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Abstract We propose a procedure based on a latent variable model for the compar-
ison of two partitions of different units described by the same set of variables. The
null hypothesis here is that the two partitions come from the same underlying mixture
model. We define a method of “projecting” partitions using a supervised classification
method: once one partition is taken as a reference; the individuals of the second data
set are allocated to the clusters of the reference partition; it gives two partitions of the
same units of the second data set: the original and the projected one and we evaluate
their difference by usual measures of association. The empirical distributions of the
association measures are derived by simulation.

Keywords Rand index · Redundancy index · Discriminant analysis · Latent classes ·
Partitions
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1 Introduction

The need of comparing partitions of two different sets of units based on the same
questionnaire appears frequently in periodic opinion or market surveys when the ques-
tionnaire is asked to different samples.
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If all variables are numerical, usual tests for comparing two multivariate distribu-
tions might be used such as: Rosenbaum test (2005), nonparametric tests, proportion
test of the partition’s classes using the chi-square test, Mahalanobis test for comparing
the class means of both partitions.

In this paper, a new method of comparing partitions coming from the same variables
by “projection” is proposed. Discriminant analysis is applied to one of the partition and
the units of the other partition are reclassified. The comparison is done by using asso-
ciation indices under the hypothesis of identical partitions (cf., Youness and Saporta
2004a,b), such as Rand index introduced by Hubert and Arabie (1985), the redundancy
index RI introduced by Stewart and Love (1968), and the τb index of Goodman and
Kruskal (1979).

In order to obtain the distribution of the indices under the hypothesis of identical
partitions, we simulate partitions coming from a common latent class model (more
precisely a latent profile model (Vermunt and Magidson 2002), since we only deal
with p observed numerical variables), which is a particular mixture model. An algo-
rithm has been developed using SAS software in order to check the relevance of our
approach. The methodology is then applied to artificial and real data sets. Here, the
application deals only with the case of numerical variables.

The paper is organized as follows: Sect. 2 is devoted to define the model used to
find the partitions under the null hypothesis: “the partitions are identical”. Section 3
describes briefly several indices of agreement. Section 4 gives a detailed description
of the procedure of projecting partitions. Finally, we illustrate our methodology on
several artificially generated data sets in Sect. 5, and on a real data set in Sect. 6.

2 A latent profile model to define the null hypothesis

A natural idea is to decide that two partitions of the same units do not differ signif-
icantly if a measure of agreement is larger than a critical value. Thus, we need to
know the probability distribution, even approximated, of an agreement association
measure under some null hypothesis. The null hypothesis of independence is inoper-
ative because rejecting the independence does not mean that the partitions are nearly
identical. We need to define more precisely the hypothesis Ho where both partitions
are identical. As soon as the association measure is larger than some critical value, the
hypothesis that the difference between partitions is due to sampling is not rejected at
a certain probability level.

We define the hypothesis Ho: “the two partitions are identical”, by saying that the
units come from the same underlying partition P , and that the two observed partitions
P1 and P2 are noised realizations of the common partition P . The latent class model
provides a nice way of generating data coming from the same underlying partition and
has been used by Krieger and Green (1999) in their consensus partition research.

The latent class model corresponds to the following mixture model with local inde-
pendence:

f (x) =
K∑

k=1

πk

p∏

j=1

fk(x j |k)

123



Comparing partitions of two sets of units based on the same variables

where πk (k = 1, . . . , K ) are the class proportions and X is the random vector of
observed variables where the components x j are independent in each class, f (x) is
the density of X, and fk(x j |k) is the density of x j in the class k (Bartholomew and
Knott 1999).

The latent profile model is used here to generate data and not to estimate parameters
(McLachlan 2000, 2004). As usual we generate data sets coming from f as follows.
We first generate frequencies nk from a multinomial distribution with probabilities
πk and then we generate observations in each class according to the local indepen-
dence model; in other words we choose a normal mixture model with independent
components in each class.

3 Some measures of agreement between two partitions of the same units

In previous publications (Youness and Saporta 2004a,b), we have investigated prop-
erties of Rand, Mc Nemar, Jaccard, RV-coefficient, JV-index, Cohen’s kappa, and
Popping’s D2 indices.

We will focus here on the Rand index with its asymmetric version proposed by
Chavent et al. (2001) and the redundancy index RI introduced by Stewart and Love
(1968).

3.1 Notation

Consider two partitions P1 and P2 of the same n units with p and q classes, respectively.
If K1 and K2 are the corresponding n × p and n × q disjunctive tables of indicator
variables and N the contingency table with elements ni j (i = 1, . . . , p; j = 1, . . . , q),
we have:

N = K′
1K2.

Each partition Pr is also characterized by the n × n paired comparison table Cr

with general term cr
ii ′ :

cr
ii ′ =

⎧
⎨

⎩

1 if i and i ′ are in the same class of �r

0 otherwise

we have C1 = K1K′
1 and C2 = K2K′

2.

Given n units, n(n − 1)/2 different pairs of units can be compared. When both
partitions assign a pair of units to the same cluster, we have a positive agreement. The
number of pairs in positive agreement is denoted a. When both partitions assign a pair
of units to different clusters, we have a negative agreement. The number of pairs in
negative agreement is denoted b. The number of pairs belonging to the same cluster
of the partition P1 and to different clusters of P2 is denoted by c. The number of pairs
belonging to different clusters of P1 and to the same clusters of P2 is denoted by d.
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Table 1 Illustration of the four
cases

P1\P2 Same class Different class

Same class a c

Agreement (same) Disagreement

Different class d b

Disagreement Agreement (different)

Table 1 summarizes the four cases.
Let A = a + b be the total numbers of agreements (negative and positive agree-

ments).

3.2 Rand index

Symmetric Rand index

The Rand index, similar to Kendall measure (1938), is the proportion of agreements
(positive and negative):

R = 2A

n(n − 1)

It may be proved that:

A =
(

n
2

)
+

p∑

i=1

q∑

j=1

n2
i j − 1

2

⎡

⎣
p∑

i=1

n2
i. +

q∑

j=1

n2
. j

⎤

⎦

where ni j , denoting the frequency of the pair (i, j), is the generic term of the cross
tabulation of P1 and P2.

We have 0 ≤ R ≤ 1 and R = 1 if P1 = P2.
To take into account all n2 pairs including the identical ones, the Marcotorchino

modified version of the Rand index, is used (cf. Marcotorchino and El Ayoubi 1991).
This modified version of Rand index is expressed as:

Rand = 2
∑p

i=1

∑q
j=1 n2

i j − ∑p
i=1 n2

i. − ∑q
j=1 n2

. j + n2

n2

We do not use here the correction for chance of the Rand index, introduced by Hubert
and Arabie (1985), since it gives negative values when both partitions are not close
enough.

Asymmetric version of Rand index

If p > q, P1 is a refinement of P2 when two elements in the same cluster of P1
are also in the same cluster of P2. Then we can measure the degree of inclusion of
partition P1 in P2 by the asymmetric version of Rand index, proposed by Chavent
et al. (2001).
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For all n2 pairs, the asymmetric version of Rand index is defined by:

RA(P1,P2) = 1 +
∑p

i=1

∑q
j=1

( ni j
2

) − ∑p
i=1

( ni.
2

)
( n

2
)

RA takes values in [0, 1] and RA = 1 if P2 ⊆ P1.
For this study, we use the analogous version with all n2 pairs (Youness and Saporta

2004a):

RA(P1,P2) = n2 + ∑p
i=1

∑q
j=1 n2

i j − ∑p
i=1 n2

i.

n2

It should be noted that if the two partitions have the same number of clusters, the
asymmetric version of Rand index is not equal to the initial Rand index: the difference
is due to the fact that the asymmetric Rand index is a prediction measure depending
on the choice of a reference partition.

3.3 Redundancy index and asymmetric τb

Proposed by Stewart and Love (1968) RI is an asymmetric index defined as:

RI(X1, X2) = trace (W12W′
22W21)

trace (W11)

where X1 and X2 are two numerical data tables of the same units and Wi j = Xi X′
j .

RI is a weighted average of the squared multiple correlation coefficients between
all pairs of variables of X1 and X2. It is a measure of the quality of prediction of X1
by X2 and represents the proportion of the explained variance in the regression of X1
by X2. 0 ≤ RI ≤ 1 and RI is equal to the square multiple correlation coefficient when
p = 1 and q > 1.

In the case of numerical variables, Lazraq and Cleroux (2002) have proposed to
test the null hypothesis that RI is equal to zero and derived a method for selecting
predictors in multivariate regression.

When X1 and X2 are the tables of indicator variables of two partitions, RI is equal
to the asymmetric dependence index τbof Goodman and Kruskal (1979), (see Saporta
2006).τb measures the proportional reduction in error (PRE) of a prediction rule based
on conditional probabilities of assigning an unit to a cluster, compared to the prediction
based on marginal probabilities. For two partitions, P1 and P2, τb is:

τb =
∑p

i=1

∑q
j=1

n2
i j

n.ni.
− ∑q

j=1

( n. j
n

)2

1 − ∑q
j=1

( n. j
n

)2

τb = 0 in case of independence and τb = 1 in case of perfect linear relationship.
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We will use this asymmetric index to compare partitions with different number of
clusters, coming from the same data set. A high value of this index may lead to the
conclusion that partitions are almost identical.

4 Projecting partitions

In order to compare two partitions of different units described by the same set of vari-
ables, we use a “projection” technique which basically consists to boil down to the
case of comparing two partitions of the same units which has been already dealt with
in many publications (eg. Hubert and Arabie 1985; Krieger and Green 1999; Overall
and Magee 1992; Saporta and Youness 2002).

It consists in allocating the units of the second set to the clusters defined by the
reference partition using some discriminant analysis technique. Thus, for each unit of
the second data set I2 we have both the class in its natural partition (found by e.g. a
classical k-means algorithm) and the predicted class (found by discriminant analysis),
in the reference partition. So the problem will come down to compare two partitions
of the same units of I2: P2 and P ′

2. P2 comes out from a direct cluster analysis of I2;
P ′

2 comes out according to classes of P1 defined on I1using a supervised classification
method (cf. Fig. 1).

Many classification methods may be used for such a purpose (linear, quadratic, neu-
ral nets, decision trees etc., see McLachlan 2004). For the sake of simplicity, a linear
multigroup discriminant analysis which is known to be optimal for normal distribution
with equal covariance matrices (Hand 1981) will be used in this paper.

The projection of a partition on the other one is performed as follows:

Fig. 1 Scheme of projecting a partition on another one
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5 Simulating the projection method and the sampling distributions
of agreement indices

In order to study the behaviour of the agreement indices under the null hypothesis of
a common latent partition we use the following algorithm:

1. Generate cluster sizes n1, n2, . . . , nK from a multinomial distribution M(n, π1,

π2, . . . , πK ). For each cluster i, generate ni values from a random normal vector
with p independent components. So the first data set I1 of n1 units is obtained
by simulation of a normal mixture model with p variables. For this data an asso-
ciated partition P1 found by k-means with k1 classes is chosen as a reference
(k1 = 1, . . . , K , is the number of clusters of P1).

2. The same independent normal variables are used to generate the second data set
I2 of n2 units. The second set I2 of n2 units is obtained according to the same
latent profile model with an associated partition P2 found by k-means with k2
classes (k2 = 1, . . . , K , it is the number of clusters of P2). The data base I with
n1 + n2 = n units is obtained by merging I1 and I2.

3. The units of the second set I2 are allocated to the k1 classes of P1 by applying a
linear discriminant analysis on I2 to obtain a new partition P ′

2. To find the projected
partition P ′

2, the procedure DISCRIM of SAS (9.1) has been used: a multiclass
linear discriminant analysis is performed on P1. Then each unit of I2 is classified
into one of the class of the reference partition P1.

4. Compute association indices to measure the difference between the partitions P2
and P ′

2 of the same set I2.When partition P2 has a number of clusters k2 different
from the number of clusters k1 of P1, we use an asymmetric version of Rand index
or of the redundancy index.

Now in order to get the sampling distributions of the indices we split I at random into
two sets of sizes n1and n2 and repeat steps 3 and 4 for a number of times.

6 Some simulations

We simulate 500 samples of 1,000 units coming from a latent profile model with 4
classes and 4 variables which are normally distributed in each class.

The parameters of the normal distributions are chosen such that for every variable
j = 1, . . . , 4, the absolute value of the difference between the means mkj , mk′ j of the
normal distributions of two different classes k, k′ = 1, . . . , 4, k �= k′, is larger than
its standard deviation by one and a half:

∣∣mkj − mk′ j
∣∣ > 1.5σ j for j = 1, 2, 3, 4 and k, k′ = 1, 2, 3, 4, k �= k′.

6.1 First example

The first choice of the parameters for the independent normal variables is given in
Table 2.
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Table 2 First simulated example: parameters of the normal mixture model

Class 1 Class 2 Class 3 Class 4

X1 N (1.2, 1.5) X1 N (−2, 1.5) X1 N (5, 1.5) X1 N (8, 1.5)

X2 N (−10, 2.5) X2 N (0, 2.5) X2 N (−417, 2.5) X2 N (3.8, 2.5)

X3 N (6, 3.5) X3 N (12, 3.5) X3 N (13, 3.5) X3 N (−5, 3.5)

X4 N (−20, 4.5) X4 N (−12, 4.5) X4 N (0, 4.5) X4 N (7, 4.5)

Rand
0.970
0

20

40

60

80

Tb

0

10

20

30

40

1.00510.9950.9900.9850.9800.975 0.950.94 0.96 0.97 0.98 0.99

Fig. 2 Kernel density estimates of Rand and τb for 500 iterations

Table 3 Descriptive statistics
for Rand and τb for the first
choice of parameters

Rand τb

Frequency 500 500

Mean 0.988367 0.970632

Mode 0.992 0.974

Variance 0.0000132944 0.0000823894

Standard deviation 0.00364615 0.00907686

Minimum 0.977 0.943

Maximum 0.996 0.989

Range 0.019 0.046

Skewness −1.09906 −1.64516

Kurtosis −1.81607 −1.95615

The algorithm described in Sect. 5 is repeated 500 times which enables us to get
approximate distributions of τb and of the Marcotorchino modified version of the Rand
index (Fig. 2).

The values of the Rand index vary from 0.977 and 0.996. The most frequent value
is 0.992 and its mean is equal to 0.988. Goodman–Kruskal index τb takes its values
between 0.943 and 0.989 with a mode equal to 0.974. The distribution has a mean
equal to 0.97 (Table 3).

Table 4 gives the 95% confidence intervals of the mean for these indices.
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Table 4 Confidence intervals
for the Rand index and τbfor the
first simulated example

Mean Standard error Lower limit Upper limit

Rand 0.988367 0.000163061 0.988047 0.988687

τb 0.970632 0.000405929 0.969834 0.97143

Table 5 Second simulated example: parameters of the normal mixture model

Class 1 Class 2 Class 3 Class 4 Class 5

X1 N (1.2, 1.5) X1 N (−2, 1.5) X1 N (−5, 1.5) X1 N (−8, 1.5) X1 N (8, 1.5)

X2 N (4, 2.5) X2 N (−4, 2.5) X2 N (−10, 2.5) X2 N (−15, 2.5) X2 N (8.2, 2.5)

X3 N (7, 3.5) X3 N (−6, 3.5) X3 N (−13, 3.5) X3 N (−20, 3.5) X3 N (20, 3.5)

X4 N (10, 4.5) X4 N (−10, 4.5) X4 N (−20, 4.5) X4 N (−30, 4.5) X4 N (30, 4.5)

Under the null hypothesis of identical partitions, these indices have values around
0.988 thus the decision that the two partitions do not differ significantly could be taken
if the index is larger than a critical value. Here the estimated critical values at 5% are
0.954 for RI and 0.982, for Rand.

6.2 Second example

A second choice is studied in Table 5 using the normal mixture model:
In this section, we consider the case where different number of clusters are used

for the two partitions: P1 with 5 clusters while P2 has 2 clusters. As before partition
P ′

2 is obtained by projection on P1.
The association indices τb and the asymmetric version of Rand index for both

partitions are calculated for 500 repetitions.
The redundancy index RI takes its values between 0.80 and 0.99 with a mode equal

to 0.97. The distribution has a mean equal to 0.868. The values of the asymmetric
version of Rand index vary from 0.95 to 0.998. So under the null hypothesis of iden-
tical partitions, the 5% critical value of the redundancy index RI is equal to 0.81 and
the corresponding critical value of the asymmetric version of Rand is equal to 0.97
(Fig. 3).

Unfortunately no universal critical values for distribution of agreement indices can
be obtained: they depend on the number of clusters, of observations and of cluster
separation. In our algorithm, this problem is solved by finding the critical value which
corresponds to the distribution of each index found under the hypothesis of identical
partitions.

In the next section, a generic algorithm is implemented and applied on a real data
set, showing how our method can be generally used.

7 Real data example

We investigated the performance of our technique on the following real data set: a
survey about conditions of life and expectations of a French sample (Lebart 1987).
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Fig. 3 Kernel density estimates of the redundancy index and the asymmetric Rand index with different
number of clusters

The data set contains 1,000 individuals and 52 variables. We selected 14 variables
about quality of life, opinions about marriage, family and children. After eliminating
missing values, we have 624 individuals: 315 men and 309 women.

The goal is to compare men’s and women’s partitions. Therefore an empirical
sampling distribution of association index has to be found under the hypothesis of
“identical partitions”. We obtain the distribution of the redundancy index, and the
Rand index and its asymmetric version, after 500 iterations using the following steps:

• Do random sample of the data set I with the same variables and split it at random
into two data sets I1 and I2 of 312 units each.

• Find the partition P1 of the data set I1 with p clusters, by k-means.
• The units of the second set I2 are allocated to the p clusters of P1 by applying a

linear discriminant analysis on I2 to obtain a new partition P ′
2, using the procedure

DISCRIM of SAS.
• Find another partition P2 of the second data base I2 withq clusters by k-means.
• Cross classify the two partitions P2 and P ′

2, and compute association measures.

For this data set, we chose for both partitions P1 and P2 the same number of clusters
p = q = 4 because they give the best partitions of the trees owing to a maximization
of the inter-class inertia.

The distribution of the indices under the null hypothesis of identical partitions is
approximated after 500 repetitions of random splits (Table 6, Fig. 4).

The 95 % confidence intervals of the mean, for these indices are in Table 7.
The lower 5% quantile under the hypothesis of identical partitions is equal to 0.650

for Rand, 0.85 for RA and 0.35 forτb.
To compare the partition of men and women, we run the algorithm after sorting the

variable sex and dividing the real data set according to this variable.
We projected men’s partition on women’s one and vice versa which gives two values

forτb: 0.185, 0.2582 and two values for the Rand index: 0.6134, 0.6466. Since they
are lower than the corresponding critical values, we may conclude that both partitions
are different.
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Table 6 Descriptive statistics
for the Rand, RA and τb indices
for the real data set

Rand RA τb

Frequency 500 500 500

Mean 0.721302 0.850708 0.35129

Mode 0.71 0.86 0.3

Variance 0.0025087 0.001526 0.011745

Standard 0.050087 0.039064 0.108374
deviation

Minimum 0.592 0.685 0.1

Maximum 0.88 0.933 0.7

Range 0.288 0.248 0.6

skewness 6.21384 -4.89316 6.18305

Kurtosis 1.64771 3.88624 0.931154

Tb
0 0.2 0.4 0.6 0.8
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40

80

120

160

Rand
0.57 0.67 0.77 0.87 0.97

0
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160

0.67 0.72 0.77 0.82 0.87 0.92 0.97 1.02

Fig. 4 Distributions of the Rand, RA and τb indices in 500 iterations

Table 7 Confidence intervals of
the Rand, RA and τb indices for
the real data set

Mean Standard error Lower limit Upper limit

Rand 0.721302 0.00223996 0.716901 0.725703

RA 0.850708 0.001747 0.847276 0.85414

τb 0.35129 0.00484665 0.341768 0.360812
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8 Conclusion

We have presented a new method of comparing partitions coming from two sets of
objects with the same variables based on a projection of partitions, through discrimi-
nant analysis.A latent profile model has been used to solve the problem of comparing
partitions by simulation. The comparison of partitions has been done using agreement
measures such as the Rand index and the redundancy index. The redundancy index
RI that allows for testing similarity between two partitions with different number of
clusters, has been studied.

We have proposed a simulation procedure to obtain critical values for each index.
They are data dependent on the number of clusters, their proportions and their sepa-
ration.

Our methodology has been illustrated on a real data set. The results obtained in the
simulation study and in the empirical analysis are encouraging, showing the usefulness
of the proposals and the efficiency of the algorithm.

However, further studies are needed concerning for instance the meaning of classes
in terms of the variables (external and internal information).
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