
Tool-Assisted Specification and Verification

of Typed Low-Level Languages

Gilles Barthe (gilles.barthe@sophia.inria.fr)
INRIA Sophia Antipolis, France

Pierre Courtieu (pierre.courtieu@univ-orleans.fr)
Université d’Orléans, France

Guillaume Dufay (gdufay@site.uottawa.ca)
University of Ottawa, Canada

Simão Melo de Sousa (desousa@di.ubi.pt)
Universidade da Beira Interior, Portugal

Abstract. Bytecode verification is one of the key security functions of several
architectures for mobile and embedded code, including Java, Java Card, and .NET.
Over the last few years, its formal correctness has been studied extensively by
academia and industry, using general purpose theorem provers. The objective of
our work is to facilitate such endeavors by providing a dedicated environment for
establishing the correctness of bytecode verification within a proof assistant.

The environment, called Jakarta, exploits a methodology that casts the correct-
ness of bytecode verification relatively to a defensive virtual machine that performs
checks at run-time, and an offensive one that does not, and can be summarized as
stating that the two machines coincide on programs that pass bytecode verification.
Such a methodology has been used successfully to prove the correctness of the
Java Card bytecode verifier, and may potentially be applied to many other similar
problems. One definite advantage of the methodology is that it is amenable to au-
tomation. Indeed, Jakarta automates the construction of an offensive virtual machine
and a bytecode verifier from a defensive machine, and the proofs of correctness of
the bytecode verifier.

We illustrate the principles of Jakarta on a simple low-level language extended
with subroutines, and discuss its usefulness to proving the correctness of the Java
Card platform.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 2/06/2006; 12:38; p.1

2

1. Introduction

1.1. Background

Virtual machines, such as the Java Virtual Machine, Java Card Virtual
Machine, or Microsoft .NET, provide a means to ensure two key proper-
ties for mobile code: portability, because executing applets on a virtual
machine abstracts away from the specifics of the underlying hardware
and operating system; and security, because the virtual machine con-
trols the interaction between the applet and its environment and hence
reduces the risk that malicious applets may perform a security attack.
In order to enforce security, such architectures rely on several mecha-
nisms, known as security functions. One such crucial security function
is the bytecode verifier, which performs a static analysis on programs
and rejects potentially insecure programs.

Over the last few years, a number of projects have been targeted
at proving formally that bytecode verification algorithms are correct,
in the sense that they reject programs which may go wrong with re-
spect to a given property P , typically a safety or security property
such as type soundness or correct initialization or correct use of sub-
routines. These projects have been carried by with different aims, for
example: (1) demonstrating that machine-checked semantics of realistic
programming languages is feasible, and useful to detect ambiguities,
incoherences or even flaws in specifications; (2) achieving a high level
certification in the context of security evaluations according to inter-
national evaluation schemes for the security of IT products, such as
the Common Criteria, which features seven evaluation assurance levels
(EAL), the highest of which (levels EAL5 to EAL7) impose the use of
formal methods for the modeling, specification and verification of the
product being certified.

While such projects have been very successful in their endeavors,
providing machine-checked accounts of complex low-level languages is
labour-intensive, and could benefit from automated tool support for
the most mundane tasks in developing machine-checked specifications
and verifications of these languages. The main goal of this paper is to
describe Jakarta, a dedicated environment for specifying and verifying
formally bytecode verifiers. More precisely, the objective of Jakarta is
to provide automated tool support for building and proving the cor-
rectness of a bytecode verifier enforcing a given property P . To this
end, Jakarta builds upon a two-phase methodology that is common to
many existing works, and which is briefly described below.

main.tex; 2/06/2006; 12:38; p.2

3

The first phase of the methodology, which we coin the Virtual Ma-
chine phase or VM phase for short, deals with cross-machine validation.
It involves defining three virtual machines:

− a defensive virtual machine enforcing the property P at run time
through a type system;

− an typed (or abstract) virtual machine, whose execution only ma-
nipulates type information related to P (without the usual values
of the virtual machines), that will be used to build the bytecode
verifier;

− an offensive virtual machine that does not verify P at runtime
(hence faster and lighter) and that relies on the successful bytecode
verification of a program to enforce the P -error-free execution of
that program;

and showing that the virtual machines verify the following cross-validation
property: the offensive and defensive virtual machine coincide on those
programs that are accepted by the typed virtual machine. In the next
section, we make such notions as “coincide”, or “accepted” precise, and
illustrate cross-machine validation on a small example that involves
a toy assembly language, extended with subroutines. One important
feature of the VM phase is that it does not handle exceptions, nor
instructions to invoke or return from a method; both of which are
handled in the second phase.

The second phase of the methodology, the FrameWork phase or
FW phase for short, aims to construct a bytecode verifier from the
typed virtual machine, and to establish its correctness relying on cross-
machine validation. In order to construct the bytecode verifier, one
formalizes Kildall’s algorithm, a well-known dataflow analysis that com-
putes fixpoints of monotone functions over lattices, and instantiate the
algorithm to the typed virtual machine defined during the VM phase.
The correctness of the resulting bytecode verifier is then shown by prov-
ing that the offensive and defensive virtual machine coincide on those
programs that are accepted by the bytecode verifier. This statement is
derived from the correctness of Kildall’s algorithm, from the correctness
of cross-machine validation, and from some properties about method
invocations and returns, and exceptions. The latter is discussed in the
running example of the next section. As observed by Nipkow [38], the
FW phase may be applied to a large variety of bytecode verifiers,
including the standard verifiers for Java, Java Card, and .NET, but
also enhanced verifiers that guarantee stronger security properties, for
example with respect to information flow or resource control.

main.tex; 2/06/2006; 12:38; p.3

4

1.2. Jakarta

The methodology outlined above provides us with clear guidelines for
formally verifying bytecode verifiers. Furthermore, the brief descrip-
tion of the methodology indicates that the two phases are of a rather
different nature: the VM phase is specific to the execution platform
under consideration, while in contrast the FW phase is generic. In fact,
the VM phase represents most of the effort required to establish the
correctness of a given bytecode verifier. It is also the place where one can
achieve a high level of automation by developing appropriate methods
and tools, and where the pay-off is highest.

The purpose of Jakarta is to provide tool support for the VM phase,
and in particular to provide a very high-level of automation for the
mundane tasks inherent to the VM phase. Specifically, Jakarta is de-
signed to generate by abstraction from the specification of the defensive
machine both the specifications of the offensive machine and of the
typed machine, and the cross-validation proofs for these machines. We
detail this process to some extent below.

The user provides the specification of the defensive machine. He
can write it in several languages: Caml, Coq or the dedicated language
of Jakarta, the Jakarta Specification Language JSL, a typed language
whose execution model is based on conditional rewriting, defined in
Section 3. The specification is translated to JSL if necessary before
the abstraction takes place. JSL complies with three crucial design
objectives: firstly, it is sufficiently expressive so that virtual machines
can be conveniently specified. Secondly, it lends itself well to auto-
matic transformations, and in particular to abstractions as required
by cross-machine validation. Thirdly, specifications can be translated
automatically, via the Jakarta Prover Interface JPI, to several proof
assistants, automatic theorem provers, prototyping environments, and
programming languages. As mentioned above, translation from (sub-
sets of) ML and Coq to JSL are implemented, but we also support
translations to Elan, Spike, and PVS.

Then JSL specifications may be abstracted automatically, using an
abstraction script that contains the JSL definition of the abstraction
functions and the abstraction commands. The former specifies how to
transform defensive states into target states, while the latter allow users
to specify how the abstraction must be conducted, e.g. which functions
must be abstracted, which expressions should be removed or modified,
and more generally which modifications must be made to the generic
abstraction mechanism in order to generate the expected abstracted
machine. The abstraction is performed by the Jakarta Transformation

main.tex; 2/06/2006; 12:38; p.4

5

Kit JTK. We use the JTK twice, to derive the offensive and the typed
machines from the defensive one.

Finally, JSL specifications may be cross-validated in a theorem prover
(Coq currently), through a procedure that generates the statement of
auxiliary commutation lemmas needed by the cross-validation proofs
(Figures 2 and 3 in Section 2.2), as well as the corresponding proof
scripts that use purpose-built tactics to discharge these lemmas. As
shown in Figure 1, the cross validation is composed of three parts, all
in the theorem prover format: the specifications of the defensive and
target machines and the statements and proofs of commutation lemmas.
The cross-validation is performed by the Jakarta Automation Kit JAK.
A specific part of the abstraction script gathers all proof information
required for this purpose. We use the JAK twice, to cross-validate the
offensive and the typed machines against the defensive one.

Figure 1 synthesizes the process of completing the VM phase with
Jakarta, using the methodology described above. Coq proof scripts are
generated, but the methodology is easily applicable to other provers,
although not implemented yet (proof script generation must be imple-
mented for each prover).

In the course of the paper, we shall illustrate the principles of Jakarta,
and demonstrate its usefulness on two case studies. The first case study
is a toy language which we use as a running example. The second case
study is a realistic programming language, namely Java Card; launched
in 1996 by Sun, Java Card [27] is the standard programming language
for new generation smartcards; its run-time environment, the Java Card
Runtime Environment JCRE, comprises the Java Card Virtual Machine
JCVM, that is very close to the Java Virtual Machine JVM. In both
cases, the property P to be verified is well-typing, and we use the
Jakarta environment to perform the first phase of the methodology.
The results are positive: almost all proof obligations are discharged
automatically, and a big part of the specification is also automatically
generated (offensive and typed virtual machines, see next section).

Outline. This paper is organized as follows. Section 2 presents con-
cepts and methodology through a small case study. Section 3 is devoted
to the presentation of Jakarta Specification Language (JSL). Sections 4
and 5 present Jakarta tools to abstract JSL specifications and prove
the correctness of the generated abstraction. Section 6 is devoted to
a realistic and more complex case study with the Java Card Virtual
Machine. Section 7 concludes with related works and perspectives.

main.tex; 2/06/2006; 12:38; p.5

6

JPI JPI

Formal cross−validation

JPI

JAK

dataP_val := Z.

...

Input

Output

P−defensive machine Target machine

P−Defensive machine Datatypes of
target machine

Description of the P−Abstraction

Functions of
target machine

 Short Z

| Long Z

| ...

dataval := functionifnull:
idx −> state

−> rstate :=

...

function alpha:

...

val −> P_val :=

−> x

−> x. ...

from ifnull

build

abstraction
functionalpha

P_ifnull

JTK

idx −> P_state
−> P_rstate :=

P_ifnull:function

...

Jsl Jsl Jsl Jsl Jsl

Jsl

ifnull_com:

=

Lemma

Analyze ifnull...

Coq Coq

i,s. alpha (ifnull i s)

P_ifnull i (alpha s))

Coq

Inductive val: ...

...

Definition ifnull:

...

P_ifnull:Definition

Inductive

=>alpha(Short x)

=>alpha(Long x)

P_val: ...

cross−validation

Proof of

∀

Figure 1. The methodology of Jakarta

2. Running example

We illustrate cross-machine validation on a small example that involves
a toy assembly language, extended with subroutines. The assembly
language is designed as a target for a simple imperative language with
loops and conditionals; we extend it with subroutines [42] in order to
make apparent some of the difficulties arising in the formal verification
of realistic execution platforms. The goal of this section is to illustrate
the methodology and the results expected from Jakarta while following

main.tex; 2/06/2006; 12:38; p.6

7

sections will present Jakarta and how it can be used to obtain these
results.

2.1. Formalism

The example is written in an intuitive syntax close to Coq with ML
style record notations for readability. In fact the syntax is an interme-
diate format called JIR used to compile Jakarta specifications to proof
assistants, see Section 3.3.

The keyword Inductive (resp. Mutual Inductive) introduces a in-
ductive (resp. mutual inductive) type. Such definitions also declare all
constructors for these types. We give below the definitions of the natural
numbers nat (with the constructors O and succ, for successor), of pa-
rameterized (polymorphic) lists list, and of the parameterized option

type commonly used to formalize non total functions (lift monad):

Inductive nat : Set :=
| O : nat
| succ : nat → nat.

Inductive list (A:Set) : Set :=
| Nil : list A
| Cons : A → list A → list A.

Inductive option (A:Set) : Set :=
| None : option A
| Some : A → option A.

The partial functions head, tail and nth_elt respectively return for
a given list the first element, the list without its first element and the
n-th element of that list.

Records, introduced by keyword Record, are represented internally
as inductive types with one constructor. Accessors of these fields are
then expressed as functions named by the corresponding fields of the
record. match...with...end introduces pattern matching as in ML
languages.

The general form of a product type is the universal quantification:
forall x:T,U. In the case of a non dependent product, we use the usual
arrow notation: T → U.

Convention. In the following, we will introduce datatypes and func-
tions for the defensive virtual machine and the corresponding datatypes
and functions for the offensive and typed virtual machines. In order
to differentiate these definitions, we use the following conventions: all
datatypes and functions concerned with the defensive, offensive and
abstract typed virtual machines are prefixed by an d_, o_ and a_ re-

main.tex; 2/06/2006; 12:38; p.7

8

spectively. In Coq, we rely on qualified names but using them here
would clutter notations.

2.2. The Virtual Machine phase

2.2.1. Language definition
We formalize programs as lists of instructions, taken from an induc-
tively defined instruction set. In order to factor definitions as much as
possible, some instructions are parameterized by the type vm_types of
the virtual machine types (integers and return addresses).

Inductive vm_type : Set := tInt : vm_type | tRA : vm_type.

Definition pcs := nat.

Definition locvars_idx := nat.

Inductive instr : Set :=
| ipush : Z → instr
| pop : instr
| load : vm_type → locvars_idx → instr
| store : vm_type → locvars_idx → instr
| iadd : instr
| iif : pcs → instr
| goto : pcs → instr
| jsr : pcs → instr
| ret : locvars_idx → instr.

Definition program := (list instr).

For readability reasons, we have defined two synonyms pcs and locvars_idx

for nat used respectively when the value of this type represents a pro-
gram counter and an index into the list of local variable of a program
state (see next Section).

2.2.2. Defensive semantics
The defensive virtual machine manipulates typed values (one construc-
tor for each type of the virtual machine), from which the memory model
(an operand stack, local variables and a program counter) is built.

Inductive d_val : Set :=
| d_Int : Z → d_val
| d_RA : pcs → d_val.

Record d_state : Set := {
d_opstack : (list d_val);
d_locvars : (list d_val);
d_pc : pcs

}.

main.tex; 2/06/2006; 12:38; p.8

9

Our operational semantics is executable and models one step execution
of the virtual machine. In order to account for abnormal termination,
the execution function returns a tagged return state.

Inductive eReason : Set :=
| program_error : eReason
| opstack_error : eReason
| locvar_error : eReason
| type_error : eReason.

Inductive d_rstate : Set :=
| d_Normal : d_state → d_rstate
| d_Abnormal : eReason → d_rstate.

Then, defensive execution is modeled as a function from states to re-
turn states, and is implicitly parameterized by a program prg, where
each function in the right hand side of a match provides the defensive
semantics of the corresponding bytecode.

Definition d_exec (s : d_state) : d_rstate :=
match Nth_elt prg (d_pc s) with
| Some i ⇒
match i with
| ipush z ⇒ d_IPUSH z s
| pop ⇒ d_POP s
| load t l ⇒ d_LOAD t l s
| store t l ⇒ d_STORE t l s
| iadd ⇒ d_IADD s
| iif p ⇒ d_IIF p s
| goto p ⇒ d_GOTO p s
| jsr p ⇒ d_JSR p s
| ret l ⇒ d_RET l s
end

| None ⇒ d_Abnormal program_error
end.

In order to illustrate some of the issues involved in the abstraction, we
introduce the semantics of the bytecodes iif and ret, for which we
shall later provide an offensive and a typed semantics. The (defensive)
semantics of the iif is given by the function d_IIF that compares the
first element of the operand stack to zero and branches accordingly to
the program counter given as a parameter or to the next instruction.

Definition d_IIF (p : pcs) (s : d_state) :=
match head (d_opstack s) with
| Some (d_Int z) ⇒

match Zeq_bool z 0 with
| true ⇒ d_Normal (Mk_d_state (tail (d_opstack s))

(d_locvars s) p)
| false ⇒ d_Normal (Mk_d_state (tail (d_opstack s))

(d_locvars s)

main.tex; 2/06/2006; 12:38; p.9

10

(succ (d_pc s)))
end

| Some (d_Ra n) ⇒ d_Abnormal type_error
| None ⇒ d_Abnormal opstack_error
end.

The semantics of the ret is given by the function d_RET that branches
to the return address located in the local variables at the position given
as a parameter.

Definition d_RET (l : locvars_idx) (s : d_state) :=
match Nth_elt (d_locvars s) l with
| Some (d_Ra n) ⇒ d_Normal (Mk_d_state (d_opstack s)

(d_locvars s) n)
| Some (d_Int z) ⇒ d_Abnormal type_error
| None ⇒ d_Abnormal locvar_error
end.

2.2.3. Offensive semantics
We now turn to the definition of the offensive semantics. The offensive
virtual machine manipulates untyped values, and hence the memory
model must be modified accordingly. It is sufficient to modify the def-
inition of values so that the definitions of states and return states are
modified appropriately. (Note that the offensive virtual machine does
not raise any type error hence the reasons for abnormal termination
could be modified accordingly; however, doing so would complicate the
statements about cross-validation.)

Definition o_val := Z.

Record o_state : Set := {
o_opstack : (list o_val);
o_locvars : (list o_val);
o_pc : pcs

}.

Inductive o_rstate : Set :=
| o_Normal : o_state → o_rstate
| o_Abnormal : eReason → o_rstate.

We now turn to the offensive semantics of IIF and RET.

Definition o_IIF (p : pcs) (s : o_state) :=
match head (o_opstack s) with
| Some x ⇒
match Zeq_bool x 0 with
| true ⇒ o_Normal (mk_o_state (tail (o_opstack s))

(o_locvars s) p)
| false ⇒ o_Normal (mk_o_state (tail (o_opstack s))

(o_locvars s) (succ (o_pc s)))

main.tex; 2/06/2006; 12:38; p.10

11

end
| None ⇒ o_Abnormal opstack_error
end.

Definition o_RET (l : locvars_idx) (s : o_state) :=
match Nth_elt (o_locvars s) l with
| Some x ⇒ o_Normal (mk_o_state (o_opstack s)

(o_locvars s) (z2n x))
| None ⇒ o_Abnormal locvar_error
end.

Type verifications have disappeared in these definitions. Further-
more, observe that in order for the definition to be type correct, we
must insert a coercion z2n (absolute value) from integers to natural
numbers in the first branch for RET. Since in a correct situation the
stack contains a positive integer when RET is called (certifying this is
one of the goals of the BCV), the use of z2n will not make the offensive
RET wrong (since it must commute with the original function only in
type safe situations).

2.2.4. Typed semantics
We now turn to the definition of the typed semantics. The typed virtual
machine manipulates types as values. However, the definition of typed
values must keep the value for return addresses (known statically) in
order to be able to handle control flow for subroutine. Likewise the
offensive machine, the new definition of values is directly taken into
account into the definitions of states and return states.
Inductive a_val : Set :=
| a_Int : a_val
| a_RA : pcs → a_val.

Record a_state : Set := {
a_opstack : (list a_val);
a_locvars : (list a_val);
a_pc : pcs

}.

Inductive a_rstate : Set :=
| a_Normal : a_state → a_rstate
| a_Abnormal : eReason → a_rstate.

We now turn to the defensive semantics of IIF and RET.
Definition a_IIF (p : pcs) (s : a_state) :=
match head (a_opstack s) with
| Some a_Int ⇒

Cons (a_Normal (mk_a_state (tail (a_opstack s))
(a_locvars s) p))

(Cons (a_Normal (mk_a_state (tail (a_opstack s))

main.tex; 2/06/2006; 12:38; p.11

12

(a_locvars s)
(succ (a_pc s))))

Nil)
| Some (a_RA n) ⇒ Cons (a_Abnormal type_error) Nil
| None ⇒ Cons (a_Abnormal opstack_error) Nil
end.

Definition a_RET (l : locvars_idx) (s : a_state) :=
match Nth_elt (a_locvars s) l with
| Some (a_RA n) ⇒ a_Normal (a_mk_state (a_opstack s)

(a_locvars s)
(a_pc s))

| Some a_Int ⇒ a_Abnormal type_error
| None ⇒ a_Abnormal locvar_error
end.

Note that the semantics of aIIF returns a list of return states rather
than a return state, as a consequence of the typed semantics being
unable to perform tests for conditionals. For aexec to be well typed,
this modification should be propagated to other bytecodes.

2.2.5. Cross-validation
The objective of cross-validation is to establish that the offensive and
defensive machines coincide on programs that do not go wrong with
the typed virtual machine. Establishing this result involves:

− showing that the offensive and defensive machines coincide on
programs that do not raise a type error when executed on the
defensive machine;

− showing that every program that raises a type error when executed
on the defensive machine also raises a typing error when executed
with the typed machine.

These two statements can be proven by showing that the offensive and
typed machines are sound abstractions of the defensive machine. For-
mally, we define two abstraction functions alpha_do_val and alpha_da_val

from defensive to offensive values, and from defensive to typed values
respectively:

Definition alpha_do_val (dv : d_val) : o_val :=
match dv with
| d_Int v ⇒ v
| d_RA n ⇒ n2z n
end.

Definition alpha_da_val (dv : d_val) : a_val :=
match dv with
| d_Int v ⇒ a_Int

main.tex; 2/06/2006; 12:38; p.12

13

| d_RA n ⇒ a_RA n
end.

where n2z coerces type nat to z. These functions are then extended to
states (alpha_do and alpha_da), and to return states (alpha_do_rs and
alpha_da_rs):
alpha_do : d_state → o_state
alpha_da : d_state → a_state
alpha_do_rs : d_rstate → o_rstate
alpha_da_rs : d_rstate → a_rstate

Then cross-validation involves proving that the diagrams of Figures 2
and 3 commute. In the first diagram, one has to assume that the
program does not raise a type error when executed with the defensive
machine. In the second diagram, the arrow on the right-hand side means
that the abstraction of the return defensive state is an element of the
list of return typed states.

d_state

alpha_do
��

d_exec // d_rstate

alpha_do_rs
��

o_state
o_exec // o_rstate

Figure 2. Commutative diagram of defensive and offensive execution

d_state

alpha_da

��

d_exec // d_rstate� _

alpha_da_rs
��

a_state
a_exec // (list a_rstate)

Figure 3. Commutative diagram of defensive and typed execution

The commutativity of both diagrams are stated in Coq by the formula:

∀ (s:d_state), d_exec s 6= type_error →

alpha_do (d_exec s) = o_exec (alpha_do s) (1)

for the defensive and offensive virtual machines and by the formula:

∀ (s:d_state),

In (alpha_da_rstate (d_exec s)) (a_exec (alpha_da s)) (2)

main.tex; 2/06/2006; 12:38; p.13

14

for the defensive and abstract virtual machines. The notion of programs
on which the functions d_exec, o_exec and a_exec rely is left as a global
implicit parameter of our definitions. Both formulae are proved by a
case analysis on the bytecode to be executed. In order to keep proofs
manageable, we prove a commutation lemma for each bytecode. In the
case of the IIF bytecode, the statements of the commutation lemmas
are as follows:

Lemma IIF_eq_do : ∀ (p : pcs) (s : d_state),
d_IIF p s 6= d_Abnormal type_error →
o_IIF p (alpha_do s) = alpha_do_rs (d_IIF p s).

Lemma IIF_eq_da : ∀ (p : pcs) (s : d_state),
In (alpha_da_rs (d_IIF p s)) (a_IIF p (alpha_da s)).

where In is list membership. As with all other bytecodes, the proof
proceeds by a case analysis on the state of the defensive virtual ma-
chine and finally by equational reasoning; see Section 5.4 for a proof of
the Lemma IIF_eq_do that uses tactics developed for the purpose of
automatic cross-validation proofs.

2.3. The Framework phase

The FW phase aims at building a bytecode verifier from the results
obtained during the VM phase. It relies on the formalization, described
in full details in [5], of a dataflow analysis for a generic execution
function that meets minimal requirements. This dataflow analysis is
proven correct in the sense that it offers a sound decision procedure to
reject programs that may go wrong during execution. The FW phase
instantiates the dataflow analysis to build the bytecode verifier for the
typed and then for defensive virtual machine. For the latter, results
of cross-validation are used to establish the soundness of the bytecode
verifier.

2.3.1. Abstract definition and construction
The formalization of the bytecode verifier as described in [5] relies on
the modules system of Coq. It offers a refined model of the various
notions (transition system, fixpoint structure, bytecode verifier, ab-
stract virtual machine, etc.) involved to obtain the bytecode verifier for
the defensive virtual machine. For the sake of this paper, we will not
introduce the corresponding modules but only focus on the definition
of a generic bytecode verifier, that abstracts away from implementation
details.

main.tex; 2/06/2006; 12:38; p.14

15

DEFINITION 2.3.1. A bytecode verifier is given by a type state of
states, an execution relation exec over states, a set err of error states
and a predicate check such as:
∀ a:state, (check a) → ¬(bad a).

where a state is bad, if it is possible to reach from it an error state
by successive transitions of the execution relation. Thus the predicate
check rejects all states that lead to an error state.

The standard way to build such a bytecode verifier is to endow
the type of states with a well-founded order for which execution is
decreasing (to guarantee termination), and such that error states are
downwards closed. If furthermore execution is deterministic, one can
compute for every state a, the greatest fixpoint b below a. To do so, we
define for every state a the greatest fixpoint gfp a below it as:

gfp a =
{
a if exec a = a

gfp (exec a) otherwise

Then, we define check a as ¬(err (gfp a)). As execution is monotone
and gfp a is the greatest fixpoint below a, it is clear that such a checking
is sufficient to guarantee that a is not a bad state.

2.3.2. Kildall’s algorithm
Kildall’s algorithm is a generic algorithm to compute solutions of data-
flow problems. In order to construct a bytecode verifier for a virtual
machine, we instantiate the above construction, more precisely the exec
function, to a function that performs one step of Kildall’s algorithm.
This algorithm relies on a history structure, that will correspond to the
notion of states in the above construction, to store the last program
state(s) reached for each program point. Depending on the desired
accuracy (see e.g. [32] for a survey), the history structure may store
one program state (monovariant analysis, that only accepts programs
with monomorphic subroutines) or a set of program states (polyvariant
analysis) for each program point.

For bytecode verification, the algorithm is applied method by method
and the history structure is initialized to the initial state of the method
being verified for the first program point, and to a default state for the
other program points. One step of execution proceeds by iterating the
execution function of the virtual machine over the states of the history
structure. Each non-default state is chosen once and the result of the
execution function of the virtual machine on this state is propagated
to its possible successors in the history structure.

Propagated result states are merged with the previous state stored
into the history structure at the corresponding program point and

main.tex; 2/06/2006; 12:38; p.15

16

stored back at this location. If the history structure contains a de-
fault state then the result of the merge is the propagated state itself.
Otherwise, the merged state is obtained from the propagated state
and the state from the history structure, by taking pointwise the most
general unifier (on the type lattice of the virtual machine) of the types
appearing in the two states. In particular, if these two states do not
have the same number of local variables or the same number of elements
in the operand stack, the resulting merged state is an error state.

2.4. Adding method invocations and returns and
exceptions

The running example above deals with a simple language without method
invocations and method returns, and without exceptions. The purpose
of this section is to explain how the methodology is adapted to handle
these features. We focus on method invocations and returns; excep-
tions are treated in a similar manner. Note that the validation between
the defensive and offensive virtual machines can be handled with the
methodology described above and that only the validation between the
defensive and typed virtual machines need to be cared for.

Suppose that we extend our language with instructions for invoking
a method and returning from it. In this setting, a method is defined as a
record consisting of list of instructions, i.e. its body, its number of local
variables and its number of parameters. Due to the extreme simplicity
of the type system, the arguments and result type of the methods are
all of type tInt. Then, a program is simply defined as a list of methods.

Record method : Set := {
body : (list instr);
nb_local : nat;
nb_params : nat;

}.

Definition program := (list method).

The notion of state is modified to handle method invocations and
returns; the idea is that states now consist of stacks of frames, each
frame corresponding to a method invocation, and defined as a record
of an operand stack, a local variable map, an index to the method being
executed, and a program counter:

Record d_frame : Set := {
d_opstack : (list d_val);
d_locvars : (list d_val);
d_method : method;
d_pc : pcs;

}.

main.tex; 2/06/2006; 12:38; p.16

17

Definition d_state : Set := (list d_frame).

The defensive semantics of method invocation, which adds a new frame
at the top of the stack of frame for the invoked method, is:

Definition d_INVOKE (nargs : nat) (mn : method) (s : d_state) :=
match s with
Nil ⇒ d_Abnormal stack_error |
Cons f lf ⇒
match (l_take nargs (d_opstack f)) with
None ⇒ d_Abnormal opstack_error |
(Some l) ⇒
match (l_drop nargs (d_opstack f)) with
None ⇒ d_Abnormal opstack_error |
(Some l’) ⇒
match (args_tInt l (nb_params mn)) with
false ⇒ d_Abnormal type_error |
true ⇒ (d_Normal (Cons (Build_d_frame (Nil d_val)

(make_locvars l (nb_local mn))
mn
(0))

(Cons (Build_d_frame l’
(d_locvars f)
(d_method f)
(d_pc f))

lf)))
end end end end.

where l_take and l_drop respectively return and remove the given
number of arguments in a list, args_tInt verifies that the given values
are all of type tInt and make_locvars initializes the set of local variables
with the arguments of the method.

The defensive semantics of method return, which pops the current
frame and pushes the return type of the invoked method in the operand
stack of the invoker method, is:

Definition d_RETURN (s : d_state) :=
match s with
Nil ⇒ d_Abnormal stack_error |
Cons f Nil ⇒ d_Abnormal stack_error |
Cons f (Cons f’ lf) ⇒
match (Nth_elt (methods cap) (method_loc f)) with
None ⇒ d_Abnormal program_error |
(Some mt) ⇒
match (d_opstack f) with
Nil ⇒ d_Abnormal opstack_error
Cons x lv ⇒
match x with
(d_Int _) ⇒ (d_Normal (Cons (Build_d_frame

(Cons x (d_opstack f’)

main.tex; 2/06/2006; 12:38; p.17

18

(d_locvars f’)
(d_method f’)
((d_pc f’) + 1)))

lf)) |
_ ⇒ d_Abnormal type_error

end end end end.

In contrast, the typed virtual machine proceeds on a method-per-
method basis, as done by bytecode verification (the definition a_state

remains unchanged). In this setting, the operation of adding or re-
moving a frame is not relevant for the typed virtual machine. Instead,
the typed version of the semantics of method invocation is given by a
function a_INVOKE that simulates the result on the current frame of the
method invocation and the return from that method. More precisely, it
removes the argument on the operand stack, pushes the return type of
the invoked method on the operand stack and increments the program
counter. Thus, a_INVOKE does not create a new frame but reflects the
result of a complete method invocation on the current frame and the
execution can then continue to the next instruction.
Definition a_INVOKE (nargs : nat) (mn : method) (s : a_state) :=
match (l_take nargs (a_opstack s)) with
None ⇒ a_Abnormal opstack_error |
(Some l) ⇒
match (l_drop nargs (a_opstack s)) with
None ⇒ a_Abnormal opstack_error |
(Some l’) ⇒
match (args_tInt l) with
false ⇒ a_Abnormal type_error |
true ⇒ (a_Normal (Build_a_frame (Cons a_Int l’)

(a_locvars s)
((a_pc s) + 1)))

end end end.

Let us now turn to cross-validation. In order to state cross-validation
between the defensive and typed virtual machine, we define an ab-
straction function alpha from defensive frame d_frame to a typed state
a_state, using the function alpha_da_val in the obvious way. We will
also suppose given a function init that takes a method and returns
the initial typed state corresponding to that method. This initial typed
state will have an empty operand stack, the types of its arguments
in the local variables and the program counter pointing to the first
instruction of the method.

In order to prove the correctness of the bytecode verifier, we intro-
duce the notion of safe states. A defensive state is safe if its abstraction
is equal to the state computed at the same location by the bytecode
verifier on the type virtual machine. As a main result of the bytecode
verifier framework, we prove that this notion of safety is an invariant

main.tex; 2/06/2006; 12:38; p.18

19

of the defensive virtual machine execution. Thus, at any time of the
execution, the abstraction of the considered defensive state is equal to
the corresponding typed state computed by the bytecode verifier on the
type virtual machine. With the assumption that bytecode verification
has been successful (no typed state is an error state), it ensures that
the defensive execution never reaches an error state.

The proof of the invariance of the notion of safety distinguishes the
scope of each instruction, as commented in Section 2.4. We assume a
state s to be safe. In order to prove that d_exec s is safe we need to
prove the following statements.

− If the instruction pointed by s is an intra-procedural instruction
(i.e. remains in the same frame) then s and d_exec s must have
the form (Cons f lf) and (Cons f’ lf) respectively, and we have
to prove that:

a_exec (alpha f) = (alpha f’)

These results are provided by the cross-validation (see Section 2.2.5).

− To guarantee the soundness of typed method invocation or re-
turn instructions w.r.t corresponding defensive virtual machine
instructions, we have to introduce two functions a_INVOKE_add and
a_INVOKE_ret that correspond to the behavior of a_INVOKE, which
simulates the modifications made by the defensive virtual machine
on a frame when the control flow is given to the invoked method
and when it returns to the invoker method. These functions must
ensure a_INVOKE f = a_INVOKE_ret (a_INVOKE_add f).

Then, for the d_INVOKE instruction, s must have the form (Cons f lf),
d_INVOKE (s) the form (Cons f’ (Cons f’’ lf)) with
alpha f’’ = (a_INVOKE_add (alpha f)), and we have to prove
that:

(init (d_method f’))) = (alpha f’)

− For the d_RETURN instruction, then s must have the form
Cons f’ (Cons f lf)), d_RETURN (s) the form (Cons f’’ lf) and
we must prove that:

(a_INVOKE_ret (alpha f)) = (alpha f’’)

At this point, the architecture of the FW phase can now be summa-
rized as in Figure 4. Further complications arise in an object-oriented
setting where the latter statement must be relaxed to account for sub-
typing, and where an explicit treatment of exceptions must be provided,
see [5].

main.tex; 2/06/2006; 12:38; p.19

20

invocation

proofs

User Input

Defensive VM

function
BCV for
Defensive VM

Polyvariant
Analysis

Analysis

Hybrid
Analysis

Cross−
validation

Abstraction

correctness

Jakarta MonovariantTyped VM

Figure 4. Architecture of the FW phase

3. The Jakarta Specification Language JSL

We now start our presentation of the tool Jakarta, that provides tools
support for the VM phase, with the description of its specification
language.

JSL is a small language for describing virtual machines. In a nutshell,
a JSL theory is given by a set of declarations that introduce first-order
polymorphic datatypes and their constructors and by a set of func-
tion definitions introducing function symbols and their computational
meaning via conditional rewrite rules of the form [3, 11]:

l1→r1,...,ln→rn⇒ g → d

A specificity of JSL is to require the right-hand sides of the conditions
to be patterns with fresh variables (a pattern is a linear term built
from variables and constructors); left-hand sides of the conditions are
arbitrary JSL expressions. Such a format of rewriting seems unusual but
is closely related to pattern-matching in functional programming and
proof assistants and is also well adapted for automating abstractions,
as shall be discussed in Section 3.3.

Figure 5 gives an example of a JSL specification with the IIF byte-
code, which corresponds to the function described on page 9 with
pattern-matching.

3.1. JSL syntax and execution model

JSL terms are first-order terms built from variables (from a set V of vari-
ables) and constant symbols. The latter are either constructor symbols
(from a set C of function symbols) introduced by datatype declarations,
or defined symbols (from a set D of function symbols) introduced by
function definitions. Finally, every constructor/function symbol comes
equipped with its arity, i.e. we assume an arity function ar : (C∪D)→ N.

main.tex; 2/06/2006; 12:38; p.20

21

function d_IIF : pcs → d_state → d_rstate :=

<d I IF ru l e 1>
head (d_opstack s) → Some (d_Int z0),
zeq_bool z0 ZERO → True
⇒ d_IIF p s → d_Normal (Mk_d_state (tail (d_opstack s))

(d_locvars s) p);

<d I IF ru l e 2>
head (d_opstack s) → Some (d_Int z0),
zeq_bool z0 ZERO → False
⇒ d_IIF p s → d_Normal (Mk_d_state (tail (d_opstack s))

(d_locvars s)
(succ (d_pc s)));

<d I IF ru l e 3>
head (d_opstack s) → Some (d_RA n)
⇒ d_IIF p s → d_Abnormal type_error;

<d I IF ru l e 4>
head (d_opstack s) → None
⇒ d_IIF p s → d_Abnormal opstack_error.

Figure 5. Example of JSL specification: d IIF

We assume the reader to be familiar with standard notions such as
subterms, occurrences, substitutions, and the associated notations; in
particular var(e) denotes the set of variables of an expression.

DEFINITION 3.1.1.

− Expression. The set E of expressions is defined by:

E := V | C E∗ | D E∗

where for h ~e ∈ E with h ∈ C ∪D, it is assumed that ~e is of length
ar(h).

− Pattern. The set P of patterns is the subset of E defined by:

P := V | C P∗

where, in c ~p ∈ P with c ∈ C, variables are pairwise distinct
(linearity condition) and such that ~p is of length ar(c).

− Rewrite rule. Given f ∈ D, an f-rule is a rule of the form:

l1 → r1, . . . , ln → rn ⇒ g → d

where:

main.tex; 2/06/2006; 12:38; p.21

22

• ~ri ∈ P, ~li, g, d ∈ E, and g = f ~x where ~x ∈ V are pairwise
distinct;

• ∀1 ≤ k ≤ n var(lk) ⊆ var(g) ∪ var(r1) ∪ . . . ∪ var(rk−1) and
var(d) ⊆ var(g) ∪ var(~ri);

• var(rk) ∩ var(g) = ∅ and var(rj) ∩ var(rk) = ∅ if j 6= k;

Conditional rewriting is defined in the following way.

DEFINITION 3.1.2 (JSL Execution model). Let R be a set of rewrite
rules. An expression s R-rewrites to t, written s→R t, if there exists a
rule r ∈ R of the form: l1 → r1, . . . , ln → rn ⇒ g → d, a position p
in s and a substitution θ such that:

s|p = θg and t = s[p← θd] and θli →∗
R θri for 1 ≤ i ≤ n

where →∗
R is the reflexive-transitive closure of →R, s|p denotes the

subterm of s at position p, and s[p ← x] denotes s where s|p has been
replaced by x.

When the conditions θli →∗
R θri for 1 ≤ i ≤ n are satisfied, we say

that substitution θ matches the conditions of r.

In the following, we define particular pairs of rules that may appear
during abstractions (see Section 4).

DEFINITION 3.1.3. Given two rules r1 and r2 of a function f :

− r1 and r2 are overlapping if there exists a substitution of the
parameters of f that matches the conditions of both r1 and r2

(critical pairs);

− r1 is redundant with r2 if r1 and r2 are overlapping and return
the same result (trivial critical pairs), this relation is symmetric;

− r1 subsumes r2 if r1 is redundant with r2 and any substitution
matching the conditions of r1 also matches the conditions of r2,
this relation is not symmetric.

3.2. JSL types

JSL types are built from type variables (VT), datatype symbols (Td),
abstract type symbols (Ta) and synonym type symbols (Ts). Type
symbols come equipped with an arity, i.e. we assume a function arT :
(Td ∪ Ta ∪ Ts)→ N.

main.tex; 2/06/2006; 12:38; p.22

23

DEFINITION 3.2.1. The set T of types is defined as follows:

T ::= VT | Td T ∗ | Ta T ∗ | Ts T ∗

where in d ~t, with d ∈ Td ∪ Ta ∪ Ts, it is assumed that ~t is of length
arT (d).

To constructor and function symbols are assigned (first-order) type
schemes, i.e. closed expressions of the form ∀α1 . . . αm. σ1 → · · · →
σn → τ where α1 . . . αm ∈ VT and σ1 . . . σn ∈ T . Formally, we assume
given for each constructor/function symbol h a declaration of the form
h : ρ where ρ is a type scheme.

As usual, expressions are type checked relative to a context in which
variables have assigned types. Because of type synonyms, the type
checking is done modulo the type synonyms relation, denoted by =δ.

DEFINITION 3.2.2. A context is a sequence of the form x1 : σ1, . . . , xk :
σk where x1 . . . xk are pairwise disjoint variables and σ1 . . . σk are types.
A type judgment is a triple the form Γ ` e : t, meaning that e is of type
t in the context Γ. The typing relation is given by the rules of Figure 6.

Rules are type-checked in the usual way, i.e. a rule l1 → r1, . . . , ln →
rn ⇒ g → d is well-typed in a context Γ iff there exists a context ∆
containing all the free variables occurring in g and the ris, and such that
Γ,∆ ` g, d : σ and Γ,∆ ` li, ri : τi for 1 ≤ i ≤ n. Note that the context
∆ may be computed from the type declaration of function/constructor
symbols. The notation t{~αi := ~τi} in (Tinst), where t is a type, means
t where αi’s have been substituted by τi’s. The rule (Tinst) allows to
instantiate the type of a polymorphic functions with concrete types.
Finally a function is well-typed if all its rules are well typed.

3.3. The Jakarta Prover Interface

JSL specifications may be translated almost directly to prototyping
environments based on rewriting such as ELAN or automatic theorem
provers such as SPIKE.

It is also possible to translate JSL specifications into the format
of proof assistants, that represent (recursive) definitions using pattern
matching and case expressions instead of rewrite rules. Indeed, the
syntactical constraints imposed on conditional rewrite rules yield a
direct connection with functional languages and proof assistants, whose
specification languages feature a specific construct for case analysis.
Intuitively, a nested case analysis in a functional programming language
may be viewed as a tree where each non-leaf node is labelled by a

main.tex; 2/06/2006; 12:38; p.23

24

(Tbase)
(x : σ) ∈ Γ
Γ ` x : σ

(Tinst)
f : ∀α1 . . . αm.σ1 → · · · → σn → σ ~τi ∈ T

Γ ` f : (σ1 → · · · → σn → σ){~αi := ~τi}

(Tconv)
Γ ` t : σ′ σ =δ σ′

Γ ` t : σ

(Texpr)
Γ ` f : σ1 → · · · → σn → σ Γ ` t1 : σ1 . . . Γ ` tn : σn

Γ ` f t1 . . . tn : σ

Figure 6. Typing rules

condition of the form e→ p where p is a pattern, and where leaf nodes
are labelled by rewrite rules. Jakarta associates a conditional rewrite
rule to each path (from root to leaf) in the tree.

On the other hand, no constraint enforces exhaustiveness or conflu-
ence of the rewrite rules defining a function, which means that partial
and non deterministic functions can be defined in JSL. In particular,
not all JSL specifications can be mapped back into case-expressions. For
some JSL specifications, we may apply standard program transforma-
tions to obtain another specification which may be translated into a case
expression. In particular, we apply the lift monad to make partial func-
tions from A to B into total functions from A to B⊥, or the list monad
to make non-deterministic functions from A to B into deterministic
functions from A to B?. For some specifications however, the translation
to case expressions is just impossible; such a limitation is inherent to the
translation of term-rewriting systems into languages where recursive
definitions are given through the combination of fixpoint definitions
and case analysis. Further, case expressions that are produced from
well-typed JSL specifications may still be considered ill-formed by the
target system, in particular because proof assistants usually reject non-
terminating functions. However, such limitations have not turned out
to be a problem in practice.

On a practical level, the translation from JSL to programming lan-
guages and proof assistants is performed via the intermediate language
JIR described in Section 2.1 from which we target several proof as-
sistants. Currently, Jakarta provides a means to translate JSL specifi-
cations to the proof assistants Coq, Isabelle, and PVS. Furthermore,
we provide a translation from Coq to JSL so as to reuse existing Coq

main.tex; 2/06/2006; 12:38; p.24

25

developments and a translation from JSL to OCaml [34] for an efficient
execution of JSL specifications.

3.4. Running example in JSL

In this section, we provide excerpts from the JSL specification of the
running example of the introduction. The JSL specification is generated
automatically from the JIR specification using Jakarta built-in tools
(see Section 3.3). Notice that, as exlained in Section 2, the definition of
states as a record has been translated into an inductive type with one
constructor whose arguments correspond to the fields of the record.
Accessor functions (d_opstack, d_locvars and d_pc) are defined as
follows:
function d_opstack : d_state→(list d_val) :=
⇒(d_opstack (Mk_d_state opstack0 locvars0 pc0))→opstack0.

function d_locvars : d_state→(list d_val) :=
⇒(d_locvars (Mk_d_state opstack0 locvars0 pc0))→locvars0.

function d_pc : d_state→pcs :=
⇒(pc (Mk_d_state opstack0 locvars0 pc0))→pc0.

function d_update_ops : (list d_val)→d_state→d_state :=
⇒(d_update_ops ops s) →

(Mk_d_state ops (locvars s) (succ (d_pc s))).

To complement the JSL function d_IIF of Section 3 and illustrate
the abstractions of the following sections, we also give as an example
the definition of the bytecode tLOAD that pushes in the operand stack
the content of a local variable.
function d_tLOAD : vm_type →locvars_idx →d_state →d_rstate :=

<d tLOAD rule 1>
nth_elt (d_locvars s) l →(Some x) , x →(d_Int z0)
⇒d_tLOAD tInt l s →

d_Normal (d_update_ops (Cons x (d_opstack s)) s);

<d tLOAD rule 2>
nth_elt (d_locvars s) l →(Some x) , x →(d_RA p)
⇒d_tLOAD tInt l s →d_Abnormal type_error);

<d tLOAD rule 3>
nth_elt (d_locvars s) l →(Some x) , x →(d_Int z0)
⇒d_tLOAD tRA l s →d_Abnormal type_error);

<d tLOAD rule 4>
nth_elt (d_locvars s) l →(Some x) , x →(d_RA n)
⇒d_tLOAD tRA l s →

main.tex; 2/06/2006; 12:38; p.25

26

d_Normal (d_update_ops (Cons x (d_opstack s)) s));

<d tLOAD rule 5>
nth_elt (d_locvars s) l →None
⇒d_tLOAD t l s →d_Abnormal locvar_error).

The full JSL specification for this example (including representation
and operations on primitive datatypes such as z) is around 800 lines
long.

3.5. Discussion

The main justification for the format of JSL specifications is that the
automatic transformation of specifications is greatly facilitated if the
specification language is simple and so designed that specifications lend
themselves well to the transformations. The latter consideration is the
main justification for the format of JSL specifications. Concretely, pat-
tern matching is less adapted than rewrite rules for abstraction because:
(1) an abstraction needs to treat differently each path in a pattern-
matching, which make the rule presentation easier to manipulate since
each rule corresponds to one path; (2) an abstraction may introduce
non-deterministic and non-total functions, which are again easier to
express with rewrite rules rather than with pattern matching.

Readability is another important consideration when designing a
specification language. Of course, readability is not directly influenced
by the simplicity of the specification language in which the specifica-
tions are written—quite on the contrary, richer specification languages
are often more likely to provide enough features for giving specifications
in a concise and intuitive form. One particular drawback of JSL in
comparison with specifications based on pattern-matching is its ver-
bosity, which is apparent when comparing the JSL and JIR semantics
of the IIF bytecode. Nevertheless, there are some potential benefits
in providing JSL specifications instead than specifications based on
pattern-matching: firstly, the presentation of a language semantics with
rules is closer to informal practice. Secondly, the presentation may omit
error cases, which is not possible if exhaustive pattern-matching is re-
quired. However, Jakarta is a proof-of-concept software whose aim is to
establish the possibility of automating the synthesis of the offensive and
typed machine and the proofs of cross-machine validation. Therefore,
we have not put the necessary effort to turn JSL into a more readable
specification language.

Instead, we exploit translation mechanisms between JIR/(fragment
of) ML/(fragment of) Coq and JSL, and proceed as follows: first, we
write the specification in JIR, ML or Coq, and then translate it to
JSL for abstraction, and finally translate the generated specifications

main.tex; 2/06/2006; 12:38; p.26

27

back, using information collected during the abstraction to generate
Coq scripts that establish cross-machine validation.

4. The Jakarta Transformation Kit JTK

The Jakarta Transformation Kit is a tool to transform JSL specifica-
tions. Currently the JTK only supports transformations by abstraction,
which are needed in the construction and certification of the BCV. The
input of the JTK is the specification to transform and a description of
this transformation written in an abstraction script.

4.1. Principles

The objective of the JTK is to compute, with minimal user interaction,
the abstraction Ŝ of a JSL specification S. The abstracted specification
Ŝ is constructed in three successive steps:

1. the user provides for each datatype T needed in the abstraction of
S a corresponding abstract datatype T̂ together with an abstraction
function αT from T to T̂; abstraction functions are written in (or
translated to) JSL, but must only use unconditional rewriting;

2. the user builds an abstraction script that guides the abstraction
process in places where automatic procedures are inappropriate.
The script consists of a set of commands, whose purpose and effect
is detailed below;

3. based on the inputs of the previous steps, the JTK constructs
automatically for each function f: T1 →...→Tn → U of S its ab-
stract counterpart f̂:T̂1 →...→T̂n → Û. Unless indicated otherwise
by the abstraction script, the function f̂ is constructed by a syn-
tactic translation on the rewrite rules defining f, followed by a
cleaning phase where vacuous conditions and rules (e.g. tests over
expressions deleted by the abstraction) are removed.

We illustrate in Section 4.5 the abstraction process with the synthe-
sis of offensive and typed virtual machines of the running example.

4.2. The default abstraction mechanism

The default abstraction mechanism takes as input a JSL specification S,
which consists of datatypes, type definitions, and function definitions,
and for each datatype and type definition T of S:

main.tex; 2/06/2006; 12:38; p.27

28

− a corresponding datatype and type definition T̂ for the output
specification;

− an abstraction function α : T → T̂ .

Note that we require the user to provide an abstract counterpart for
type definitions in those cases where the type definition needs to be
abstracted differently from its definiens.

Abstracting types We require that abstraction functions of parame-
terized datatypes, such as lists, are also parameterized. Hence we can
define inductively a corresponding abstract type T̂ and an abstraction
function α : T → T̂ for every type of the input specification S.

Abstracting expressions In order to abstract expressions, we use the
abstraction functions α : T → T̂ between datatypes. In order to guaran-
tee that closed patterns are abstracted into closed patterns, we require
that abstraction functions α are defined in JSL by rules of the form

⇒ α(c x_1 ... x_n) → t

where c is a constructor and t a JSL term such that for every substi-
tution σ mapping x1 . . . xn to closed patterns, σt reduces to a pattern.
The simplest case is when t itself is a pattern. In other cases, such as
the definition of the offensive abstraction, we use auxiliary functions
and these functions must be evaluated for returning a pattern. There-
fore, abstraction of expressions is performed inductively, with two main
cases:

− if c is a constructor whose abstraction rule is

⇒ α(c x_1 ... x_n) → t

and t is a pattern, then the abstraction of c u_1 ... u_n is
t [x_1:= u_1 ... x_n:= u_n], where .[.:=.] is used to denote
substitution;

− if c is a constructor whose abstraction rule is

⇒ α(c x_1 ... x_n) → t

and t is not a pattern, then the abstraction of c u_1 ... u_n is
the result of partially evaluating t [x_1:= u_1 ... x_n:= u_n].
The idea here is to evaluate t but not the u_i.

main.tex; 2/06/2006; 12:38; p.28

29

In the sequel, we let dte denote the abstraction of t.

Abstracting rules and functions The abstraction operator on expres-
sions is extended to rules and functions in the obvious way:

dl1 → r1, . . . , ln → rn ⇒ l→ re ;
dl1e → dr1e, . . . , dlne → drne ⇒ dle → dre

dfunction f :
−→
T := d.e ; function f̂ : ~̂T := dde.

Cleaning phase After this rewriting stage, the specification is entirely
checked. If an expression is not well formed then it is removed and
can lead to rule removal or even function removal. If an expression is
not well typed then coercions are used if possible, otherwise an error is
raised. Coercions are used for example in the offensive abstraction to
map return addresses to integers.

Note that the need for coercions arises from the possibility of ab-
stracting types that are equal w.r.t. δ-conversion into completely dif-
ferent types. One possibility would be to proceed in two passes. The
first pass would make explicit in expressions the use of δ-conversion in
typing derivations, in the same way that order-sorted algebra can be
reduced to many-sorted algebra. The second pass would then be the
application of the abstraction mechanism without coercions.

4.3. Commands of the abstraction script

The Jakarta Transformation Kit relies on abstraction commands to
control the abstraction process. Each command has general form:

<COMMAND> ::= <command> <target>list [by <expr>] [in
<scope>list]

The field target specifies which syntactic compounds trigger the
command. The optional field by expr is used in substitution commands
to specify the syntactic compounds by which targets must be replaced.
The optional field in scope determines in which part of the JSL speci-
fication the command <command> must be performed; by default the
scope of a command is the whole specification.

The form of the scope and target fields uses a notion of position
inside a specification. Positions will be denoted by expressions of the
form f.i.j.k, where f is the name of a function, i a rule number, j a
condition number (lj → rj or g → d if j = 0), k ∈ {1, 2} designate left
or right member of a condition. Thus the ith rule of function f is given
by the scheme:

f.i.1.1→ f.i.1.2, . . . , f.i.n.1→ f.i.n.2⇒ f.i.0.1→ f.i.0.2

main.tex; 2/06/2006; 12:38; p.29

30

The forms of target and scope are given by the following:

<target> ::= <f > | <f >.<pos> | <f >@<nat> | <expr>

<scope> ::= <f > | <f >.<pos>
<pos> ::= <nat> | <nat>.<nat>

| <nat>.<nat>.1 | <nat>.<nat>.2

where <f >.<pos> denotes a position in the function f as described
above, and f@i denotes the ith argument of f (see commands drop
and select in Figures 7 and 8).

Commands fall into three categories: discarding commands, substi-
tution commands and post-processing commands. Figure 7, 8 and 9
describe informally the effect of each command. A more precise de-
scription of main commands is given at section 4.4.

Discarding commands (Figure 7) specify which patterns in expressions
are unwanted and must be deleted. For example, to generate an offen-
sive VM, discarding commands are used to remove all type verifications.
Another use of these commands is for removing overlapping rules in the
abstracted specification.

Abstraction command Effect

drop largloc Removes the arguments listed in largloc.
drop f@i replaces (f x1...xi...xn) by
(f x1...xi−1 xi+1...xn)

delete ltarget Removes all (occurrences of) elements de-
scribed by ltarget.

reject lexp If rules with same preconditions and differ-
ent conclusion are encountered, remove rules
containing exp ∈ lexp.

Figure 7. Discarding commands

Substitution commands (Figure 8) specify coercions and substitutions
that should be used during the translation of rewrite rules. Substitution
commands are used for example to replace dynamic method lookup by
static lookup in the typed semantics of Java Card method invocation.

Post-processing commands (Figure 9) deal with functions which may
have become non-deterministic or non-total during abstraction. Post-

main.tex; 2/06/2006; 12:38; p.30

31

Abstraction command Effect

coercion lfname Functions of lfname are declared as coer-
cions in case of typing errors during by the
translation phase.

select largloc select f@i replaces (f x1...xi...xn) by
xi

replace ltarget by target Replaces elements of ltarget by target.

Figure 8. Substitution commands

processing commands are used for example to collect all possible return
states into lists during the construction of the typed VM.

Abstraction command Effect

determine lfname Transforms the functions in lfname in order to
make them deterministic (by collecting results
in a list). The transformation is propagated
consequently.

totalize lfname Transforms the functions in lfname in or-
der to make them total (lifting types). The
transformation is propagated consequently.

Figure 9. Post-processing commands

4.4. Towards a rewriting semantics of abstraction
commands

A function definition can be seen as a set of rewrite rules, and abstrac-
tion commands, which specify how to transform function definitions,
are actions that operate upon sets of rewrite rules. With the exclusion
of coercion, determine and totalize, these actions can be given a
precise semantics in terms of rewriting rules. These rules are applied
to the specification (or to a part of the specification if the scope field
is specified) during the abstraction.

The command replace t by u corresponds to the following rewrit-
ing rule added to the default mechanism described above. Such added

main.tex; 2/06/2006; 12:38; p.31

32

rules are applied instead of the default mechanism when possible.

dte ; u

delete t is expressed by:
dte ; ε

where ε is the empty expression. Expressions containing ε are ill-formed
and will be removed by the cleaning phase explained above. Removing
an expression can lead to remove the whole rule if it becomes itself
ill-formed (for instance if ε appears in the conclusion).
select f@i corresponds to:

df −→t1,ne ; dtie
We see that an effect of this rule is that f will not be called in the
abstracted specification, therefore it will not be abstracted at all.
drop f@i is expressed by:

df −→t1,ne ; f̂
−−−−→
dt1,i−1e

−−−−−→
dti+1,ne

dfunction f :
−−→
T1,n := d.e ; function f̂ :

−−−−−→
dT1,i−1e →

−−−−−→
dTi+1,ne := dde.

where the second rule rewrites the type of function f , and
−−→
Tn,m stands

for the arrow type Tn → ... → Tm. reject e is expressed by a rewrite
rule applying to sets of rules:

d X ⇒ t→ C[e] ; X ⇒ t→ u e; dX ⇒ t→ ue
where C[e] is a context, i.e. a term containing an occurrence of e, and
X is a list of conditions. In this rule the symbol ”;” is associative-
commutative and therefore, the place and order in which the two rules
appear in the function is not important.

4.5. Running example in JTK

In this section, we will continue to illustrate the action of Jakarta on
our running example, describing abstraction functions and scripts used
to generate the offensive and typed virtual machines.

4.5.1. Offensive abstraction
In order to obtain the offensive virtual machine from the defensive
virtual machine, we first need to describe datatypes of the target virtual
machine as well as abstraction and coercion functions. For this virtual
machine, the notion of value is restricted to a numerical value. The
corresponding notion of states and abstractions functions are easily

main.tex; 2/06/2006; 12:38; p.32

33

defined. Notice that return addresses values are now assigned the same
type z as values, since it is not possible any more to distinguish these
values from their virtual machine type.

function alpha_do_val : d_val →o_val :=
⇒alpha_do_val (d_Int v) →v ;
⇒alpha_do_val (d_RA n) →(n2z n).

function alpha_do_lval : (list d_val) →(list o_val) :=
⇒alpha_do_lval Nil →Nil;
⇒alpha_do_lval (Cons x y) →

Cons (alpha_do_val x) (alpha_do_lval y).

function alpha_do : d_state →o_state :=
⇒alpha_do (Mk_d_state ops loc p)
→ (Mk_o_state (alpha_do_lval ops) (alpha_do_lval loc) p).

function alpha_da_rstate : d_rstate →o_rstate :=
⇒alpha_do_rstate (d_Normal js) →(o_Normal (alpha_do js));
⇒alpha_do_rstate (d_Abnormal x) →(o_Abnormal x).

As discussed in Section 4.6, datatypes and functions following the
definition alpha_do_val could be automatically generated since they
are just iterators.

The script for the abstraction, given below, introduces with the
keyword abstract the function to abstract, here d_exec (all depending
sub-functions will also be abstracted), the functions to use for the ab-
straction, the prefix to add to the generated functions, some commands
for the abstraction, some coercions to apply in case of type mismatch
detected by the type checker and names of output files. In our case,
these commands will be limited to remove rules leading to the error
case type_error, since it becomes irrelevant for the offensive virtual
machine. Without the command coercion, functions manipulating RA

values would produce typing errors during the abstraction process.

abstract d_exec

with alpha_do_val alpha_do_lval alpha_do alpha_do_rstate
prefix o_

delete type_error

coercion n2z z2n

into jcvm_off_functions log jcvm_log

We now turn to the generated functions for IIF and tLOAD. We notice
that they indeed use the new datatypes and that irrelevant rules have
been deleted.

main.tex; 2/06/2006; 12:38; p.33

34

function o_IIF : pcs→o_state→o_rstate :=
<o IIF rule 1>
o_head (o_opstack s) →(Some z0),
zeq_bool z0 ZERO →True
⇒o_IIF p s →(o_Normal (Mk_o_state (o_tail (o_opstack s))

(o_locvars s) (z2n p)));

<o IIF rule 2>
o_head (o_opstack s) →(Some z0),
zeq_bool z0 ZERO →False
⇒o_IIF p s →(o_Normal (Mk_o_state (o_tail (o_opstack s))

(o_locvars s) (succ (z2n (o_pc s)))));

<o IIF rule 4>
o_head (o_opstack s) →None
⇒o_IIF p s →(o_Abnormal opstack_error).

function o_tLOAD : vm_type→locvars_idx→o_state→o_rstate :=
<o tLOAD rule 1>
o_nth_elt (o_locvars s) l →(Some x)
⇒o_tLOAD t l s →

(o_Normal (o_update_ops (Cons x (o_opstack s)) s));

<o tLOAD rule 5>
o_nth_elt (olocvars s) l →None
⇒o_tLOAD t l s →(o_Abnormal locvar_error).

4.5.2. Typed abstraction
Datatypes and abstraction functions for the typed abstraction, given
below, are similar to the ones of the offensive abstraction. The numeri-
cal value of integer value is lost, however the value associated to return
addresses must be kept since it is needed for subroutines control flow.

function alpha_da_val : d_val →a_val :=
⇒alpha_da_val (d_Int v) →a_Int ;
⇒alpha_da_val (d_RA n) →(a_RA n).

function alpha_da_lval : (list d_val) →(list a_val) :=
⇒alpha_da_lval Nil →Nil;
⇒alpha_da_lval (Cons x y) →

Cons (alpha_da_val x) (alpha_da_lval y).

function alpha_da : d_state →a_state :=
⇒alpha_da (Mk_d_state ops loc p)
→ (Mk_a_state (alpha_da_lval ops) (alpha_da_lval loc) p).

function alpha_do_rstate : d_rstate →a_rstate :=
⇒alpha_da_rstate (d_Normal js) →(a_Normal (alpha_da js));
⇒alpha_da_rstate (d_Abnormal x) →(a_Abnormal x)

main.tex; 2/06/2006; 12:38; p.34

35

The script for the type abstraction includes a command determine

that collects all possible results for a_IIF into a list. Note that without
this command, the abstraction of d_IIF would be non-deterministic,
because numerical values on which d_IIF operates is lost and Jakarta
would raise a warning (observable in the program output and in the
log file).

abstract d_exec

with alpha_da_val alpha_da_lval alpha_da alpha_da_rstate
prefix a_

determine a_IIF

into jcvm_a_functions log jcvm_log

The functions generated by the abstraction follow. Notice in partic-
ular the list returned by the function a_IIF as an effect of the command
determine.

function a_IIF : pcs→a_state→(list a_rstate) :=

a_head (a_opstack s)→(Some a_Int)
⇒(a_IIF p s)→
(Cons (a_Normal (Mk_a_state (a_tail (a_opstacks))

(a_locvars s) p))
(Cons (a_Normal (Mk_a_state (a_tail (a_ops tack s))

(a_locvars s) (succ (a_pc s))))
Nil));

a_head (a_opstack s)→(Some (a_RA n))
⇒a_IIF p s→(Cons (a_Abnormal type_error) Nil).

a_head (a_opstack s)→None
⇒a_IIF p s→(Cons (a_Abnormal opstack_error) Nil);

function a_tLOAD : vm_type→locvars_idx→a_state→a_rstate :=

<a tLOAD rule 1>
a_nth_elt (a_locvars s) l →(Some x) , x →a_Int
⇒a_tLOAD tInt l s →

(a_Normal (a_update_ops (Cons x (a_opstack s)) s));

<a tLOAD rule 2>
a_nth_elt (a_locvars s) l →(Some x), x →(a_RA p)
⇒a_tLOAD tInt l s →(a_Abnormal type_error);

<a tLOAD rule 3>
a_nth_elt (a_locvars s) l →(Some x) , x →a_Int
⇒a_tLOAD tRA l s →(a_Abnormal type_error);

main.tex; 2/06/2006; 12:38; p.35

36

<a tLOAD rule 4>
a_nth_elt (a_locvars s) l →(Some x) , x→(a_RA p)
⇒a_tLOAD tRA l s →

(a_Normal (a_update_ops (Cons x (a_opstack s)) s));

<a tLOAD rule 5>
a_nth_elt (a_locvars s) l →None
⇒a_tLOAD t l s →(a_Abnormal locvar_error).

4.6. Limitations

The abstraction engine is at an experimental stage of development,
and suffers from a number of limitations that affect the size of scripts
negatively. Below, we detail some of the limitations, that appear most
often in abstractions, and discuss possible simple solutions.

Lack of default abstractions The abstraction functions alpha_do_lval,
alpha_do and alpha_do_rs of the offensive abstraction script page 4.5.1
are just iterators of the function alpha_do_val for types list, state and
rstate. It would be desirable to implement a mechanism that builds
abstraction functions automatically for any inductive type containing
val using standard techniques.

Lack of code optimization Another limitation of Jakarta is the lack
of optimizations in the specifications produced by the abstraction. In
particular, if all rules of a pattern matching return the same result, the
pattern matching could be deleted and the different rules collapsed into
a single one.

Detecting redundant rules The abstraction process may generate over-
lapping rules. In the general case, overlapping rules are a source of
non-determinism that should be handled by the user through the ab-
straction script. However, in practice, it is often the case that over-
lapping rules are ordered by the subsumption relation between rules
(one rule is a special case of the other, see Section 3.1.3), and do
not cause any non-determinism. In order to obtain a non-overlapping
rewriting system, one should keep the most general rewrite rule, and
eliminate the other subsumed rules. Unfortunately, the detection of
redundant rules is currently done by pure syntactical rule comparison,
and the user is forced to insert a command in the script to delete other
redundant rules. It would be preferable to resort to unification tests
that would detect more redundant rules automatically—of course it is
undecidable in general whether a set of rules is redundant, in particular
it is hard to know if two overlapping rules return the same result. This

main.tex; 2/06/2006; 12:38; p.36

37

would however lead to a significant simplification of the abstraction
scripts. See Section 6.2.3 for an example of redundant rules undetected
by Jakarta (function res_null).

Type inference and type synonyms In a large specification, it is often
convenient to define types, say T1, . . . , Tn, as synonyms to a type T .
Such a situation occurs when elements of different sets have to be ma-
nipulated in the same way. For instance, it is very convenient to specify
the different types of indexes as synonyms of the type of naturals. The
abstraction process may fail if these types have to be abstracted to
different types. The main reason lies in the fact that it is not simple,
when analyzing an expression to abstract, to infer the right type and
decide which abstraction function to use. A work around is to explicitly
disambiguate such situation by adding abstraction commands in the
script. However, it would be desirable to improve the interaction with
the type-checker in order to solve such ambiguities automatically.

5. The Jakarta Automation Kit JAK

In order to cross-validate the virtual machines, we have been develop-
ing a repository of tools that generate the statements and proofs of
auxiliary lemmas required in order to show that diagrams commute,
as shown in Figures 2 and 3. Generated proofs are provided as proof
scripts that must be compiled, and use purpose-built tactics to reason
about recursive functions and to perform rewriting.

For the moment only Coq output has been completely implemented.
The amount of work needed to extend to another prover depends on
which tactics are available in the targeted prover. For example the
automatic first-order prover SPIKE already has the kind of induction
(via so-called implicit induction) needed. Isabelle has been equipped
with such tactics too (using K. Slind’s TFL [40]). However the main
part of the mechanism (lemma generation) is prover independent: all
information on auxiliary lemmas is stored in a prover independent data
structure. Of course, the way the automation kit has to formulate and
prove lemmas strongly depends on the target prover and the kind of
proofs we want to achieve. We discuss briefly the interest of an inde-
pendent intermediate language for this purpose, which is ongoing work,
in our conclusion.

Currently the Coq specific part is implemented in a quite ad-hoc
manner (see Section 5.4), i.e. the user has some limited control on
the generated lemmas via several commands in the abstraction script
but some of these commands are not prover independent. A list of the

main.tex; 2/06/2006; 12:38; p.37

38

current features available in the abstraction script for lemmas alteration
follows:

− Add preconditions to lemmas in a prover independent syntax using
the keyword addprecond;

− Replace the proof script of a lemma directly by arbitrary text if
the generic mechanism is not adapted (this was very rare in our
examples);

− Add arbitrary text (for example additional lemmas in Coq syntax)
to proof scripts.

We will only mention addprecond (Section 5.1 and Figure 14) in the
following, as others are hardly used in our examples.

5.1. Automatic generation of commutation lemmas

In order to prove the commutation diagrams of Figures 2 and 3, we
have developed a procedure, plugged into the abstraction engine, that
generates an auxiliary lemma for each abstracted function of the spec-
ification. More precisely, let f be a function, f̂ its abstraction version
and α the global abstraction function, the corresponding lemma has
the following generic form:

∀−→xi .(Precf̂
−→xi) ⇒ (R α(f −→xi) f̂(α −→xi))

where:

− R is a binary relation definable in the target system. In the case
of the offensive abstraction, R is instantiated to =, whereas it can
be instantiated to ∈≤ (membership up to subtyping on the types
of the virtual machine) in the case of the typed abstraction of the
Java Card virtual machine (see Section 6);

− The predicate Precf̂ restricts the commutation of f and f̂ to the
desired cases. It is crucial that Precf̂ has the right formulation:
if Precf̂ is too restrictive, then we may be unable to prove the
global correctness of the virtual machine as a consequence of the
lemma; if it is not restrictive enough, we may be unable to prove
the lemma itself.

In fact, Precf̂ is a conjunction of premises excluding situations
where commutation is false, typically cases where a defensive func-
tion returns a type error must be excluded from commutation

main.tex; 2/06/2006; 12:38; p.38

39

lemmas of offensive abstraction. More generally, the form of the
premise Precf̂ is determined by the way the function f is ab-

stracted: each case where the abstraction makes f and f̂ different
must be added to Precf̂ because f and f̂ will not commute in
such cases. Connection between predicate Precf̂ and the global
cross-validation theorem is established at Section 5.2.

Precf̂ is also used to excluded cases that we will not prove with
Jakarta, as explained in Section 2.2.5. For example, we use this
feature in the typed VM to exclude cases where an exception
is thrown, since the correctness of the BCV in such cases is not
expressed in term of commutation.

Notice that we must prove this lemma for each abstracted function in
the specification. This eventually include the main (one-step) execution
function d_exec. See Section 5.2 on how the commutation of d_exec is
used to prove the main commutation theorem.

Conditionally add a precondition. Abstraction operations should not
always generate new preconditions. For example the delete command is
sometimes applied to delete redundant rules (see Sections 3.1.3 and 4.6)
in order to clean an abstracted function. In this case, delete should not
add a new premise to Precf̂ . On the other hand, delete is also used to
forget rules that are obsolete in the abstracted machine: type-checking
rules when doing offensive abstraction or exception-raising rules when
doing typed abstraction. These rules should be added to Precf̂ since
they correspond to non-commuting states.

In Jakarta, deletion of a rule, implied by a command c (delete or
reject), generates a new premise by default (see below how this is done)
unless the keyword [redundant] has been used in c (see Section 6.2.3
for an example).

There are four situations where the abstraction engine adds a premise
to a lemma: when deleting a conclusion or a precondition, when prop-
agating preconditions of a function g to a function f calling g, and
finally when the user adds a precondition by hand. We describe them
more precisely in the following, see Section 6.2 for examples.

Deleted conclusion. If r is a rule of the form: l1 → r1, . . . , ln →
rn ⇒ (f −→xi) → (...t...) and a command delete t is applied (without
the [redundant] variant) to remove t, then the following premise must
be added to Precf̂ : (f −→xi) 6= (...t...).
Some examples illustrating this case are the following:

main.tex; 2/06/2006; 12:38; p.39

40

− In the offensive abstraction, rules of the form: · · · ⇒ (f −→xi) →
(Abnormal type_error) are deleted by the command delete type_error.
So the precondition (f −→xi) 6= (Abnormal type_error) is added to
Precf̂ . This kind of precondition is also generated when a reject

rule is applied.

− Similarly, in the typed abstraction of the case study from Section 6,
preconditions of the form (f −→xi) 6= (ThrowException e) are gener-
ated because instructions that do not stay in the same frame do
not commute in the typed abstraction. As explained in Section 6.1,
Jakarta is not used for proof of correctness of the BCV for these
instructions.

Deleted preconditions. If r is a rule of the form: l1 → r1, . . . , ln →
rn ⇒ g → d and a command delete is applied (without the [redundant]
variant) to remove t, then if t appears in one li, and the rule r is deleted,
then the following premise is added to Precf̂ : ¬(l1 = r1∧· · ·∧ ln = rn).
Indeed, since r is deleted the result of the function will not commute
in the corresponding case. This kind of precondition is also gener-
ated when a rule is deleted directly by its name without redundant

(delete f.i.j.k), for the same reason.

Propagation of the premises. Since commutation of f and f̂ is a con-
sequence of the commutation of the auxiliary functions of f , Precf̂

may refer to Precĝ if g is in the dependency graph of f . More pre-
cisely, for each function g appearing in a rule r of f of the form:
l1 → r1, . . . , li → ri, (...(g −→xj)...) → ri+1, · · · ⇒ . . . if g is not
removed by the abstraction, the following premise is added to Precf̂ :
(l1 = r1 ∧ · · · ∧ li = ri)→ (Precĝ

−→xj).

Preconditions added by hand. We give the user the ability to add
preconditions by hand in the abstraction script. It is useful in rare cases
where the default preconditions are incomplete (see Section 6.3). These
preconditions are propagated as described in the previous paragraph.
The command adding a new precondition to the lemma corresponding
to the function f is the following:

addprecond <logicexpr> to f

where logicexpr is a property expressed in a basic logical language
with universal quantification, which is translated to the targeted theo-
rem prover during abstraction.

main.tex; 2/06/2006; 12:38; p.40

41

5.2. Automatic generation of the main theorem

The final lemma generated by the method described above expresses the
commutation of the main execution function d_exec with its abstracted
version. This gives the following for offensive and typed abstractions:

∀−→xi .(Preco_exec
−→xi)⇒

alpha_do (d_exec −→xi) = (o_exec (alpha_do −→xi)) (3)

∀−→xi .(Preca_exec
−→xi)⇒

alpha_da (d_exec −→xi) = (a_exec (alpha_da −→xi)) (4)

For the proof to be complete, the final lemma must imply the main
commutation theorem expressed by the commuting diagrams of Fig-
ures 2 and 3. Proving this last property actually reduces to proving
that generated preconditions Preco_exec and Preca_exec are not too
strong. We illustrate this for both theorems:

− In the offensive abstraction, the main commutation theorem is the
following.

∀−→xi .(d_exec −→xi) 6= type_error⇒
alpha_do (d_exec −→xi) = (o_exec (alpha_do −→xi)) (5)

Therefore, in order to have a complete proof of the commutation of
offensive and defensive virtual machines, it is necessary to prove:

∀−→xi .(d_exec −→xi) 6= type_error⇒ (Preco_exec
−→xi)

This lemma is trivial, since generated preconditions Preco_exec
exactly express the fact the execution does not lead to type_error.

− In the typed abstraction, no precondition is generated and the
main theorem is the following:

∀−→xi .alpha_da (d_exec −→xi) ∈ (a_exec (alpha_da −→xi))

However, for other abstractions, such as for CertiCartes (see Sec-
tion 6), preconditions might express the fact that no exception is
raised during the execution or the execution remains in the same
method.

main.tex; 2/06/2006; 12:38; p.41

42

5.3. Reasoning tactics

In order to automate the proofs of these lemmas, we have designed and
exploited Coq tactics that generate induction principles for recursive
functions. While being built for the purpose of cross-validation and for
Coq, these tactics are of general interest and their underlying principles
are applicable to other proof assistants, see [4] for more details. In
order to implement completely our methodology for another prover,
it is necessary to have similar tactics/strategies. Like we said above,
this is the case in SPIKE and Isabelle. In the following, we explain the
purpose of these tactics and how they have been implemented in Coq
specifically.

Induction principles are one of the powerful tools provided by proof
assistants like Coq. These principles are generated automatically for
relational specifications, and allow to reason by cases and by induction.
We have developed a similar mechanism for functional specifications.
In a nutshell, the induction principle of a function is built following the
shape of this particular function, and is particularly useful for reasoning
by case/induction on the possible branches of the definition of the
function. For example, the induction principle associated to the IIF

function has type:
∀ (Q : pcs → d_state → Prop),
(∀ (p : pcs) (s : d_state) (z0 : z),
(zeq_bool z0 ZERO)=True →
(head (d_opstack s))=(Some (d_Int z0)) → (Q p s)) →

(∀ (p : pcs) (s : d_state) (z0 : z),
(zeq_bool z0 ZERO)=False →
(head (d_opstack s))=(Some (d_Int z0)) → (Q p s)) →

(∀ (p : pcs) (s : d_state) (n : pcs),
(head (d_opstack s))=(Some (d_RA n)) → (Q p s)) →

(∀ (p : pcs) (s : d_state),
(head (d_opstack s))=None → (Q p s)) →

(∀ (p : pcs) (s : d_state), (Q p s))

Notice how the equalities capture the environment induced by the
branches of the corresponding match expressions, and can be used in
proofs. The IIF function is not recursive but our mechanism applies
equally well to recursive functions. Consider for example the function
which divides a natural number by 2. The function is given by the
following Coq definition (where S and O are the constructors of type
nat in Coq):
Fixpoint div2 (n : nat) : nat :=
match n with
| O ⇒ 0
| S m ⇒
match m with

main.tex; 2/06/2006; 12:38; p.42

43

| O ⇒ 0
| S n’ ⇒ S (div2 n’)
end

end.

Its associated induction principle is of type:

∀ (Q : nat → Prop),
(Q 0) →
(Q 1) →
(∀ (n’ : nat), (Q n’) → (Q (S (S n’)))) →
∀ (n :nat), Q n

The last branch contains an induction hypothesis (Q n’), which corre-
sponds to the recursive call in the last branch of div2.

The main components of the package are:

− A Coq command Functional Scheme which builds a general induc-
tion principle from the definition of a function f , i.e. a theorem of
the form:

(Q : ∀−→xi :
−→
Ti .P rop) (H1 : PO1)...(Hn : POn) → ∀−→xi :

−→
Ti .(Q −→xi)

where the POi’s are the proof obligations corresponding to each
branches of f , corresponding to (Q 0), (Q 1) and (∀ (n’:nat),

(Q n’) → (Q(succ(succ n’)))) in the example above, and −→xi ’s
correspond to the arguments of f (n above). To make an elimi-
nation, the user just applies the theorem. The advantage of this
method is that the structure of the function (and its type checking)
is not duplicated each time we make an elimination;

− A tactic functional induction which applies directly to a partic-
ular goal. This tactic allows far more automation because we can
replace automatically occurrences of case arguments in subgoals by
the pattern corresponding to each branch. We implemented a com-
plementary tactic called Rewall which performs rewriting using all
previous lemmas and hypothesis generated by functional induction.

5.4. Generation of proof scripts

The tactics described above are combined with standard tactics of
Coq in order to build a default proof script for each lemma gener-
ated by the method described in Section 5.1. Figure 10 shows the Coq
proof script generated for the commutation proof of the function d_IIF

main.tex; 2/06/2006; 12:38; p.43

44

(Section 2.2.2) and its offensive version o_IIF. The script includes the
definition of the predicate containing the premises of the lemma, here
the predicate has one premise corresponding to the deleted conclusion
due to the command delete type_error. Then comes the lemma itself
with the tactics following the scheme described in Section 6.1: first a
case analysis is made using the tactic described above, then equational
reasoning is used (tactic Rewall).

(∗ Predicate ∗)
Definition IIF_pred (p : pcs) (s : d_state) :=
(d_IIF p s) 6= (d_Abnormal type_error).

(∗ Unfold the predicate in automatic tactics ∗)
Hints Unfold IIF_pred : jcvmdb.

(∗ Commutation lemma ∗)
Lemma IIF_eq : ∀(p : pcs) (s:d_state), (IIF_pred p s) →
(o_IIF p (alpha_do s)) = (alpha_do_rstate (d_IIF p s)).

intros p s.
(∗ Induction/case step ∗)
functional induction d_IIF params p s;
trivial;intros __precond1;

(∗ Get rid of contradictory cases ∗)
try (elim __precond1;unfold o_IIF d_IIF;Rewall;auto;fail);

(∗ Equational reasoning using previous lemmas ∗)
repeat progress (Rewall;simpl;trivial);

(∗ Finish ∗)
auto with jcvmdb;eauto with jcvmdb.

Save.

(∗ Put this new lemma into databases for further equational reasoning ∗)
Hint Rewrite [IIF_eq] in jcvmdb
using solve [auto|simpl;auto|eauto 10].

Hint Resolve [IIF_eq] in jcvmdb.

Figure 10. Default Coq script for IIF

From the running example from Section 2, this default script is suffi-
ciently powerful to solve all commutation proofs without modification,
provided that we prove and register one auxiliary lemma stating that
for all p, (z2n (abstract_do_pcs p)) = p for p >= 0. While it has not
been done, we argue that generating a similar default script for provers
that have tactics similar to functional induction is simple: once case
analysis and induction have been done by functional induction, only
equational rewriting is needed.

main.tex; 2/06/2006; 12:38; p.44

45

5.5. Running example in JAK

In the remaining of this section, we will present how Jakarta is used
to obtain the expected cross-validation results of Section 2 from the
JSL definitions of the running example (excerpts given in Sections 3.4
and 4.5 and Figure 5).

We will describe the commands to be added to the scripts given in
Section 4.5 to obtain cross-validation results. Scripts for these two ex-
amples are very concise, however we will see that the level of automation
is really high.

5.5.1. Offensive abstraction
During the abstraction for the offensive virtual machine, lemmas stat-
ing the correctness of the abstraction (cross-validation) are generated
automatically. Preconditions IIF_pred and tLOAD_pred are added, as
described in Section 5.1, in order to exclude cases corresponding to the
command remove.
Definition IIF_pred (p:pcs) (s:d_state) :=
(d_IIF p s) 6= (d_Abnormal type_error).

Lemma IIF_eq : ∀ p:pcs, ∀ s:d_state, (IIF_pred p s)
→ (o_IIF (abstract_do_pcs p) (alpha_do s)) =

(alpha_do_rstate (d_IIF p s)).

Definition tLOAD_pred (t:vm_type) (l:locvars_idx) (s:d_state) :=
(d_tLOAD t l s) 6= (d_Abnormal type_error).

Lemma tLOAD_eq : ∀ t:vm_type, ∀ l:locvars_idx, ∀ s:d_state,
(tLOAD_pred t l s) →
(o_tLOAD t l (alpha_do s)) = (alpha_do_rstate (d_tLOAD t l s)).

All the lemmas needed for the commutation of offensive and de-
fensive VMs are generated and proved automatically, except for the
tLOAD bytecode. The following script (together with the two auxiliary
lemmas) is appended to the script given in Section 4.5.1 in order to
have all proofs generated and compiled (accepted) by Coq directly:
transparent map_list map_option map_prod map_sum alpha_do
alpha_do_rstate alpha_do_val alpha_do_lval abstract_do_pcs

proof tLOAD
"
intros t l s.
unfold o_tLOAD d_tLOAD;
functional induction d_tLOAD params t l s;
trivial;intros __precond1;
Try (elim __precond1;unfold o_tLOAD d_tLOAD;Rewall;auto;fail);
repeat progress (Rewall;simpl;trivial);

main.tex; 2/06/2006; 12:38; p.45

46

auto with jcvmdb;eauto with jcvmdb.
replace z0 with (alpha_do_val (d_Int z0));auto with jcvmdb.
replace (n2z n) with (alpha_do_val (d_RA n));auto with jcvmdb.

"

into jcvm_off_functions log jcvm_log

The command transparent name1 name2... indicates to the Coq
script generator to make the constants name1 name2... transparent
(i.e. their definitions can be unfolded during the Coq proof). The com-
mand proof f string is used to replace the default proof script of the
commutation lemma of the function f by string. Here we see that
commutation lemma of function tLOAD needs 2 additional lines (the 6
first lines have been generated by JAK as explained in Section 5.4).
tLOAD is the only function needing such replacement.

5.5.2. Typed abstraction
Lemmas needed to establish cross-validation are also generated during
the abstraction of the typed virtual machine. They do not include any
precondition, and the statement for IIF reflects the new return types
for this function (In corresponds to list membership).

Lemma IIF_eq : ∀p:pcs, ∀s:d_state
(In (alpha_da_rstate (d_IIF p s)) (a_IIF p (alpha_da s))).

Lemma tLOAD_eq : ∀t:vm_type, ∀l:locvars_idx, ∀s:d_state,
(a_tLOAD t l (alpha_da s)) = (alpha_da_rstate (d_tLOAD t l s)).

In this abstraction again, very little addition to the abstraction script
is needed to make all proofs compilable by Coq. Only one auxiliary
lemma and a particular proof information for tLOAD, as in previous
section, are needed:

transparent map_list map_option map_prod map_sum alpha_da
alpha_da_rstate alpha_da_val alpha_da_lval abstract_da_pcs

proof tLOAD
"

intros t l s.
unfold a_tLOAD d_tLOAD;
functional induction d_tLOAD params t l s;trivial;
repeat progress (Rewall;simpl;trivial);
auto with jcvmdb;eauto with jcvmdb.

replace a_Int with (alpha_da_val (d_Int z0));auto with jcvmdb.
replace (a_RA n) with (alpha_da_val (d_RA n));auto with jcvmdb.

"

into jcvm_a_functions log jcvm_log

main.tex; 2/06/2006; 12:38; p.46

47

6. CertiCartes as a case study

CertiCartes is an in-depth feasibility study in proving the correctness
of bytecode verification for Java Card 2.1, using the proof assistant
Coq [17]. CertiCartes contains executable specifications of the three
JCVMs (defensive, offensive and typed) and of the BCV, and a proof
of the correctness of the BCV. It is structured in two separate modules:
a first module JCVM, which includes the construction of three virtual
machines and their cross-validation, and a second module BCV, which
includes the construction and validation of the BCV from the typed
JCVM.

In this section, we show how Jakarta can be applied to build offensive
and typed machines and provide the proof of cross validation for the
JCVM. [5, 6, 7] provide further details.

6.1. The Java Card VM

The Java Card Virtual Machine involves more refined datatypes and
structures than the ones in our running example. We will describe below
how this virtual machine has been formalized.

Modeling programs. Programs are formalized in a neutral mathemat-
ical style based on (first-order, non-dependent) datatypes and record
types, and the corresponding machinery: case analysis and structural
recursion for datatypes, formation and selection for record types. For
example, programs are represented by the record type:

Record jcprogram := {
interfaces : (list Interface);
classes : (list Class);
methods : (list Method);
sheap_type : (list type)

}.

where the types Interface, Class, Method and type are themselves de-
fined as record types. sheap_type is used for initialization purposes, to
determine types of variables declared as static in the program. For sim-
plicity, we only deal with closed programs hence the packages java.lang
and javacard.framework are an integral part of programs.

Modeling memory. Memory is modeled in a similar way. For example,
states are formalized as a record consisting of the heap (containing the
objects created during execution), the static fields image (containing
static fields of classes) and a stack of frames (environments for executing
methods). Formally:

main.tex; 2/06/2006; 12:38; p.47

48

Record d_state := {
hp : heap;
sh : sheap;
st : stack

}.

In order to account for abrupt termination (that may arise because
of uncaught exceptions or because the program being executed is ill-
formed), we also introduce a type of return states, defined as a sum
type:

Inductive d_rstate :=
| d_Normal : d_state → d_rstate
| d_Abnormal : exception → d_rstate.

The definition of (return) states and of all components of the mem-
ory model are parameterized by two generic notions of value, which we
leave unspecified here. It will later be instantiated together with the
memory model for defensive, offensive and typed JCVMs. The following
table gives the notion of value attached to each JCVM:

Virtual Machine Defensive Offensive Typed

Value Number with Type Number Type

We see that defensive values contain a type tag, that represents the
property checked at runtime by the defensive machine (and thus checked
statically by the BCV). Type tags are removed in order to obtain the
offensive machine, whereas the concrete values (numbers) are removed
in order to derive the typed machine. We describe more precisely this
mechanism in the following.

Modeling the defensive JCVM. First, we instantiate the memory model
with a notion of typed value. In CertiCartes, types of defensive values
are represented by the constructors of inductive types.

Inductive d_val_prim :=
| d_VReturnAddress : bytecode_idx → d_val_prim
| d_VBoolean : Z → d_val_prim
| d_VByte : Z → d_val_prim
| d_VShort : Z → d_val_prim
| d_VInt : Z → d_val_prim.

Inductive d_val_ref :=
| d_VRef_null : d_val_ref
| d_VRef_array : type → heap_idx → d_val_ref
| d_VRef_instance : class_idx → heap_idx → d_val_ref.

main.tex; 2/06/2006; 12:38; p.48

49

Inductive d_val :=
| d_VPrim : d_val_prim → d_val
| d_VRef : d_val_ref → d_val.

where all types suffixed by _idx are actually nat. For example a defen-
sive value 8 of type short will be represented by (d_vPrim (d_vShort (8)),
and a null reference by (d_vRef d_vRef_null).

We thus obtain a type of defensive states d_state and return defen-
sive states d_rstate. Then, we model the defensive semantics of each
Java Card bytecode as a function d_state → d_rstate. Typically, this
function extracts values from the state, performs type verification on
these values, and extends/updates the state with the results of execut-
ing the bytecode. An example is given in Section 6.2.1 (in Coq syntax)
for the bytecode ifnull.

Finally, one-step defensive execution is modeled as a function d_exec:

d_state → d_rstate which inspects the state to extract the Java Card
bytecode to be executed and then calls the function yielding its seman-
tics.

Modeling the offensive JCVM. First, we instantiate the memory model
with a notion of untyped value so as to obtain a type of offensive
states o_state and return offensive states o_rstate. Which gives in
Certicartes:
Definition o_val_prim := Z.
Definition o_val_ref := Z.
Definition o_val := Z.

Notice that a mapping from d_val_prim to o_val_prim will coerce nat

to Z because of the type of the argument of d_VReturnAddress.
Then, one-step offensive execution o_exec: o_state → o_rstate

is modeled in the same way as one-step defensive execution, but all
verifications and operations related to typing are removed.

Modeling the typed JCVM. The typed JCVM that is used for byte-
code verification operates at the level of types. Formally, we define the
type a_state of typed states as being the typed frame. The memory
model is further simplified because: (1) the typed JCVM operates on
a method per method basis, so only one frame is needed; (2) since
values are removed from this machine, the heap is not needed: types
of objects are stored directly in the operand stack; (3) the removal of
values transforms the static heap into a list of types. Because of the
field sheap_type of the record type jcprogram that contain exactly this
information, the typed static heap becomes redundant.

To obtain typed values, we remove numerical values of the defen-
sive values, except for the numerical value of return addresses which

main.tex; 2/06/2006; 12:38; p.49

50

is a static information and is used to determine the control flow for
subroutines instructions. We give below the sum types of typed values.

Inductive a_val_prim :=
| a_ReturnAddress : bytecode_idx → a_val_prim
| a_Void : a_val_prim
| a_Boolean : a_val_prim
| a_Byte : a_val_prim
| a_Short : a_val_prim
| a_Int : a_val_prim.

Mutual Inductive a_val :=
| a_Prim : a_val_prim → a_val
| a_Ref : a_val_ref → a_val
with a_val_ref :=
| a_Ref_null : a_val_ref
| a_Ref_array : vmtype → a_val_ref
| a_Ref_instance : class_idx → a_val_ref
| a_Ref_interface : interf_idx → a_val_ref.

One-step typed execution is non-deterministic because branching
instructions lead to different program points and hence different states.
We use a list to collect all return states. Therefore one-step typed exe-
cution is modeled as a function a_exec: a_state → (list a_rstate),
where a_rstate is the type of return typed states.

Cross-validation of the JCVMs Likewise the example from Section 2,
cross-validation is a prerequisite for establishing the correctness of the
BCV for the JCVM. The soundness of the offensive abstraction is
expressed by the same commuting diagram as Figure 2. However, for
the typed JCVM, the commutation of the diagram (Figure 11) must
also take into account the notion of subtyping that appears between
defensive and typed states, due to the use of dynamic types and method
invocations.

d_state

alpha_da

��

d_exec // d_rstate� _

�alpha_da_rs
��

a_state
a_exec // (list a_rstate)

Figure 11. Commutative diagram of defensive and typed execution

Further, this diagram is restricted to instructions that remain in
the same frame. Method invocations or return instructions, as well as
exceptions, are handled separately in our framework (without the use of

main.tex; 2/06/2006; 12:38; p.50

51

Jakarta) and their correctness is expressed differently (see [5] for more
details). Corresponding proofs for correctness are incorporated in the
Framework phase (see Section 2.3).

6.2. An example: the bytecode IFNULL

In this section, we illustrate the benefits of our package in establish-
ing correctness results between defensive and offensive VM for the
ifnull Java Card bytecode. It is a simple bytecode with only five rules,
yet it needs some commands to drive the abstraction and make the
correctness proof succeed.

We describe the whole process of obtaining a correct (certified)
offensive version of this bytecode. We use Coq in the following, but
the methodology applies to any proof system. The steps will be the
following:

1. (Section 6.2.2) Define the abstraction functions, create a first script
with no particular command (except the preamble).

2. Apply the JTK.

3. (Section 6.2.3) Based on the result (16 abstracted functions in our
example) and warnings returned by the JTK, add new commands
to the script to suppress warnings and go back to 2.

4. (Section 6.2.4) Compile (proof check) the generated Coq files: defen-
sive machine, offensive machine and default proofs of commutation
lemmas (one file per function).

5. If a default proof does not succeed for some file/lemma, then launch
Coq on the corresponding file and try to finish the proof interac-
tively, which leads to several possibilities:

− If we manage to prove the lemma, then the process is finished.

− If the lemma cannot be proved because of wrong premises,
then add or modify commands in the script to correct them. In
particular use the redundant variant of commands. Re-apply
the JTK and go back to 4.

− If the lemma cannot be proved because functions actually do
not commute correctly, then make the necessary corrections
either in the defensive machine, in the abstraction functions
or in the abstraction script, go back to 2.

Modifications made to proof scripts during step 5 are kept when
regenerating the proofs, thanks to a mechanism based on the diff

main.tex; 2/06/2006; 12:38; p.51

52

command, so that proofs that are still correct do not need to be
modified again. It would also be possible to follow the approach
of the Why tool [22] that distinguishes more clearly the generated
parts of a file from the user input.

6.2.1. Defensive machine
The instruction ifnull is a branching bytecode that compares the
reference at the top of the operand stack to the null reference and
jumps to the bytecode index given as operand (b in the code below)
if the comparison succeeds or to the following instruction (succ (d_pc

h)) otherwise.
The defensive specification of ifnull, that tests if values in the stack

are of the expected type, is written in JSL as follows:

function d_ifnull : bytecode_idx → d_state → d_rstate :=

stack_f state → Nil
⇒ d_ifnull b state → d_Abnormal state_error state;

stack_f state → Cons h lf,
head (d_opstack h) → Value (d_VPrim v0),
⇒ d_ifnull b state → d_Abnormal type_error state;

stack_f state → Cons h lf,
head (d_opstack h) → Value (d_VRef vr),
res_null vr → True
⇒ d_ifnull b state →

d_update_frame (d_update_pc b
(d_update_opstack (tail (d_opstack h)) h)) state;

stack_f state → Cons h lf,
head (d_opstack h) → Value (d_VRef vr),
res_null vr → False
⇒ d_ifnull b state →

d_update_frame (d_update_pc (succ (d_pc h))
(d_update_opstack
(tail (d_opstack h)) h)) state;

stack_f state → Cons h lf,
head (d_opstack h) → Error
⇒ d_ifnull b state → d_Abnormal opstack_error state.

We give also the auxiliary function res_null, as we will illustrate
the use of abstraction commands on this function. res_null takes a
reference and returns true if it is the null reference and false otherwise.

function res_null : d_val_ref →bool :=
vr →d_VRef_null ⇒res_null vr →True;
vr →d_VRef_array t hi ⇒res_null vr →nat_is_zero hi;

main.tex; 2/06/2006; 12:38; p.52

53

vr →d_VRef_instance ci hi ⇒res_null vr →nat_is_zero hi;
vr →d_VRef_interface ii hi ⇒res_null vr →nat_is_zero hi.

6.2.2. Abstraction functions and first script
Datatypes for the offensive JCVM specification, and the abstraction
functions to produce offensive types from defensive ones are given by
the user in JSL format:
type o_val_prim = Z.
type o_val = Z.
type o_val_ref = Z.

function alpha_do_val_prim : d_val_prim →o_val_prim :=
⇒alpha_do_val_prim (d_VReturnAddress v) →(nat2z v);
⇒alpha_do_val_prim (d_VBoolean v) →v;
⇒alpha_do_val_prim (d_VByte v) →v;
⇒alpha_do_val_prim (d_VShort v) →v;
⇒alpha_do_val_prim (d_VInt v) →v.

function alpha_do_val_ref : d_val_ref →o_val_ref :=
⇒alpha_do_val_ref d_VRef_null →ZERO;
⇒alpha_do_val_ref (d_VRef_array t hp) →hp;
⇒alpha_do_val_ref (d_VRef_instance c hp)→ hp;
⇒alpha_do_val_ref (d_VRef_interface i hp) →hp.

function alpha_do_val : d_val →o_val :=
⇒alpha_do_val (d_VPrim x) →alpha_do_val_prim x;
⇒alpha_do_val (d_VRef r) →alpha_do_val_ref r.

...

function alpha_do_heap : d_heap →o_heap := ...

function alpha_do_sheap : d_sheap →o_sheap := ...

function alpha_do_stack : d_stack →o_stack := ...

function alpha_do : d_state →o_state :=
⇒alpha_do (Build_d_state sh hp s)
→ Build_o_state (alpha_do_sheap sh)

(alpha_do_heap hp) (alpha_do_stack s).

function alpha_do_rs : d_rstate →o_rstate :=
⇒alpha_do_rs (d_Normal js) →o_Normal (alpha_do js);
⇒alpha_do_rs (d_Abnormal x) →o_Abnormal x.

The initial script for abstracting ifnull is given below. It contains
the name of the function to abstract, the name of the abstraction
functions and the command to remove all occurrences of type_error.
abstract ifnull with alpha_do_val_prim alpha_do_val

main.tex; 2/06/2006; 12:38; p.53

54

alpha_do_val_ref alpha_do_frame alpha_do_stack alpha_do
alpha_do_sheap alpha_do_rs alpha_do_heap
prefix o_

delete type_error

At this point, all the information needed to perform the abstraction
is given: JSL defensive machine, JSL offensive datatypes, JSL abstrac-
tion functions and JSL abstraction script. The abstraction generates
a set of 16 function definitions (in 16 files) for ifnull and auxiliary
functions, and returns a warning:

WARNING! o_res_null is not deterministic because
of the following rules couples:
o_res_null_1 and o_res_null_2 with substitution [(hi , ZERO)]

Overlapping rules have been detected in the generated function
o_res_null. We must refine the basic abstraction process for this func-
tions by looking at the generated function and modifying the initial
script.

6.2.3. Second abstraction script
The script above has generated the following definition for o_res_null:

function o_res_null : o_val_ref →bool :=
vr →ZERO ⇒o_res_null vr →True;
vr →hi ⇒o_res_null vr →nat_is_zero (z2n hi).

The first rule of res_null (precondition vr=VRef_null) has been
abstracted into a rule having precondition vr=ZERO. Rules 2, 3 and 4 of
res_null have been collapsed into a single abstracted rule o_res_null_2.

We see (but Jakarta did not, see limitation of Jakarta in Section 4.6)
that the first rule is subsumed by the second because (nat_is_zero(z2n
ZERO)) is equal to True. Therefore a good solution is to remove the first
rule by adding a delete [redundant] command to the script. It will not
add a new premise since the semantics of o_res_null is not altered.
Finally, the script is the following:

abstract ifnull with alpha_do_val_prim alpha_do_val
alpha_do_val_ref alpha_do_frame alpha_do_stack alpha_do
alpha_do_sheap alpha_do_rs alpha_do_heap
prefix o_

delete type_error
delete [redundant] res_null.1

and, once the JTK has been applied again, the new offensive versions
of res_null is correct, we give the translation of res_null and ifnull

into Coq in Figure 12.

main.tex; 2/06/2006; 12:38; p.54

55

Definition o_res_null (vr : o_val_ref) := nat_is_zero (z2n vr).

Definition o_ifnull (b : bytecode_idx) (s : o_state) :=
match o_stack_f s with
| Nil ⇒o_Abnormal state_error
| Cons h lf ⇒

match head (o_opstack h) with
| Some v ⇒

match o_res_null v with
| True ⇒

o_update_frame (o_update_pc b
(o_update_opstack
(tail (o_opstack h)) h)) s

| False ⇒
o_update_frame (o_update_pc (succ (o_pc h))

(o_update_opstack
(tail (o_opstack h)) h)) s

end
| None ⇒o_Abnormal opstack_error
end

end.

Figure 12. Final Coq version of ifnull and res null

6.2.4. Lemmas and predicates
By applying the offensive script shown above, we obtain 16 Coq files
(one per abstracted function) containing commutation lemmas with
their premises as in Figure 10. The predicates and the lemmas generated
for res_null and ifnull are the following (we do not show the default
proof script):

(∗ res null ∗)
Lemma res_null_eq : ∀(v : d_val_ref),
(o_res_null (alpha_do_val_ref v)) = (res_null v).
intro v.
<default proof>
Save.

(∗ Storing of the lemma in database for further proofs automation ∗)
Hint Rewrite [res_nul_eq] in jcvmdb.
Hint Resolve [res_nul_eq] in jcvmdb.

(∗ ifnull ∗)
Definition prec_ifnull (b : bytecode_idx) (j : d_state) :=
¬(d_ifnull b j) = (d_Abnormal type_error)).

Lemma ifnull_eq : ∀(b : bytecode_idx) (j : d_state),
(prec_ifnull b j) →
(o_ifnull b (alpha_do j)) = (alpha_do_rs (d_ifnull b j)).

main.tex; 2/06/2006; 12:38; p.55

56

intros b j.
<default proof>
Save.

Notice that no predicate is generated for res_null.
With this last script, it is thus formally proved that o_ifnull and

ifnull commute in the sense of the diagram of Figure 2. Unlike for
ifnull, the abstraction and the commutation proof of most of the byte-
codes (85%) do not require any user interaction. Remaining lemmas are
intrinsically more complex to discharge automatically and fall beyond
the scope of the tool. Nevertheless, Jakarta leaves the user with the
lemma and its default proof script, and generally it is enough to add a
few more tactics to make it work. These modifications to default scripts
are then kept when regenerating proofs.

6.3. Synthesis of the offensive and typed JCVM

Using the techniques described in the previous example, we have been
able to generate from the defensive JCVM (around 6,000 lines long)
the offensive JCVM (5,000 lines) and the typed JCVM (4,000 lines) as
well as cross validation proofs for these abstractions.

6.3.1. The offensive JCVM
Figure 13 contains the script (around 30 lines long) needed to obtain
the offensive JCVM. The beginning of the script is similar to the script
for ifnull (Section 6.2.3). It begins with a preamble, which specifies
the function to abstract, the abstraction functions and the prefix used
for the generated functions. Then, the remaining of the script is divided
in two blocks of discarding commands and substitution commands.

In that script, the command drop is used to remove some arguments
from the signature of a function. For example, the function d_GETSTATIC

takes as a first argument some typing information that becomes vacuous
in the offensive JCVM.

In the following block, we used substitution commands, such as coer-
cions, replacement of terms or optimization with the select command
to replace functions that behave as a projection function after abstrac-
tion. An example of such function is given by vp2z. In the defensive
JCVM, this function maps a types value to its corresponding numerical
value. In the offensive JCVM, this function behave as the identity.

6.3.2. The typed JCVM
The abstraction for the type-abstract JCVM is much more complex.
Indeed, there is no more numerical values, heap, stack (only the top-
most frame is kept) or static heap. The datatypes and the abstraction
functions for the typed JCVM are the following:

main.tex; 2/06/2006; 12:38; p.56

57

(∗ Preamble ∗)

abstract exec_jcvm with alpha_do_val_prim alpha_do_val ...
prefix o_

(∗ Discarding commands ∗)

delete type_error
delete [redundant] res_null.1
delete ‘t in d_LOAD.9.3.1 d_LOAD.17.3.1 d_LOAD.22.3.1
d_NEWARRAY d_INC d_CONST d_STORE.9.5.1
d_STORE.17.5.1 d_STORE.21.5.1 d_STORE.27.5.1

delete ‘t0 in d_PUTSTATIC putfield_obj aSTORE

drop &d_GETSTATIC@1 &d_TABLESWITCH@1 &d_LOOKUPSWITCH@1

(∗ Substitution commands ∗)

coercion n2z z2n

replace ((trhi2vr (vr2tr vr) (absolu (v2z v)))) by
‘v in d_putfield_obj.36.10.2

select v2z@1 vp2z@1 vr2z@1 vr2hi@1 tpz2vp@2

Figure 13. Offensive abstraction script

function alpha_da_val_prim : d_val_prim →a_val_prim :=
⇒alpha_da_val_prim (d_VReturnAddress v) →a_ReturnAddress v;
⇒alpha_da_val_prim (d_VBoolean v) →a_Boolean;
⇒alpha_da_val_prim (d_VByte v) →a_Byte;
⇒alpha_da_val_prim (d_VShort v) →a_Short;
⇒alpha_da_val_prim (d_VInt v) → a_Int.

function alpha_da_val_ref : d_val_ref →a_val_ref := ...
function alpha_da_val : d_val →a_val := ...
function alpha_da_lval : list d_val →list a_val := ...
function alpha_da_oval : option d_val →option a_val := ...
function alpha_da_loval :
list (option d_val) →list (option a_val) := ...

function alpha_da_frame : d_frame →a_frame :=
⇒alpha_da_frame

(Mk_d_frame ops lv c p b m)
→ Build_a_frame (alpha_da_lval ops)

(alpha_da_loval lv) c p b m.

function alpha_da_stack : d_stack →a_stack :=
⇒alpha_da_stack Nil → Nil;

main.tex; 2/06/2006; 12:38; p.57

58

⇒alpha_da_stack (Cons x y) →(Cons (alpha_da_frame x) Nil).

function alpha_da_jcvm_state : d_state →a_state :=
⇒alpha_da_jcvm_state (Mk_d_state sh hp s) →(alpha_da_stack s).

Due to this significant change, the script for the type abstraction,
given in Figure 14, is bigger (around 150 lines).

(∗ Preamble ∗)

abstract exec_jcvm with alpha_da_val_prim alpha_da_val ...
prefix a_

(∗ Discarding commands ∗)

delete ‘ThrowException abortMemory res_null
delete test_exception_putstatic_ref
delete test_security_exception_checkcast
delete ...

drop &result_astore@{5,6} &d_ARITH@1
drop &res_pc@1 &res_pc2@1
drop ...

(∗ Substitution commands ∗)

coercion tv2t tvr2tr tvp2tp t2tv

replace (get_obj_class_idx nhp) by (get_a_val_ref_class_idx vr)
in d_INVOKEINTERFACE.{5-11}.8.1 d_INVOKEVIRTUAL.{5-10}.7.1

replace d_INVOKEVIRTUAL.5.12.2 d_INVOKEINTERFACE.5.14.2
d_INVOKESPECIAL.5.11.2 by
(a_Normal
(Cons (Build_a_frame (app_return_type l’ (snd (signature m)))

(a_locvars h) (a_method_loc h) (succ (a_pc h)))
Nil))

replace ...

determine a_res_pc a_res_pc2 both_bool a_ICMP

(∗ Proofs commands ∗)

addprecond < t 6= ReturnAddress > to tpz2vp
addprecond ...

Figure 14. Typed abstraction script (Excerpts)

In the discarding block, we remove all aspects related to numerical
values such as exceptions and memory errors. In the substitution block,
we replace dynamic lookups of the execution by static ones. For instance

main.tex; 2/06/2006; 12:38; p.58

59

we provide directly the result for method invocation. As for script for
our running example, we use the command determine to make deter-
ministic the generated function for conditional instructions. Finally, in
the proof command block, we use the command addprecond to add
preconditions (that will be propagated to calling functions). The con-
cerned functions are used in the formalization under certain conditions
and the added preconditions restrict the use of these functions to these
particular cases. For instance, the function tpz2vp is never called in
the code with the argument ReturnAddress, the command addprecond

expresses this fact, that is necessary for the cross validation.

7. Conclusions and related work

Formal specification and formal verification help understanding and
improving informal specifications of a programming language seman-
tics. Unfortunately, providing an extensive formal specification of a
realistic programming language, let alone proving formally some of
its properties such as type soundness, remains labour-intensive. It is
thus important to build appropriate environments that provide coher-
ent support for formal specification, formal verification and provably
correct implementations of programming languages.

This paper focuses on an environment for proving the correctness
of bytecode verification in low-level programming languages for mo-
bile and embedded code, such as the JVM. Our environment Jakarta
incorporates general-purpose tools such as proof assistants as well as
specialized tools that are explicitly designed to reason about typed low-
level programming languages. In addition to presenting its underlying
principles, we have shown how Jakarta can be used to good effect for
certifying the Java Card platform.

7.1. Related work

Abstract interpretation The idea of deriving abstract functions from
a concrete function and an abstraction function already appears in the
seminal work on abstract interpretation by Cousot and Cousot [18].
Over the last 25 years, the framework of abstract interpretation has
developed extensively and has been successfully exploited in too many
contexts to be listed here.

Part of the cross validation may be viewed as a simple instance of ab-
stract interpretation. Indeed, for the construction of the typed machine
from the defensive machine, one may build a Galois connection between
the powerset of defensive states and the lattice of typed states from

main.tex; 2/06/2006; 12:38; p.59

60

the abstraction function [37, page 235]. On the other hand it remains
unclear how to derive the offensive virtual machine from the defensive
virtual machine using the framework of abstract interpretation.

Prototyping environments and proof assistants Formal semantics pro-
vide an unambiguous reference description of the expected operational
behavior of languages. Yet such semantics are large, technically in-
volved and difficult to build for the non-expert. Some of these difficul-
ties can be solved by using a dedicated prototyping environment that
helps addressing some/most administrative aspects of formal seman-
tics. A number of tools have been designed for this purpose, including
ASF+SDF [21], ASMGofer [12], Centaur [14], Letos [25] and RML [39].
While very diverse in their design and functionalities, these tools all
provide a readable format for specifying the formal semantics of a
programming language, and support to execute the semantics, which in
particular allows to check that the semantics reflects the intended be-
havior of the language. However, prototyping environments most often
lack functionalities to reason formally about the semantics, in contrast
to proof assistants which support sophisticated reasoning. There is thus
some interest in integrating prototyping environments and proof assis-
tants; yet despite preliminary work in this direction [44], no current tool
integrates smoothly prototyping environments and proof assistants.
Consequently, formal semantics is written directly in the specifica-
tion language of the proof assistant, which often lacks constructs for
modular and incremental specifications. On the positive side, some
proof assistants feature a program extraction mechanism which enables
specifications to be executed.

Formal specification and verification of the Java Card platform There
is a large body of machine-checked specifications of the J(C)VM, see [26,
33] for a survey. Many of these works use the methodology instrumented
in our work, see e.g. [2, 7, 10, 30, 35]. However, the methodology is
generally not made explicit and the offensive virtual machine is not
considered. Further, there are a few extensive accounts of the J(C)VM
that do not adopt the methodology instrumented by Jakarta, including
the work of Klein, Nipkow, and Wildermoser [28, 29]. In the J-Book [41],
Börger, Schmid, and Stärk discuss the relationship between the offen-
sive and defensive JVM, and in particular the derivation of a defensive
JVM from an offensive one, but the discussion remains informal.

There are also machine-checked proofs of type soundness for .NET [24,
43]. This work is more closely related to ours in the sense that [43]
explicitly aims at developing tools to automate type soundness proofs.
The major difference with our work is that they do not pursue cross-

main.tex; 2/06/2006; 12:38; p.60

61

machine validation, and opt instead for a standard type soundness
proof.

7.2. Future work

Incremental and modular specifications While expressive enough to
specify the JCVMs, the JSL lacks constructs for modular specifications.
Hence JSL specifications are monolithic and cannot be constructed in
an incremental fashion.

In order to follow the principles of specification in-the-large, we in-
tend to extend the JSL with subtyping, a module system, and primitives
for incremental and modular specifications. We are in particular inter-
ested in mechanisms that allow a separation of concerns between the
operational semantics captured by the offensive virtual machine, and
the safety and security checks performed by the typed virtual machine.
Put it otherwise, we would like to be able to synthesize, from an offen-
sive virtual machine, and several security automata that perform the
necessary checks, the corresponding defensive virtual machine, and the
cross-validation proofs. Technically, it amounts to define mechanisms
to define a function f ′ : σ′ → σ′ from a previously defined function
f : σ → σ, where σ and σ′ are record types with σ′ ≤ σ (i.e. σ′ has
more fields than σ).

Such a mechanism would prove most useful in the context of rea-
soning about the Java Card platform. E.g. it would allow to construct
from our current defensive JCVM another defensive JCVM that also
performs checks w.r.t. confidentiality of resource control, or to make
our existing specification more precise w.r.t. its memory model.

Proof automation Commutation lemmas are proved by case analysis
and equational reasoning. For the latter, we use the AutoRewrite tactic
of Coq: once the commutation of a function is proved, the corresponding
lemma is put in a rewriting database. This database is then heavily used
in the equational reasoning in the proof of the following lemmas. This
proof mechanism is rather primitive and slow. We expect that more
efficient proof automation is possible, and in particular that equational
reasoning can be automated by exploiting connections between Coq and
external tools, such as Elan [13] or Spike [15]. In fact, we have been
experimenting with Elan, using the interface to Coq reported in [36, 1],
and with Spike, using a JPI module that translates JSL specifications
to Spike. The first experiment, which was carried with Q.-H. Nguyen,
is currently inconclusive because, in order to be used in our context,
the interface between Coq and Elan should be packaged as a tactic,
which is not the case for the moment for technical reasons. The second

main.tex; 2/06/2006; 12:38; p.61

62

experiment, which was carried with S. Stratulat, was more successful in
that Spike was able to establish automatically the commutation prop-
erties for a large set of instructions. This experiment, which is reported
in [9], suggests that first-order theorem proving techniques could be
advantageously exploited in the context of platform verification for
smartcards.

On a more general level, we intend to generalize our mechanism for
generating auxiliary lemmas (proof and statements). It seems possible
to provide a little language for describing the generic form of the auxil-
iary lemmas needed to prove the correctness of a particular abstraction.
This language should also describe the form of the standard tactics
which should be applied to (try to) prove those lemmas. This would
give more flexibility to the user and allow him to generate very accurate
proof scripts for different abstractions.

Moreover automatic script generation as described in this paper can
be considered as an extension to a given tactic language [20]. One can
specify general strategies like “what default tactics should be used to
prove a lemma”, “how to use previous lemmas in the following proofs”.
This is hardly automated in theorem provers like Coq, and a generic
format to describe such strategies and a tool to generate scripts from
this description could be a great improvement in domains where some
regularity can be found in the proof methods. This issue is closely
related to proof planning [16].

Other case studies One line of future research is to exploit our environ-
ment to validate enhanced type systems for Java(Card). Examples of
such type systems can be found e.g. in [8, 23, 31, 42], and address prop-
erties such as confidentiality, initialization, or locking/inlocking. More
generally, we are interested in understanding whether our methodology
applies to other typed low-level languages such as TAL [19] or .NET.

Acknowledgments Part of this work was supported by the IST project
VerifiCard.

References

1. C. Alvarado and Q-H. Nguyen. elan for equational reasoning in coq. In
J. Despeyroux, editor, Proceedings of LFM’00, 2000. Rapport Technique
INRIA.

2. J. Andronick, B. Chetali, and O. Ly. Using Coq to Verify Java Card Ap-
plet Isolation Properties. In D. Basin and B. Wolff, editors, Proceedings of
TPHOLs’03, volume 2758 of Lecture Notes in Computer Science, pages 335 –
351. Springer-Verlag, 2003.

main.tex; 2/06/2006; 12:38; p.62

63

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

4. G. Barthe and P. Courtieu. Efficient Reasoning about Executable Specifica-
tions in Coq. In V. Carreño, C. Muñoz, and S. Tahar, editors, Proceedings of
TPHOLs’02, volume 2410 of Lecture Notes in Computer Science, pages 31–46.
Springer-Verlag, 2002.

5. G. Barthe and G. Dufay. A Tool-Assisted Framework for Certified Bytecode
Verification. In Proceedings of FASE’04, volume 2984 of Lecture Notes in
Computer Science, pages 99–113. Springer-Verlag, 2004.

6. G. Barthe, G. Dufay, L. Jakubiec, and S. Melo de Sousa. A formal corre-
spondence between offensive and defensive JavaCard virtual machines. In
A. Cortesi, editor, Proceedings of VMCAI’02, volume 2294 of Lecture Notes
in Computer Science, pages 32–45. Springer-Verlag, 2002.

7. G. Barthe, G. Dufay, L. Jakubiec, B. Serpette, and S. Melo de Sousa. A
Formal Executable Semantics of the JavaCard Platform. In D. Sands, editor,
Proceedings of ESOP’01, volume 2028 of Lecture Notes in Computer Science,
pages 302–319. Springer-Verlag, 2001.

8. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In
M. Fähndrich, editor, Proceedings of TLDI’05. ACM Press, 2005. To appear.

9. G. Barthe and S. Stratulat. Using Implicit Induction Techniques for the Val-
idation of the JavaCard Platform. In R. Nieuwenhuis, editor, Proceedings of
RTA’03, volume 2706 of Lecture Notes in Computer Science, pages 337 – 351.
Springer-Verlag, 2003.

10. G. Betarte, B. Chetali, E. Giménez, C. Loiseaux, and O. Ly. Formal Modeling
and Verification of the Java Card Security Architecture: from Static Checkings
to Embedded Applet Execution. In Proceedings of ESMART’02, 2002.

11. M. Bezem, J. W. Klop, and R. de Vrijer, editors. Term Rewriting Systems.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2003.

12. E. Börger and R. Stärk. Abstract State Machines – A Method for High-Level
System Design and Analysis. Springer-Verlag, 2003.

13. P. Borovanský, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau,
C. Ringeissen, and M. Vittek. The Elan V3.4. Manual, 2000.

14. P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. Centaur: the system. In Proceedings of the ACM SIGSOFT/SIG-
PLAN Software Engineering Symposium on Practical Software Development
Environments, pages 14–24. ACM Press, 1988.

15. A. Bouhoula. Automated theorem proving by test set induction. Journal of
Symbolic Computation, 23(1):47–77, January 1997.

16. A. Bundy. The use of explicit plans to guide proofs. In Proceeding of CADE-9,
volume 310 of Lecture Notes in Computer Science, pages 111–120. Springer-
Verlag, 1988.

17. Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0,
January 2004.

18. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of POPL’77, pages 238–252. ACM Press, 1977.

19. K. Crary and G. Morrisett. Type structure for low-level programming lan-
guages. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors,
Proceedings of ICALP’99, volume 1644 of Lecture Notes in Computer Science,
pages 40–54, 1999.

main.tex; 2/06/2006; 12:38; p.63

64

20. D. Delahaye. A Tactic Language for the System Coq. In M. Parigot and
A. Voronkov, editors, Proceedings of LPAR’00, volume 1955 of Lecture Notes
in Computer Science, pages 85–95. Springer-Verlag, 2000.

21. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: an al-
gebraic specification approach. AMAST Series in Computing. World Scientific,
1996.

22. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, March 2003.

23. S. N. Freund and J. C. Mitchell. The type system for object initialization in
the Java bytecode language. ACM Transactions on Programming Languages
and Systems, 21(6):1196–1250, November 1999.

24. A.D. Gordon and D. Syme. Typing a multi-language intermediate code. In
Proceedings of POPL’01, pages 248–260. ACM Press, 2001.

25. P. Hartel. LETOS - a lightweight execution tool for operational semantics.
Software–practice and experience, 29(5):1379–1416, September 1999.

26. P. Hartel and L. Moreau. Formalizing the Safety of Java, the Java Virtual
Machine and Java Card. ACM Computing Surveys, 33(4):517–558, December
2001.

27. JavaCard Technology. http://java.sun.com/products/javacard.
28. G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer

Science, 298(3):583–626, April 2002.
29. G. Klein and M. Wildmoser. Verified bytecode subroutines. Journal of

Automated Reasoning, 30(3-4):363–398, December 2003.
30. J.-L. Lanet and A. Requet. Formal Proof of Smart Card Applets Correctness. In

J.-J. Quisquater and B. Schneier, editors, Proceedings of CARDIS’98, volume
1820 of Lecture Notes in Computer Science, pages 85–97. Springer-Verlag, 1998.

31. C. Laneve. A Type System for JVM Threads. Theoretical Computer Science,
290(1):741–778, October 2002.

32. X. Leroy. Java bytecode verification: an overview. In G. Berry, H. Comon,
and A. Finkel, editors, Proceedings of CAV’01, volume 2102 of Lecture Notes
in Computer Science, pages 265–285. Springer-Verlag, 2001.

33. X. Leroy. Java bytecode verification: algorithms and formalizations. Journal
of Automated Reasoning, 30(3-4):235–269, December 2003.

34. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective
Caml system, release 3.00, 2000.

35. J. Strother Moore, R. Krug, H. Liu, and G. Porter. Formal Models of Java
at the JVM Level A Survey from the ACL2 Perspective. In S. Drossopoulou,
editor, Proceedings of Formal Techniques for Java Programs, 2001.

36. Q.-H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical
proof assistants. Journal of Automated Reasoning, 29(3-4):309–336, 2002.

37. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

38. T. Nipkow. Verified Bytecode Verifiers. In F. Honsell and M. Miculan, edi-
tors, Proceedings of FOSSACS’01, volume 2030 of Lecture Notes in Computer
Science, pages 347–363. Springer-Verlag, 2001.

39. M. Petersson. Compiling Natural Semantics. PhD thesis, Linköping University,
1995.

40. K. Slind. Reasoning about Terminating Functional Programs. PhD thesis, TU
Münich, 1999.

41. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine -
Definition, Verification, Validation. Springer-Verlag, 2001.

main.tex; 2/06/2006; 12:38; p.64

65

42. R. Stata and M. Abadi. A type system for Java bytecode subroutines. ACM
Transactions on Programming Languages and Systems, 21(1):90–137, January
1999.

43. D. Syme and A. D. Gordon. Automating type soundness proofs via decision
procedures and guided reductions. In M. Baaz and A. Voronkov, editors,
Proceedings of LPAR’02, volume 2514 of Lecture Notes in Computer Science,
pages 418–434, 2002.

44. D. Terrasse. Vers un environnement d’aide au développement de preuves en
Sémantique Naturelle. PhD thesis, Ecole Nationale des Ponts et Chaussées,
1995.

main.tex; 2/06/2006; 12:38; p.65

main.tex; 2/06/2006; 12:38; p.66

