/IP
based protocols and thus industrial Ethernet. At
the same time, we also develop a C++ version
on top of MICO ORB, which is a free imple-
mentation of CORBA 2.3.As far as we know, the
one equivalent work we know is (Oquendo and
Attaoui, 2001). Their solution is built using the
FIP fieldbus protocol. They also uses Jonathan
for the implementation of their protocol.

This paper is organized as follows. Section 2
rapidly presents the industrial context of this work
i.e. the EDF’s power plant control applications.
Section 3 motivates our proposal. Section 4 and
5 give an overview of the two foundations of
the described framework: the TASE.2 standard
and the RM-ODP/ReTINA model used to map
the TASE.2 standard onto the object oriented
paradigms of distributed ORBs (Object Request
Brokers). Section 6 concludes and presents future
works.

2. CONTEXT: POWER PRODUCTION
ARCHITECTURE

The overall context of this study is the control of
the thermic power plants owned by EDF (Elec-
tricité de France), the french main energy pro-
ducer.

2.1 Thermic power Process

The classical thermic power plant technology is
based on a water/steam cycle as depicted in fig-
ure 1. Water, when presented to a hot source, is
transformed to a steam which is injected in a tur-
bine coupled with an alternator. This last element
produces the electric power. Since the used hot
steam has to be freshened into water, thus a new
cycle can be started again. This cycle involves a
large number of different physical elements in the
plant: pumps (especially water pumps for water
transportation in the circuit), tanks (water, fuel),
valves, transformers, circuit breakers, etc. The
process is too complex to be fully automated and
plants are thus conducted manually. The conduct-
ing teams however are assisted by systems offering

an increasing number of control command capa-
bilities: functions for acquiring data about plant
elements (such as valves states), for presenting
these data in a graphical and friendly way, for
transmitting commands directly to raw devices,
for doing the auto-regulation of subsystems, etc..
These actions need reliability, which is generally
achieved by redundant systems.

Fig. 1. Thermal Power Production Process
(Thermo-electricity)

2.2 Plant Distributed Architecture

A thermic power plant control application is nat-
urally distributed and must run in a heteroge-
neous environment. Control devices are physi-
cally distributed along the process and associ-
ated control functions are mapped onto com-
puters with replication schemes for fault toler-
ance purpose. Operating systems and hardware
are fully heterogeneous. The architecture of the
corresponding power plant control application is
layered following the classical CIM (Computer In-
tegrated Manufacturing) (Valenzano et al., 1992)
model. Level 0 deals with captors and actuators.
Level 1 (L1) supports acquisition and control.
Level 2 (L2) performs supervision functions (op-
erator interface, process regulation, alarms and
states recording, printing, etc.). Level 3 (L3) deals
with plant management (production and stock
management). Communication relies on Ethernet
LAN (Local Area Network) everywhere except for
Level 0. Communication with the outside world
involves the exchange of production data with
an energy transporter or a production planning
center. Usually, these exchanges use the TASE.2
standard. Solutions are based on dedicated archi-
tectures and highly depend on specific message
oriented services built on top of the OSI protocol
stack or proprietary communication systems like
fieldbus (MODBUS for example).

3. PROOF OF CONCEPTS

The usual architecture of power plant control and
factory automation applications is layered follow-
ing the CIM architecture. Many usual implemen-
tations are using different dedicated technologies

and models for each level, which raises very diffi-
cult integration and adaptation problems. In this
context, Industrial Ethernet (GGH, 2001) is an
open technology addressing the low levels of the
CIM architecture. Today, most fieldbus system
providers are porting their protocols over TCP /TP
in the context of industrial Ethernet (GGH, 2001).
However we believe that this technology oriented
solution is not general enough to cope with the
wide integration and adaptation problems raised
by present and future power plant control and
factory automation applications. We thus suggest
to use a generic timed industrial messaging service
built on top of an open flexible ORB (Object
Request Broker) middleware.

The ORB approach, widely used in the domain
of non industrial distributed applications, con-
sists in providing the application designers and
programmers with a distributed object oriented
programming model, which offers a unified pro-
gramming framework that hide the heterogeneity
of the underlying technologies on one hand and on
the other hand, flexible middlewares that realize
the adaptation layer to the various protocols and
technological standards.

Such a proposal has been suggested by several
observations:

People from the manufacturing and process con-
trol community (and in particular people from the
fieldbus systems community) have been familiar
with objects for a long time before the advent of
object oriented technology. For example, they use
the abstraction of VMD (Virtual Manufacturing
Device) from ISO MMS (Manufacturing Message
Specification) (Valenzano et al., 1992) which is a
kind of raw object. Most of these objects cooper-
ate in a distributed way.

Many fieldbus capabilities are similar to the ones
provided by a generic timed industrial messaging
service that can be identified and isolated in the
TASE.2 standards (UCS, 1996b)(UCS, 1996a).
Additional communi-cation services supported by
fieldbuses (peer-to-many communication) can be
implemented with a multicast protocol without
changing the semantic of TASE.2 exchanges.

TASE.2 is a standard, functionally suited to power
plant control and factory automation, but com-
monly recognized as flawed by an old message
oriented architecture with too many layers. Pre-
vious studies concerning MMS and TASE.2 have
presented strong evidences that these protocols
could be easily and efficiently implemented on
top of a lightweight CORBA based middleware
(Guyonnet et al., 1997),(Gressier-Soudan et al.,
1999),(Seinturier et al., 1999), (Gressier-Soudan,
2000),(Gressier-Soudan and Becquet, 2001).

4. TASE.2 STANDARD: KEY POINTS
4.1 TASE.2 Overview

The TASE.2 protocol is a companion standard
of the popular MMS designed to specify the ex-
change of data between utility control centers
and production units (UCS, 1996b)(UCS, 1996a)
(KEMA-ECC, 1996). Although TASE.2 builds
many abstractions on top of MMS ones, it can be
seen as a standalone standard defining a general-
purpose ”"timed” application protocol suited to
factory automation in many domains. This is
especially true in the current context where in-
dustrial Ethernet (Full Duplex Switched Ethernet
plus TCP/IP) brings new opportunities for field-
bus systems (GGH, 2001).

4.2 Interaction model

TASE.2 is explicitly described as Client/Server
based. It is a little bit more complex than usual.
Two types of interactions are defined: ”opera-
tions” are initiated by clients and correspond to a
classical reliable method invocation (they usually
return a result), and, ”actions” are initiated by
servers and correspond to an unreliable notifi-
cation (they don’t return a result). Four data
transfer semantics are provided: “once” (classical
client/server request), "periodic” (periodic trans-
fer), "exception” (state change based transfer),
“event” (event condition based transfer). An im-
portant characteristic of the TASE.2 model is
that data exchanges between a client and a server
are only possible through an ”association” that
must be explicitly created during an initialization
phase. This association is a kind of ” communica-
tion object” used to encapsulate security and tem-
poral Quality of Service parameters. It is coupled
with a Bilateral Agreement that formally defines
the set of data that can be exchanged through
an association established between a client and a
server.

4.3 Conformance Blocks

TASE.2 functions are separated in nine confor-
mance blocks. Block 1 defines a minimal set of
services related to data management and periodic
data exchange. Block 2 extends block 1, it pro-
vides exception semantics often referred as Re-
port By Exception semantics. Block 3 considers
blocked transfers, a performance issue. Block 4
is dedicated to text based information exchanges.
Block 5 deals with devices control and block 6
with program control. Block 7 handles events and
event conditions. Block 8 deals with accounting

and block 9 with time abstractions and condition
monitoring.

In the following text only describes key features
of blocks 1, 2, and 5.

4.4 Variable Management

TASE.2 defines "Data Value” objects and "Data
Set” objects (supported by MMS named variables
or list of named variables) managed by the server.
Data Value management and Data Set manage-
ment functions (KEMA-ECC, 1996) deal with the
look up of existing Data Values and Data Sets,
their creation, their destruction, etc. Data values
reference in practice specific information such as
”Indication Points” (which can contain status in-
formation, analog values, attributes, etc.).

Data Set Transfer Sets describe the way Transfer
Reports must be pushed toward the client and
contain for each case, parameters defining under
which conditions data values related to data sets
are transmitted.). The meaning of the relevant
parameters is given in Table 1. Figure 2 gives an
overview of variable management in TASE.2.

TASE.2CLIENT TASE.2 SERVER

vce

TRANSFER SET (Enabled = DATA SET

(type MMIS Objectiame)
/pe GMTBaseds)

BufferTime.
IntegrityCheck

(
DSConditionsRequested

Transfer Report
Tssued from Data

uest
OtherExtemalEvent (ype bi)

\Data (ype Boolean (TRUE(=0) FALSE(O))
(ype Boolean (TRUE(!=0) FALSE(D))
RBE (ype Boolean (TRUE('=0) FALSE(O))
Satus (ype Boolean (ENABLED(1) DISABLED(0)))
EvenCodeRequested (iype Integer1)

‘Condtion Monitoring for Transfer Reports (end of Period,
value change ... depend on DSConditons seting)

Bilateral Table

Object Change
Operator Reques

DOMAIN

SetTransferset Spec:

Fig. 2. Overview of Variable Management

4.5 Device Management in TASE.2

The Device object is an abstraction for a physical
raw device, which can be controlled by a TASE.2
client. The technical implementation of how the
real device is controlled and managed is outside
the scope of the TASE.2 standard. Two types
of devices are defined in the block 5: devices
subject to inter-locking (they require a serialized
access) and devices which can be freely accessed
concurrently.

5. TASE.2 OBJECT ORIENTED MODEL

RM-ODP is an object framework aimed to pro-
vide a common unified foundation to the vari-
ous distributed object technologies. The different
standards (such as CORBA) just derive from the
RM-ODP model by a specialization of its general

Attributes Meaning
EventCodeRequested Application event
specification
Interval O Time interval

between reports
Start Time for peri-
odic reporting
RBE, Report false: periodic
By Exception [reporting, true:
event base reporting
Integrity Check Time value defining
O interval for integrity
check, if Integrity
Time Out condition
is used.

Start Time [

TLE, Time Deadline for report-

Limit for ing

Execution [
DS Buffer Time [Time interval for
Tran- buffering the Object
mis- Change condition
sion before reporting.

Pars | Critical O The client needs to

ack reports

DS Interval | Indicates whether or
Con- Time not the server shall
dition QOut O send a report when
Re- the Interval time ar-
quested rives

(status

allowing

report-

ing)

Operator| Indicates if the
Request | server shall send
a report when an
operator requests it.

Object Indicates if the
Change server shall send
0 a report when an
object in a Data Set
changes
Integrity | Indicates if the
Time server shall send a
Out O report of the entire
Data Set when
Integrity Check
expires
Other Indicates if the
Ex- server shall send
ternal a report when an
Event appli-cation event
condition becomes
true

Table 1. Data Set Transfer Set Condi-
tion Monitoring Attributes

Oblock 1, RBE set to false, Oblock 2, RBE set to true

concepts. ReTINA is such a specialization for sys-
tems requiring Quality of Service guarantees (such
as timeliness properties, security, etc.)

5.1 RM-ODP/ReTINA model
The ReTINA architecture (Blair and Stefani,
1997) is based on the following general concepts:

e An object is an entity containing (encap-
sulating) information and offering services;

objects may be of arbitrary granularity (from
one byte to a telephone network.. .).

e An object can only interact at interfaces:
informally, the interfaces of an object are
its access points, which means that all the
interactions of an object with its environ-
ment must occur at one (and only one) of
its interfaces. Interfaces are manipulated by
reference.

e Two objects — say O; and O — may in-
teract in two different ways: either object
O directly invokes an operation on Oy (if
it belongs to the same address space), or it
invokes the same operation on a binding ob-
Jject whose role is to transmit the invocation
to Ozand to return a result, if necessary.

The prime characteristic of the ReTINA architec-
ture is to provide an explicit abstraction for the
communication mechanisms. Binding objects are
fundamental in many application environments
for at least 2 reasons:

(1) They offer a natural and adequate abstrac-
tion for the communication semantics and
properties, such as multicast, timeliness, se-
curity properties.

(2) They encapsulate the mechanisms used both
by the networking and local execution infras-
tructures to engineer the communication: for
example, the encoding/decoding algorithms,
the buffer and thread management policies,
the scheduling policies, etc. Binding objects
are usually composite objects, distributed
over several address spaces.

This makes possible to plug arbitrary forms of
binding policies between objects beyond the im-
plicit binding model for clientserver interactions
assumed by standard architectures like CORBA
or Java Remote Method Invocation (RMI).

The second characteristic of the ReTINA archi-
tecture is that interface naming does not depend
on the ability to actually access it. This property
makes the architecture really flexible since it al-
lows:

e the transmission of an interface reference via
a given binding even if the reference cannot
participate in bindings of the same type,

e the participation of a given interface in sev-
eral bindings of different types,

e the designation of an interface even if it is
not accessible (mobility, failure. ..)

The ReTINA model thus defines a minimal kernel
whose role is to provide a generic environment
that can be used by any binding factory to create
and to manage specific bindings. With this archi-
tecture, it is possible to introduce new binding
factories written by application developers and
possibly discovered and installed at runtime.

It also provides an explicit abstraction for inter-
face references that may be accessed and modified
by binding factories. Different binding factories
may thus coexist in the same address space. Each
of them brings in the functions needed for specific
binding types, and safely manipulates the same
interface references. Binding factories essentially
provide two kinds of methods:

(1) export methods, that let interfaces be regis-
tered by the target binding factory, so that
it may create bindings to access them,

(2) bind methods, that require the establishment
of a binding between a set of exported inter-
faces.

In this approach, a CORBA or a RMI compliant
ORB can be built as a particular “personality”
(i.e. a set of APIs and language mappings), thus
decoupling the specifics of the CORBA or RMI
API from the personalityindependent kernel in-
terface.

In our work, we use the CORBA personality of
Jonathan.

5.2 TASE.2 Object binding Model

As we already mentioned, interactions between
TASE.2 clients and servers (VCC) are quite com-
plex: all data exchanges necessarily use an explicit
association created before use in response to a
client request. Data exchanges either correspond
to operations (originating from the client) or ac-
tions (originating from the VCC). As a conse-
quence, all TASE.2 entities are both client and
server. The so-called client object declares an ” As-
sociation Management interface” (used to request
the creation or the destruction of an association).

Action Interface Operation Interface

l Association Ctrl Interface

Association Mgmt Interface

Fig. 3. The TASE.2 binding object

The creation of an association results in the cre-
ation of three interfaces:

(1) an Operation interface on server side,

(2) an Association Control interface on the
server side,

(3) an Action interface on the client side,

(4) and an Association Management inter-
face on the server side.

typedef string DataNameType;

typedef sequence<DataNameType>
DataNameSeqType;

exception UnknownDataNameType {3};

interface DataValueManagement {
DataType getDataValue(in DataNameType name)
raises (UnknownDataNameType) ;
void setDataValue(in DataNameType name,
in DataType val)
raises (UnknownDataNameType) ;
DataNameSeqType getDataValueNames();
DataType getValueType(in DataNameType name)
raises (UnknownDataNameType) ;

};

Fig. 4. Data Value Objects Interface

6. TASE.2-BASED TIMED OBJECT
ORIENTED MESSAGING SERVICES OVER
AN ORB

6.1 IDL specification

A part of the distributed object oriented tech-
nology relies on mapping rules between remote
objects method invocations onto messages ex-
changed on the network (and converse). These
mapping rules are embodied in an IDL (Interface
Definition Language), which is technology neutral
in order to ensure interoperability between objects
running on different hardwares and operating sys-
tems and developed in different programming lan-
guages.

We therefore suggest to specify a generic timed
messaging service in the CORBA IDL (which
is the most popular one). The result is then a
technology neutral specification of a part of the
TASE.2 standard via a set of interfaces and data

types.

Figure 4 presents a short piece of the IDL spec-
ification. It deals with the Data Value object
method interface.

6.2 The Jonathan flexible ORB

Jonathan (Dumant et al., 1998) is a Java imple-
mentation of the ReTINA specifications: it offers
a communication framework allowing the modular
construction of binding factories (suited for RPC
or stream styles of interactions), and the reuse
of protocol components between binding imple-
mentations. In this framework, a binding object is
composed of protocol sessions (“Protocol” should
be understood here in a loose way: it effectively
represents a protocol like TCP or GIOP, but it
may also represent a service, like a compression
service) and inner binding objects.

To bind the client and server, the outer binding
factory creates a stub and a skeleton, and asks

the GIOP protocol to bind them. In turn, the
GIOP protocol creates sessions on the client and
server sides, and asks the TCP/IP protocol to
bind them. Protocols appear as specific binding
factories, possibly using lower level protocols. Pro-
tocol sessions implement the protocol semantics,
receiving messages and transforming them before
sending them.

6.3 Object Oriented Timed Industrial Messaging
Services

With previous prototyping we learnt how to de-
sign an object oriented industrial messaging ser-
vices over CORBA (Gressier-Soudan et al., 1999)
(Gressier-Soudan, 2000). The same design pat-
terns can be used. The TASE2 client and server
contain a CORBA server object each. Clients and
servers are multi-threaded if possible.

(Gressier-Soudan and Becquet, 2001) discussed
different ways to implement a TASE.2 service
on top of CORBA. We decided to eliminate the
use of our Java based object oriented service
(Gressier-Soudan et al., 1999). Our timed object
oriented messaging services are built directly over
the middleware.

The CORBA server object on the TASE.2 server
side supports the VCC interface described be-
fore, it implements operations. The corresponding
methods are classical invocation methods, thus
they return results. The other TASE.2 objects are
supported by the VCC as objects implemented
with the programming language, Java in our case.
The VCC interface inherits from all basic ob-
jects interface. Local communications between the
VCC and the physical resources manager use a
specific adapter. They are implemented as effi-
ciently as possible. For experimentation purpose
the ORB supports local interactions, it is enough
convenient. An alternate solution could use Java
Native Interface.

The CORBA server object on the Client side
supports the Transfer Report Services. The corre-
sponding methods are classical invocation meth-
ods without result parameters.

Figure 5, hereafter gives an overview of the design
of our prototype.

The previous time based features could have led
us to say that the service we are providing is real-
time. We are able to address such environments
but we prefer to introduce the term ”timed”. It
is more realistic with the technology we address.
The main reasons why we don’t argue that we are
doing native real-time are the following;:

The use of Ethernet, either a switched full-duplex
Ethernet, avoids being real-time! Ethernet can

A

TASE2 Cliat <. JASE:2Services (TASE2 Server Implementation Real Resource
ona VCC | |(computer, software
Datavalug puter,
melhotbi |nyocal|on Domain component, device ..|)
asis)
(Datasefransferse) ’@

|
CORBA Object
A

CORBA Object | |Resource|
CRIient TASE.2 Client CEEpi TASE.2 Server| Adapter | g0 er
” Role
A : ¢
2 O ; ,
[-skelemn -stub]<—1 —> TASE2 Server—] [
L) = -
o (rasez clent < Ao | 2

Actions from IDL
Client Host specification ‘
I

Interactions across an indistrial Ethernet

Server Host ‘

(Switched Ethernet TCP/IP) (ORB is convenient)

- > for TASE.2 Interactions for TASE.2 actions

Fig. 5. Object oriented TASE.2 design over an
ORB

be very fast (10Gb/s max throughput currently)
but fastness is not punctuality. Switching allows
bandwidth guaranties for links but determinism
depends on switch behavior (cut through vs store
and forward or mixed). 802.1Q/p helps, it sup-
ports basic priorities. Ethernet becomes better
but it will not be as deterministic as ATM or
FDDI.

IP is a datagram oriented protocol, it is a best
effort approach, nothing to do with time deter-
minism. Integrated Services based on the Re-
source reSerVation Protocol (RSVP)(Gaines and
Festa, 1998) or Differenciated Services based on
priority and efficient queuing in routers (Blake
and al., 1998) should help to achieve real-time
network services. The future of real-time networks
depends on QoS (Quality of Service) or CoS (Clas-
sification of Services) based architectures.

TCP has some deep mechanisms that works
against real-time requirements. Generally, ac-
knowledgements and flow control (sliding window)
don’t help. Also, congestion avoidance with slow
start introduces unpredictable jitter. The TCP
Vegas proposal (VEGAS, 2001) should be better
but not a sufficient choice to address communica-
tions with real-time constraints.

The ORB we use is implemented in Java. The
JVM (Java Virtual Machine) does not necessarily
run on top of a real-time kernel. We could use
a real-time JVM like PERC (Nilsen, 1996) that
we experimented on top of the real-time kernel
pSOS+ from Wind River (formerly ISI). In our
context, PERC/pSOS+ showed a predictable be-
haviour (Réveilleau, 2001). But we want open
and general implementations. What we need is an
efficient time management facility in the kernel
and the JVM that we could use.

To address the problem of Java ORB, we develop
in parallel a C++ solution, with same IDL files
and same classes hierarchy. We will be able to
compare the two solutions and to perform interop-
erability tests between the two implementations,
the C++ one and the Java one.

7. CONCLUSION AND FUTURE WORKS

The TASE.2 services and protocol, conformance
blocks 1 2 and 5, defines interesting capabilities
to provide time constrained exchanges of process
variables. This lead this TASE.2 framework to a
similar level of functionalities as the one offered
by fielbus systems. The difference is: fieldbus sys-
tems support one-to-many communications whilst
TASE.2 offer peer-to-peer relationships. But the
TASE.2 interaction model can be extended at the
price of a reliable multicast protocol, Lightweight
Reliable Multicast Protocol could be a solution,
a Java code is freely available on the web (Liao,
1998).

Due to the nature of CORBA, our solution can
be built over industrial Ethernet. Our mapping of
TASE.2 functions over a CORBA ORB brings a
general powerful timed object oriented messaging
service able to address power control and factory
automation applications. This solution answers
low level communication requirements. Jonathan
is a flexible ORB that implements a RMI-ITOP
personality, so our proposal could be implemented
in Java RMI based environments. We developp at
the same time a C++-based solution.

Our proposal can be extended with recent OMG’s
real-time related extensions to the CORBA plat-
form. Our work fits in the service interface re-
quirements described in the smart transducers
RFP (OMG, 2000b). Also, our prototype can
be enhanced with real-time features without any
changes, due to the Jonathan ORB. Jonathan
can address real-time environments and comply
to Minimum CORBA (for embedded systems),
CORBA Messaging (for asynchronous method
invocations) and real-time CORBA (for han-
dling end-to-end priorities) (OMG, 2000a). We
already know that Jonathan can be extended
with real-time communication protocols like ATM
(Seinturier, 1999). To solve distributed real-time
constraints the distributed scheduling framework
(OMG, 2001) could be added to Jonathan through
RAPIDSched (Tri-Pacific, 2001b). The advan-
tage of this approach is that distributed schedul-
ing analysis tools like RAPIDRMA (Tri-Pacific,
2001a) exist. But we know that the integration
of real-time properties of different platform com-
ponents such as operating system, protocols and
ORB can be a hard task (Bacon et al., 2000) (Lizzi
et al., 2000).

8. REFERENCES

Bacon, Laurent, Erwan Becquet, Eric Gressier-
Soudan, Christophe Lizzi, Christophe Logé
and Laurent Réveilleau (2000). Provision-
ing qos in real-time distributed object ar-
chitectures for power plant control applica-

tions. In: 2°d IEEE International Sympo-
sium on Distributed Objects and Applications
(DOA’2000). IEEE. Antwerp, Belgium.

Blair, G. and J-B. Stefani (1997). Open Dis-
tributed and Multimedia. Addison-Wesley.

Blake, S. and al. (1998). An architecture for dif-
ferentiated services. Technical report. IETF
DiffServ Working Group. RFC 2475.

Dumant, B., F. Horn, F. Dang Tran and J-B. Ste-
fani (1998). Jonathan : an open distributed
processing environment in java. In: Middle-
ware’98 : IFIP International Conference on
Distributed Systems Platforms and Open Dis-
tributed Processing (K. Raymond N. Davies
and J. Seitz, Eds.). The Lake District, United
Kingdom.

Gaines, G. and M. Festa (1998). A survey of
rsvp/qos implementations. Technical report.
RSVP Working Group. update 2.

GGH (2001). The online industrial ethernet book.
http://ethernet.industrial-networking.com/.
URL.

Gressier-Soudan, E., M. Epivent, A. Laurent,
R. Boissier, D. Razafindramary and M. Rad-
dadi (1999). Component oriented control ar-
chitecture, the coca project. Special Issue
on Manufacturing, Microprocessors and Mi-
crosystems Journal 23(2), 95-102. Elsevier
Science.

Gressier-Soudan, Eric (2000). Prototyping a
corba based mms -industrial communi-
cations with corba. In: OMG Techni-
cal Meeting. OMG. Burlingame, California
USA. ftp://ftp.omg.org/pub/doc/mfg/00-09-
16.pdf.

Gressier-Soudan, Eric and Erwan Becquet (2001).
Real-time corba-mms for embedded systems.
In: Workshop OMG. OMG. San Diego, CA,
USA.

Guyonnet, G., E. Gressier-Soudan and F. Weis
(1997). Cool-mms: a corba approach to iso-
mms. In: ECOOP’97 Workshop : CORBA
: Implementation, Use and FEvaluation. Jy-
vaskyla, Finland.

KEMA-ECC (1996). ICCP User Guide. final draft
ed.. Mineapolis, USA.

Liao, T. (1998). Light-weight reliable multicast
protocol specifi-
cation. http://webcanal.inria.fr/lrmp/draft-
liao-lrmp-00.txt. INRIA.

Lizzi, C., L. Bacon, E. Becquet and E. Gressier-
Soudan (2000). Prototyping qos based archi-
tecture for power plant control applications.
In: IEEE Workshop on Factory Communi-
cation Systems (WF(CS’2000). IEEE. Porto,
Portugal.

Nilsen, K. (1996). Issues in the design and imple-
mentation of real-time java. Technical report.
Newmonics, Inc.

OMG (2000¢). The common object request bro-
ker : Architecture and specification. revision
2.4. Technical report. Object Management
Group.

OMG (2000b). Smart tranducers interface. Re-
quest for proposal. Object Management
Group. orbos/2000-12-13.

OMG (2001). Dynamic scheduling real-time corba
2.0. Joined final submission. Object Manage-
ment Group. orbos/2001-04-01.

Oquendo, L. and A. Attaoui (2001). Deterministic
orb (dorb) for distributed real-time applica-
tions. In: TASTED’01 : International Jour-
nal of Computers and Applications. Calgary,
Canada.

Réveilleau, Laurent (2001). Prototyping a
lightweight remote monitoring tool for small
and medium power plant units. Engineering
degree. CNAM. Paris, France. in French.

Seinturier, L., A. Laurent,
B. Dumant, E. Gressier-Soudan and F. Horn
(1999). A framework for real-time communi-
cation based object oriented industrial mes-
saging services. In: ETFA’99. Barcelona, Cat-
alogna, Spain.

Seinturier, Lionel (1999). Intégration de liaisons
atm dans l'orb corba jonathan. Technical
Report NT/CNET/6125. France Telecom R
& D.

Tri-Pacific (2001a). Rapidrma: The art of model-
ing real-time systems. Technical report. Tri-
Pacific. http://www.tripac.com/html/prod-
fact-rrm.html.

Tri-Pacific (2001b). Rapidsched: Scheduling for
real-
time corba systems. Technical report. Tri-
Pacific. http://www.tripac.com/html/prod-
fact-rsd.html.

UCS (19964). Tase.2 object models. version 1996-
08. iec870-6-802. iccp inter-control centre
communications protocol version 6.1.. Tech-
nical Report IEC 870-6-802. Utility Commu-
nications Specification Working Group. Ver-
sion 1996-08.

UCS (1996b). Tase.2 services and protocol.
version 1996-08. iec870-6-503. iccp inter-
control centre communications protocol ver-
sion 6.1.. Technical Report IEC 870-6-503.
Utility Communications Specification Work-
ing Group. Version 1996-08.

Valenzano, A., C. Demartini and L. Ci-
miniera (1992). MAP and TOP Communica-
tions. number ISBN 0-201-41665-4. Addison-
Wesley. Wokingham, England.

VEGAS (2001). Tcp vegas home
page. http://www.cs.arizona.edu/protocols/.
URL.

