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Abstract. Register allocation is often a two-phase approach: spilling of
registers to memory, followed by coalescing of registers. Extreme live-
range splitting (i.e. live-range splitting after each statement) enables op-
timal solutions based on ILP, for both spilling and coalescing. However,
while the solutions are easily found for spilling, for coalescing they are
more elusive. This difficulty stems from the huge size of interference
graphs resulting from live-range splitting.

This report focuses on optimal coalescing in the context of extreme live-
range splitting. We present some theoretical properties that give rise
to an algorithm for reducing interference graphs, while preserving opti-
mality. This reduction consists mainly in finding and removing useless
splitting points. It is followed by a graph decomposition based on clique
separators. The last optimization consists in two preprocessing rules. Any
coalescing technique can be applied after these optimizations.

Our optimizations have been tested on a standard benchmark, the op-
timal coalescing challenge. For this benchmark, the cutting-plane algo-
rithm for optimal coalescing (the only optimal algorithm for coalescing)
runs 300 times faster when combined with our optimizations. Moreover,
we provide all the solutions of the optimal coalescing challenge, including
the 3 instances that were previously unsolved.

1 Introduction

1.1 Register Allocation, Graph Coloring and Integer Linear
Programming

Register allocation determines at compile time where each variable will be stored
at execution time: either in a register or in memory. Register allocation is often
a two-phase approach: spilling of registers to memory, followed by coalescing of
registers [3, 9, 16, 6]. Spilling generates loads and stores for live variables1 that
can not be stored in registers. Coalescing allocates unspilled variables to registers
in a way that leaves as few as possible move instructions (i.e. register copies).
Both spilling and coalescing are known to be NP-complete [27, 5].

? This work was supported by Agence Nationale de la Recherche, grant number ANR-
05-SSIA-0019.

1 A variable that may be potentially read before its next write is called a live variable.
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Classically, register allocation is modeled as a graph coloring problem, where
each register is represented by a color, and each variable is represented by a
vertex in an interference graph. Two vertex which represent interfering variables
are linked by an interference edge, while two vertex which represent variables
involved in a move instruction are linked with an affinity edge. Given a number
k of available registers, finding a register allocation consists in finding (if any)
a k-coloring of the interference graph with respect to interference edges. When
there is no k-coloring, some variables are spilled to memory (the corresponding
vertex of the graph is thus removed). When there is a k-coloring, coalescing
consists in choosing a k-coloring that removes most of the move instructions,
or in other words, that maximizes the sum of weights of affinity edges having
both extremities colored with the same color. Figure 1 shows a solved instance
of 3-coloring problem with preferences. Dotted edges are preference edges and
full edges are interference ones. In this example, the coloration is optimal since
the two edges with largest weight have identically colored extremities and it is
not possible to satisfy all of the 3 preferences.
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Fig. 1. A solved register allocation instance with three registers.

Determining if a K-coloring exists is generally NP-complete. Hence the reg-
ister allocation is NP-complete too. Thus, many coloring heuristics have been
designed to solve it, that mostly relies on the property that a vertex of low degree
(i.e. of degree lower than or equal to K-1) can be removed from the graph and
be colored after all other nodes. These former heuristics all handle spilling and
coalescing simultaneously. The first of them, called aggressive coalescing [10],
had the default that a colorable graph could become uncolorable along the algo-
rithm, i.e. to introduce useless spills. To avoid this problem, Briggs [8] proposed
a conservative heuristics, i.e. that preserves colorability. But this heuristics is
too conservative and many possible coalescing are not done. Then came a more
aggressive but conservative heuristics called iterated register coalescing [14]. If
this last one remains the state-of-the-art algorithm, many others heuristics have
been designed, in particular some specific to programs in SSA form.
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ILP-based approaches have also been applied to register allocation. Appel
and George formulate spilling as an integer linear program (ILP) and provide
optimal and efficient solutions [3]. Their process to find optimal solutions for
spilling requires live-range splitting, an optimization also used by some heuristics
that enables a more precise register allocation (e.g. avoiding to spill a variable
everywhere). More precisely, their method relies on a specific and extreme form
of live-range splitting, the extreme live-range splitting. While the solutions are
easily found for spilling in this context, for coalescing they are more elusive.
Indeed, live-range splitting generates huge interference graphs (with many move
instructions) that make the coalescing harder to solve, hard enough to make usual
approaches failing[3]. Nevertheless, this result implies that spilling and coalescing
can be fully separated and thus reduces register allocation to coalescing under
extreme live-range splitting hypothesis. The need for a better algorithm for the
optimal coalescing problem gave rise to a benchmark of interference graphs called
the optimistic coalescing challenge [2]. Recently, Grund and Hack proposed a
cutting-plane algorithm [16] able to solve the whole optimal coalescing challenge
(except three instances) but weakened by the large size of the graph.

1.2 Live-range Splitting

Splitting the live-range of a variable v consists in renaming v to different variables
having shorter live-ranges than v and adding move instructions connecting the
variables originating from v. Recent spilling heuristics benefit from live-range
splitting: when a variable is spilled because it has a long live-range, splitting this
live-range into smaller pieces may avoid to spill v. If the live-range of v is short,
it is easier to store v in a register, as the register needs to hold the value of v
only during the live-range of v.

There exists many ways of splitting live-ranges (e.g. region splitting, zero
cost range splitting, load/store range analysis) [11, 7, 18, 19, 4, 12, 21]. Splitting
live-ranges often reduces the interferences with other live-ranges. Thus, most of
the splitting heuristics have been successful in improving the spilling phase. The
differences between these heuristics stem from the number of splitting points
(i.e. program points where live-ranges are split) as well as the sizes of the split
live-ranges. These heuristics are sometimes difficult to implement.

The most precise live-range splitting is extreme live-range splitting, where
live-ranges are split after each statement. Its main advantage is the preciseness
of the generated interference graph. Indeed, a variable is spilled only at the
program points where there is no available register for that variable. As in a
SSA form, each variable is defined only once. Furthermore, contrary to previous
heuristics, extreme live-range splitting is very easy to implement (it does not
require any further computation).

Extreme live-range splitting helps in finding optimal and efficient solutions
for spilling. But, it generates programs with huge interference graphs. Each re-
naming of a variable v to v1 results in adding a vertex in the interference graph
for v1 and, consequently, some edges incident to that vertex.
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1.3 Alternative Approaches

Other approaches to solve register allocation have been proposed, mainly de-
signed for just-in-time compilation. Therefore many studies focus on other heuris-
tics such as linear scan [23]. The global quality of this heuristics (including its
enhancements as tree scan or second chance binpacking) is quite the same than
graph coloring’s ones. Nevertheless, graph coloring remains better adapted to
a classical compiler, since the compile-time is not the main feature and that it
tends to better register allocation in this case.

Very recently, a new approach by puzzle solving has been proposed by Pals-
berg and Pereira [20]. It has the advantage to be undependant of the architecture.
However, practical results are almost of the same quality than coloring and the
cost is quite similar too.

Finally, these models should not substitute, at least in their current shape, the
state-of-the-art graph coloring model for the case of classical compilers. However,
these alternatives are interesting topics of research in the domain and might
supplant graph coloring when the possibilities of practical coloring heuristics
will seem to be reached.

1.4 Motivation

Our work is based on graph coloring and extreme live-range splitting. It mostly
focuses on coalescing and follows Grund and Hack’s study [16] but is the first
that takes in account properties of extreme live-range splitting. One of our main
motivation was that solving an ILP problem is exponential in time and conse-
quently that reducing the size of the ILP formulation can drastically speed up
the solution. Rather than reasonning on the ILP model, we have chosen to use
graph pecularities to reduce its size, and hence the one of the ILP formulation.
The reduction is made of three optimizations.

More precisely, we begin by describing properties of split interference graphs,
that is, interference graphss under the hypothesis of extreme live-range splitting.
We establish that spilling and coalescing remain NP-complete in such graphs
even if some specificities can be exploited to design efficient heuristics. Then,
using these specificities, we present a very efficient reduction rule for split in-
terference graphs, that only relies on extreme live-range splitting. We show that
this reduction is equivalent to find splitting points that could have been useful
for spilling but are useless for coalescing. The deletion of a splitting point is what
we call live-range unsplitting

After that, we propose a decomposition of the graph that allows us to solve
register allocation on each part of the decomposition rather than on the full
graph, without breaking optimality. The next part presents the last optimiza-
tion. Then, we discusses theoritical impact of our reduction on the only optimal
algorithm for coalescing, the cutting-plane algorithm. The next part is devoted
to experimental results on the optimal coalescing challenge. A first result is that
our first optimization reduces the size of original graphs (i.e. before extreme live-
range splitting) by up to 10, and thus extreme live-range splitting does not make
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coalescing harder anymore. A second result is that Grund and Hack’s cutting-
plane algorithm for optimal coalescing runs 300 times faster when combined with
our optimizations, thus enabling to solve all the instances of the optimal coa-
lescing challenge, including the 3 instances that were previously unsolved. We
end this report by presenting related work and concluding.

2 Concepts of Graph Theory

As mentioned above, our study mainly relies on graph theory. Therefore we will
first summarize some usual concepts about it to be used throughout the study.
For the rest of this section we consider a graph G = (V,E) where V is the set
of vertices and E the set of edges.

The most important concepts of those defined below are illustrated on figure
2 :

– A graph coloring is a function assigning a color to each vertex of the graph.
It is said to be proper if for each edge the color assign to its extremities is
not the same. In the whole report we will abusively use the term ”coloring”
instead of ”proper coloring”.

– A graph G′ = (V ′, E′) is said to be induced (or vertex-induced) by V ′ iff V ′

is a subset of V and E′ is a subset of E such that each edge belonging to E′

has both its extremities in V ′.
– A path between two vertices x and y is a list of edges (without redundancy)

such that the end of an edge corresponds to the begin of the next one and
that the begin of the first edge is x and the end of the last one is y.

– A cycle is a path between beginning and ending with the same vertex.
– A chord is an edge connecting two non-adjacent vertices of a cycle.
– A graph is said to be chordal if it does not contain any cycle with more than

4 vertices and no chord.
– An interval graph is a graph such that each vertex corresponds to an interval

and two vertices are neighbours iff their corresponding intervals intersect.
Notice that the class of interval graphs is a subclass of the one of chordal
graphs since it is impossible to design a chordless cycle using an interval
representation.

– A graph such that V can be partitionned into V 1 and V 2 and that each edge
has exactly one extremity in both parts is said bipartite.

– A graph where each vertex is linked to all the others is said to be complete.
– A clique is a complete induced graph and, given an positive integer k, a
k-clique is a clique of k vertices. A clique which cannot be enlarged with an
other vertex is said maximal, and a maximum clique is a clique of maximal
cardinality.

– A partition of the vertices of G such that each part is a clique is called a
clique partition. A minimum clique partition is a clique partition of minimal
cardinality.

– A matching of a graph is a set of non-adjacent edges. A perfect matching is
a matching reaching each vertex.
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– A connected component is a maximal (with respect to the inclusion) set of
vertices S such that for any two vertices x and y belonging S, there exists a
path between x and y.

– A graph is said connected if it has only one connected component.
– A separation set is a set of vertices whose removal strictly increases the

number of connected components of the graph.
– A 2-connected component is a connected component such that there exists

two disjoint paths (i.e. which does not share any edge) between each pair of
its vertices.

1 2
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Fig. 2. Concepts of graph theory : (a) a cycle and a chordal graph, (b) a complete
graph and a clique, (c) a matching and a perfect matching in dashed edges.

Moreover, since interference graphs contains two kinds of edges, we often
use interference ”set” (respectively preference ”set”) as notation. For example a
inteference clique is a clique of interference edges, an affinity path is a path of
affinity edges, etc.

3 Split interference graphs

This section defines split interference graphs and some graph concepts that are
inherent and useful for our optimizations. We also treat of the complexity of
spilling and coalescing in split interference graphs.
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3.1 Definition

Register allocation is performed on an interference graph. There are two kinds
of edges in an interference graph: interference (or conflict) edges and preference
(or affinity) edges. Two variables interfere if there exists a program point where
they are both simultaneously live, and if they may contain different values at
this program point. A preference edge between two variables represents a move
instruction between these variables (that should be stored in a same register
or at the same memory location). Weights are associated to preference edges,
taking into account the frequency of execution of the move instructions.

Given a number k of registers, register allocation consists in satisfying all
interference edges as well as maximizing the sum of weights of preference edges
such that the same color is assigned to both extremities. Satisfying most of the
preference edges is the goal of register coalescing.

Interference graphs are built after a liveness analysis [10]. In an interference
graph, a variable is described by a unique live-range. Consequently, spilling a
variable means spilling it everywhere in the program, even if it could have been
spilled only on a shorter live-range. Figure 3 illustrates this problem on a small
program consisting of a switch statement with 3 branches (see [24] for more
details). The program has 3 variables but only 2 variables are updated in each
branch of the switch statement. Thus, its corresponding interference graph is a
3-clique, that is not 2-colorable, although only 2 registers are needed.

switch(. . . ){
case 0: case 1: case 2:
l1 : a := . . . l4 : a := . . . l7 : b:= . . .
l2 : b := . . . l5 : c := . . . l8 : c:= . . .
l3 : . . . := a + b l6 : . . . := a + c l9 : . . . := b + c

}

Fig. 3. Excerpt of a small program such that its interference graph is a 3-clique.

The usual way to overcome the previous problem is to perform live-range
splitting. Extreme live-range splitting splits live-ranges after each statement,
and thus generates some renamings that are not useful for coalescing. When v is
renamed to v1 and v2, if after optimal coalescing v1 and v2 share a same color,
then the renaming of v2 is useless: v2 can be replaced by v1 while preserving the
optimality of coalescing.

Moreover, the number of affinity edges blows up during extreme live-range
splitting since there is an affinity edge between any two vertices which represent
the same variable in two consecutive statements. Figure 4 shows the split inter-
ference graph of a small program given in [1]. In the initial interference graph,
each vertex represents a variable of the initial program (the array mem is stored in
memory); the preference edges correspond to both assignments d:=c and j:=b.
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The bottom of figure 4 is an example of extreme live-range splitting. By
lack of space in the figure, only the beginning of the transformed program is
shown. The split interference graph is generated using the following process.
Every variable that is live and unchanged between program points p1 and p2 is
copied. A variable that should go dead at p2 is not copied. All the copies and
the statement are executed in parallel. This process is very similar to the one
described by Appel and George for the construction of the optimal coalescing
challenge. The difference between both processes is minor and has no influence
on the properties of split interference graphs that we use.

In other words, each live variable is renamed in parallel to each statement,
except if it is killed in this statement. For instance, k0, k1 and k2 are copies of k.
As k is live initially, it is renamed to k0 (and so is j). Similarly, g and j are live
at the exit of the first statement. Thus, they are renamed after that statement.

Edges corresponding to renamed variables are added in the split interference
graph. Preferences edges between renamed variables are also added, as well as
interference edges related to renamed variables. For instance, renaming j to
j0 generates the preference edge (j, j0). In the initial graph, the interference
edge (j, k) corresponds to two interference edges in the split interference graph,
because there are two program points where j and k interfere.

3.2 Complexity

Spilling Spilling is known to be NP-complete [27] since it is often seen as the
search of a maximum K-colorable subgraph of the interference graph. This latter
problem is easy for split interference graphs since their structure is very specific.
However, spilling is not.

Theorem 1. After extreme live-range splitting, a statement corresponds to an
interference connected component of the split interference graph. Moreover, such
a component is an clique, that we call a statement clique.

Proof. See appendix B. ut

Each statement corresponds to a set of vertices which form a clique, which we
will call statement cliques, since they are all interfering together. Notice also that
any statement clique is a connected component of the graph, and reciprocally.
As a corrolary, split interference graphs are interval graphs : we can assign to
every vertex of an statement clique the same interval such that two different
cliques have disjoint intervals. Hence, recent results based on interval or chordal
graphs still hold [22] [16].

In our case, the search of a maximum K−colorable subgraph is equivalent to
the search of such subgraphs in each statement clique. This search is easy : the
number of colors needed to color any clique is equal to this clique cardinal. This
reasonment also gives a linear time algorithm to find a maximum K−colorable
subgraph of a split interference graphs.

However, finding a maximum K-colorable subgraph is not enough to provide
an optimal spilling because it minimizes the number of variables to spill at
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Live-in : k j
g := mem[j+12]
h := k-1
f := g*h
e := mem[j+8]
m := mem[j+16]
b := mem[f]
c := e+8
d := c
k := m+4
j := b
Live-out : d k

d

e

gh
k mj b

f

Live-in : k j
k0 := k‖j0 := j‖g := mem[j0+12]
j1 := j0‖g0 := g‖h := k0-1
j2 := j1‖f := g0*h
f0 := f‖j3 := j2‖e := mem[j3+8]
e0 := e‖f1 := f0‖m:=mem[j+16]
. . .

k
j

k0
j0 g g0 h

j1 fj2
ef0 j3

e0f1 mm0b e1
m1 b0

m2b1 d
k1 b2d0

k2 j5d1
Fig. 4. A small program and its interference graph (top). The same program after
extreme live-range splitting and its split interference graph (bottom). The end of the
second program is omitted in the figure.

each point instead of the number of spill instructions (i.e. of load and store
instructions). Indeed, spilling the same variable at many consecutive points only
corresponds to two instructions. Thus we can refine the reasonment proposed
above taking account of this idea : spilling a variable at a point is equivalent to
spill it from its last previous to its next use. Thus we come back to the usual
spilling model, and hence to a NP-hard problem.

Coalescing We now deal with coalescing, supposing that spilling has already
been done. Hence, each statement clique’s size is lower than or equal to K. We
will show that the problem remains NP-hard. We first prove it for K = 2, then
explain how to derive a proof for any K > 2. Notice that the proof for K = 2 is
also a proof that coalescing is NP-hard in bipartite interval graphs.

Theorem 2. The coalescing is NP-hard, even if each connected component of
interference edges is a 2-clique and with two registers and for unit weights.
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Proof. See Appendix A. ut

We derive from this result two worthwhile corollaries.

Corollary 1. The coalescing is NP-hard, even if each connected component of
interference edges is a clique of size lower than K and for unit weights.

Proof. See appendix A. ut

Corollary 2. The coalescing is NP-hard, even if the interference edges form a
bipartite interval graph and for unit weights.

Proof. See appendix A. ut

Finally, it also establishes a frontier between NP-hardness and polynomiality,
as the following theorem shows.

Theorem 3. The coalescing is polynomial if the interference edges form a con-
nected bipartite graph and for K = 2.

Proof. See appendix A. ut

These complexity results show that both spilling and coalescing do not be-
come easier in split interference graphs. Thus, an optimal solution will remain
exponential. However, some properties of split interference graphs can be ex-
ploited to develop new heuristics or reduction rules.

3.3 Some Worthwile Properties

The main drawback of extreme live-range splitting is that it generates huge
graphs. There are 2 kinds of affinity edges in a split interference graph: edges
representing coalescing behaviors, and edges added by variable renaming during
live-range splitting. A lot of affinity edges and vertices (as well as some associated
edges) corresponding to variable renaming are added in the graph. This section
gives 2 properties of these edges and vertices. They are useful for reducing the
graphs.

Definition 1. Parallel clique, dominant and dominated cliques. Let C1 and and
C2 be 2 maximal interference cliques. C1 dominates C2 if there exists an affinity
matching M such that :

1. M contains only edges having an extremity in C1 and the other in C2,
2. each vertex of C2 is reached by M ,
3. no edge of M has extremities precolored with different colors,
4. for each vertex v of C2, the weight of the edge M that reaches v is greater

than or equal to the total weight of all others affinity edges reaching v.

We also say that C1 and C2 are parallel cliques, C1 is a dominant clique and C2

is a dominated clique. Moreover, M is called a dominant matching.
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Parallel cliques represent splitting points. Figure 5 shows a subgraph of the
split interference graph given in figure 4. The condition on the weights may seem
to be very restrictive. Actually, it is not. The weight of an affinity edge is often the
middle part of the total weight of incident affinity edges reaching its extremities.
Indeed, the number of copy statements does not change, except when entering in
or exiting from a loop. Hence, many dominations appear. The following property
of dominated parallel cliques enables us to remove the splitting points that have
created this domination, without worsening the quality of coalescing.

m0
b

e1

m1
b0



m2
b1

d

k1
b2

d0
Fig. 5. Some parallel cliques. The cliques {m1, b0, c} and {m2, b1, d} are iso-parallel.

Theorem 4. If C1 and C2 are two parallel cliques such that C1 dominates C2,
then there exists an optimal coalescing coloring extremities of each edge of the
dominant matching with the same color.

Proof. See appendix B. ut

4 Size Reduction Using Parallel Cliques

In this section, we detail the first optimization for simplifying significantly the
split interference graphs resulting from spilling, and thus improving optimal
coalescing. This optimization do not affect the global quality of coalescing. It
consists in removing the splitting points that could have been useful for spilling
but that are useless for coalescing. This reduction relies on a subgraph, called
dominated parallel cliques, representing the splitting points that can be removed
from the program. This section details 2 algorithm that respectively find domi-
nated cliques and merge parallel cliques.

Finding Dominated Cliques A reduction rule arises from the theorem 4.
However, this rule supposes that finding dominated cliques can be found effi-
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ciently.Ss Indeed, it is possible. The algorithm 1 does it in O(kmC2), where mC2

is the number of affinity edges having an extremity in C2.

Algorithm 1 parallel cliques (C1,C2)
Require: Two maximal interference cliques C1 and C2

Ensure: A dominant matching M if C2 is dominated by C1, NULL otherwise

1: E := {affinity edges having an extremity in C1 and the other in C2}
2: delete every edge having extremities precolored with different colors from E
3: for all color c do
4: if there exist v1 ∈ C1 and v2 ∈ C2 both colored with c then
5: if v1 and v2 are linked with an affinity edge then
6: delete from E every affinity edge reaching v1 or v2 except (v1, v2)
7: else
8: return NULL
9: end if

10: end if
11: end for
12: for all v ∈ C2 do
13: Pref weight(v) =

∑
x∈Pref Neighbors(v)

weight(v,x)

14: end for
15: for all v ∈ C2 do
16: for all v′ such that (v, v′) ∈ E or (v′, v) ∈ E do
17: if weight(v,v′) < 1

2
Pref weight(v) and v1 and v2 are not precolored with

the same color then
18: delete (v, v′) from E
19: end if
20: end for
21: end for
22: M := maximum matching included in E
23: if cardinal(M) = number of vertices of C2 then
24: return M
25: else
26: return NULL
27: end if
28: add back deleted edges

The first two loops of algorithm 1 compute E, the set of affinity edges that
may belong to a dominant matching. The first loop removes the edges that
cannot respect precoloring constraints, i.e. that have extremities precolored with
different colors or an extremity colored with a color which cannot be affected to
the second extremity. The second loop removes every edge such that its weight is
not high enough to be dominant. More precisely, an affinity edge can be deleted
if its weight is not greater than the half of the total weight of its extremity that
belongs to the potential dominated clique. The second part of the algorithm is a
search for a maximum affinity matching included in E. This problem is nothing
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but the search of a maximum matching in a bipartite graph, which can be solved
in polynomial time [26]. Finally, there is only to check if each vertex of C2 is an
extremity of an edge of the matching. That can be done by checking the equality
between the cardinal of the matching and the number of vertices of C2.

Merging Parallel Cliques The main idea of our first optimization is to re-
duce the size of the split interference graph by removing most of the splitting
points. For that purpose, we define a split-block (per analogy to basic blocks)
as a set of statement that are not separated with a splitting point. We also
define SB-cliques, as interference cliques of interference graphs that represent
split-blocks. Initially, split-blocks are statement (since we use extreme live-range
splitting), and thus SB-cliques are statement cliques. Deleting a splitting point
is equivalent to merge the split-blocks they represent. In term of cliques, if two
SB-cliques are parallel, then they can be merged (resulting in a new SB-clique),
since each pair of vertices linked by an edge of the dominant matching can be
coalesced (the splitting point was useless for coalescing). Indeed, there exists an
optimal solution that assigns the same color to both vertices. That is what we
call live-range unsplitting. This merge leads to a graph where new dominations
may appear, as well as vertices with no preference edges. These vertices can be
removed from the graph since the interference degree of any vertex is lower than
k.

Merging two SB-cliques is equivalent to removing the splitting point that
separates the split-blocks they represent and, hence, removing copies that have
been created by the deleted splitting point. In other words, merging two split-
blocks is equivalent to undo a splitting. Moreover, since merging two cliques
yields a new SB-clique, the reduction can be performed until the graph is left
unchanged. In order to speed up the process, for each clique i, we first compute
the set N(i) of SB-cliques j such that there exists an affinity edge having an
extremity in i and the other in j. Then, there is only to find and merge parallel-
cliques, and update the graph. This process is iterated as long as there are
parallel-cliques in the graph.

Algorithm 2 details our reduction. When applied to the graph of figure 4, it
yields an empty graph, meaning that this instance can be optimally solved in
polynomial time. Moreover, the solution requires only 3 colors. Iterated register
coalescing (a state-of-the-art coalescing heuristics) requires 4 colors when applied
to the original interference graph. Actually, if j and b are coalesced then any
coloring of the classical interference graph requires at least four colors. Indeed,
if jb is the vertex obtained by coalescing j and b, then e, f,m and j, b form a
clique of 4 vertices. Thus these 4 vertices must have different colors, and four
colors (at least) are needed. It shows, again, that live-range splitting can provide
better solutions because variables belonging to split live-ranges may be stored
in different registers.
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Algorithm 2 graph reduction (G)
Require: A split interference graph G
Ensure: A reduced split interference graph

1: remove vertices that do not belong to any affinity edge
2: compute statement cliques
3: for all statement clique i do
4: N(i) = {statement cliques linked to i with an affinity edge}
5: end for
6: red = 1

7: while red 6= 0 do
8: red = 0
9: for all SB-clique i do

10: for all j ∈ N(j) such that |j| ≥ |i| do
11: M = dominated parallel cliques(i, j)
12: if M 6= NULL then
13: merge each pair of M and compute new weights
14: red = red+1
15: N(ij) := N(i) ∪N(j)
16: for all k ∈ N(i) ∪N(j) do
17: N(k) := N(k) ∪ ij\{i, j}
18: end for
19: end if
20: end for
21: end for
22: end while

5 Decomposition by Clique Separators

Our second optimization is a decomposition based on clique separators, inspired
from [25, 17]. First, we did not know the existence of these works. Thus, all the
decomposition process is explained. Contrary to the first one, this one is not
specific to split interference graphs. However, we show that properties of split
interference graphs can be exploited to improve the algorithm for decomposing.

5.1 Presentation of the Decomposition

The main idea is to use SB-cliques as separation sets. Then, the coalescing will
not be solved on the whole graph, but on each component resulting from the
decomposition.

This part shows how the problem can be decomposed to provide a faster so-
lution. The idea of this heuristic is to use cliques, that is a structure of the graph
for which all the coloring are permutations, as separable sets. Before describing
it, we have to define some concepts.

Definition 2 (clique graph). Given a clique partition of the interference graph,
the clique graph is the graph where each vertex is a clique and where edges are
the merge of edges between vertices belonging to the cliques.
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Definition 3 (separation clique). An interference clique is a separation clique
iff the removal of it strictly increases the number of connected components of the
graph.

Definition 4 (clique-block). Given a clique partition, a clique block is a block
of the clique graph corresponding to the clique partition.

The algorithm runs in four phases. Figure 5.1 presents an example of the
algorithm’s application. These main phases are :

1. The algorithm begins by merging all precolored nodes in K nodes (one for
each color), as were doing Appel and George [14]. Notice that this transfor-
mation destroy the pecularities of the graph but preserves chordality. Indeed,
the split interference graph remains chordal since a merge of clique does not
destroy chordality [26].

2. Afterwards we search for separation cliques of the graph. We do not search
for all of them, since there can be intersections, but for a set of disjoint
separation cliques. This search is realized by finding a clique partition of
the graph and searching for separation vertices of the corresponding clique-
graph. Notice that the search of separation vertices of the clique graph also
provides the clique-blocks [26].

3. Now we construct a last graph, called separation graph, which gives a fine
representation of the algorithm statements. Its vertices are the clique-blocks
of the graph and two vertices are adjacent iff their corresponding clique-
blocks intersect.

4. Finally, we use the fact that the separation graph is a tree to color clique-
blocks using a DFS order.

This algorithm relies on the two following theorem :

Theorem 5. The separation graph of a connected graph is a tree. ut

Proof. See appendix C. ut

Theorem 6. The coloring algorithm returns a proper coloring of the graph.
Moreover, this coloring is optimal if we can solve the problem optimally for each
clique-block.

Proof. See appendix C. ut

5.2 Interest of the Decomposition

In split interference graphs, this decomposition can be done in linear time, rather
than in quadratic time. Indeed, the hardest task is to find interference clique
separators. This can easily been done in split interference graphs since all inter-
ference cliques are disjoint. Hence, to know if a SB-clique is a separator clique,
we create a graph where a vertex represents a SB-clique and two vertices are
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adjacent if there exists an edge between the two cliques that these vertices rep-
resent. Then, we compute separator vertices of this graph. A separator vertex of
this graph corresponds to a separator clique of the split interference graph.

Furthermore, our first optimization based on cliques merging (see algorithm 1)
makes cliques more likely to be separators. Indeed, if a union of two cliques is a
separable set, then the clique obtained by merging these two cliques is a sepa-
ration clique.

Finally, another strength of our decomposition is that it gets rid of solutions
that are permutations of previous solutions. For a coloring problem, the huge
number of such permutations makes this problem hard to deal with. For instance,
if D1 and D2 are two components of the decomposition that intersect, then
coloring D1 affects part of D2. Thus, later, when D2 must be colored, all solutions
that are not compatible with the coloring for D1 can be removed, including many
permutations. Since ILP solvers are very sensitive to permutations, deleting some
of them may lead to much faster computations.

6 Theoritical Impact of Reductions on the Cutting-plane
Algorithm for Coalescing

Even if any algorithm can be used after our optimizations to solve coalescing,
this section focuses on the most efficient optimal algorithm, the cutting-plane
algorithm of Grund and Hack[16]. More precisely, we discusses of the theoritical
impact our approach has on this algorithm.

First, at each iteration where a dominated clique of size s is found, the size
of the graph decreases of s vertices, s2 interference edges and at least s affinity
edges. On the ILP formulation of Grund and Hack, it involves a reduction of at
least ks+s variables (ks for vertices and at least s for affinity edges) and at least
s2 + k s(s−1)

2 + s constraints (s2 for interference constraints, k s(s−1)
2 for affinity

constraints and s for coloring constraints). Such a reduction is quite significant,
especially when applied many times as the reduction does.

Moreover, the number of cut inequalities generated for the cutting-plane
algorithm and the number of variables involved in them decrease with the size
of the graph. The more cut inequalities are generated, the more the solver takes
time to find efficient ones for each iteration of the simplex algorithm (on which
solvers rely). Following the same idea, the more variables are involved in a cut
inequality, the more it is difficult to find values for these variables. For instance,
a path cut [16] is more efficient if it concerns a path of three affinity edges than
if it concerns a path of ten affinity edges. For these reasons, the computation of
cut inequalities and the solution are speeded up when using our optimizations.

7 Preprocessing Rules

Finally, our last optimization consists in two preprocessing rules designed to
reduce the graph size. The first one is an extension of a well-known reduction
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of the coloring problem that is much used for coalescing and the second gives a
means of dominating preference. As the second optimization, this one does not
require the graph to be a split interference graph.

Lemma 1. Let G be a graph, K a positive integer and C an preference connected
component of G with no intern interference edge. If

∑
i∈V (C) δI(i) < K (where

δI(i) denotes the interference degree of the vertice i) then C is colored with only
one color in every optimal preference K-coloring.

Proof. See appendix D. ut

Lemma 2. Let G be a graph and (x, y) a preference edge of G. If w(x, y) ≥∑
z 6=y w(x, z) and if NI(x) ⊆ NI(z), where NI(x) denotes the interference neigh-

bourhood of x, then there exists an optimal solution where x and z are colored
with the same color.

Proof. See appendix D. ut

These two rules help to reduce the size of the graph. They are not specific
to split interference graph and may further be used to design new heuristics, as
were used vertices of low degree before [10] [8] [14].

8 Experimental Results

As mentioned previously, we use the optimal coalescing challenge (OCC) as
benchmark. OCC is a set of 474 large interference graphs that result from a
spilling phase. Our two optimizations are performed on the OCC graphs and
generate simplified graphs that are given as input to the ILP formulation (and
the associated cutting-plane algorithm) defined by Grund and Hack in [16]. We
use the AMPL/CPLEX 9.0 solver (as in [16]) on a PENTIUM 4 2.26Ghz. The
first part of this section measures the efficiency of our reduction. Then, the
section details respectively optimal and near-optimal solutions. Notice that we
only use the two first optimizations for experimental results. Indeed, the last
optimization has no sensitive influence on these results.

8.1 Reduction and decomposition

The first measure is the ratio between the sizes of the OCC graph and the
biggest subgraph on which coalescing has to be solved (i.e. resulting from our
decomposition). We focus on this subgraph because its solution requires almost
the whole computation time. These results are detailed in figure 7.

The average reduction is quite significant since the vertex (resp. edge) number
is divided by 6 (resp. 4.5). Let us note that the precolored vertices are always kept
(because they model the calling conventions of the processor), thus involving a
smaller reduction ratio for small graphs. 90% of the reduction arises from the
first optimization, i.e. from the deletion of a set of splitting points. Moreover,
the reduction runs very fast since it only takes 6 seconds when applied to all the
instances of OCC.
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Initial number Number of Vertex number Edge number
of vertices instances ratio ratio

0-499 292 18,37% 32,59%

500-999 97 13,76% 26,71%

1000-2999 63 12,72% 26,73%

over 3000 22 12,64% 7,64%

Fig. 7. Size reductions for OCC graphs. The vertex (resp. edge) number ratio is the
ratio between the number of vertices (resp. edges) of the graph after reduction and the
one before reduction.

8.2 Optimal Solutions

We compute optimal solutions for each component of the decomposition using
the cutting-plane algorithm of Grund and Hack [16]. For each interference edge,
we only compute the path cut corresponding to the shortest path of preference
edges linking its extremities. Figure 8 shows a fall of computation times between
the solution with and without our optimizations. Indeed, the cutting-plane algo-
rithm finds only 430 optimal solutions within 5 minutes when applied to the OCC
graph. When used after our optimization, the cutting-plane algorithm finds 436
instances within one second (including the time spent for our 2 optimizations).
On average, the cutting-plane algorithm runs 300 times faster when combined
with our 2 optimizations. Only 6 instances are solved in more than one minute,
and only 3 of them are solved in more than 150 seconds.

Moreover, we are the first to solve the whole OCC instances optimally. Indeed,
in [16] 3 solutions are far too slow and thus their optimality was not certain. We
have found a strictly better solution for one instance and proved that the two
other solutions are optimal.

8.3 Near-Optimal Solutions

Many problems are solved within a few seconds. We adapt our approach to the
other problems in order to avoid combinatorial explosion. Thus, we tune the
ILP solver for the 6 instances that take more than one minute to be solved.
Numerical results are presented figure 8.3.

A first way of tuning the solver is to give it a time limit. Finding the optimal
solution (or a near optimal one) often takes less than 10% of the computation
time. The ILP formulation can call the solver a lot, even if the solver has a time
limit. Thus, the computation can take more than the time limit. However, it
never exceeds this limit too much since there is empirically only one call to the
solver that reaches the time limit. In addition, this method can fail if no integer
solution is found within the time limit.

A better way to tune the solver is to limit the gap between the expected
solution and the optimum. Indeed, the solver can give at any time the gap
between the current best solution and the best potential one using a bound
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Fig. 8. Number of instances solved within a short time limit : comparison of the cutting-
plane algorithm efficiency when using (or not) our optimizations.

of the latter. This method is the opposite of choosing a time limit: it sets the
quality of the expected solution and evaluates the time spent to find it, instead
of setting a time limit and evaluating the quality of the solution.

Results of figure 8.3 give a flavor of the quality of coalescing on split inter-
ference graphs. First, optimistic coalescing (i.e. the best known heuristics for
coalescing [21]), is clearly overpassed by limited ILP. Indeed, a short time limit
of 20 seconds is already better when it does not fail. Second, a time limit of 30
seconds leads to near-optimal coalescing. The gap between the corresponding
solutions and the optimum is never greater than 20%, while the gap for the
optimistic coalescing is often about 50%. The failure that occurs for some in-
stances is quite prohibitive but the time limit gives a good idea of the difficulty
for solving an instance.

Last, using a gap limit seems very powerful, especially when it is large enough
to avoid combinatorial explosion. Here, a limit of 10% leads to solutions of very
good quality (under 5% of gap with the optimum) and within a quite short time
(less than 2 minutes). Giving a too restricted limit (such as 5% or less) leads to
good solutions too but these solutions may be quite slower, as for the instance
387 that goes from 115 to 1187 seconds when the gap goes from 10% to 5%.
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Instance 144 304 371 387 390 400

Optimum value 129332 6109 1087 3450 339 1263

Optimistic value 188903 9602 1616 8788 677 2936

20s limited value 129333 no no no 417 1388

30s limited value 129333 no 1285 no 365 1263

10% gap limited value 132040 6448 1094 3550 339 1263

5% gap limited value 129342 6273 1094 3450 339 1263

Optimum time 11026 1058 132 29543 102 75

10% gap limited time 15 36 62 115 86 21

5% gap limited time 17 64 62 1187 92 21

Fig. 9. Comparison between different approaches for solving the hardest instances of
OCC. no means that no solution is computed within the time limit. Times are in
seconds.

9 Related Work

Goodwin and Wilken were the first using ILP to solve register allocation [15].
Their model was quite difficult to handle since they tackled the problem with a
hardware point of view. Since then, some improvements were added, in particu-
lar by Fu and Wilken [13], Appel and George [3], or Grund and Hack [16]. Appel
and George optimally solved spilling by ILP and empirically showed that sepa-
rating spilling and coalescing does not significantly worsen the quality of register
allocation. Because of their ILP formulation, they perform extreme live range
splitting. For that reason, they were not able to solve coalescing optimally. More
recently, Grund and Hack proposed a cutting-plane algorithm to solve coalescing
and were the first to solve the optimal coalescing challenge [16]

Our study reuses this previous work and focuses on properties of split inter-
ference graphs. Concerning coalescing, our optimizations divide the size of the
interference graphs (by ten when measured on the OCC graphs), thus enabling
us to find in a faster way more solutions that are optimal and efficient. Moreover,
our reduction can explain why optimistic coalescing is quite efficient for split in-
terference graphs. Indeed, our reduction is close to optimistic coalescing: the
vertices that are coalesced with this heuristics often correspond to the edges of
dominant matchings. Thus, moves corresponding to these edges can be removed
while conserving optimality.

When a program is in SSA form, each variable is defined only once. A program
modified by extreme live-range splitting can be considered as a generalization of
a SSA form. There is a lof of work on register coalescing for programs in SSA
forms. This work relies on the chordality of interference graphs resulting from
SSA forms and is different from our work.
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10 Conclusion

Our main motivation was to improve register coalescing using ILP techniques.
Solving an ILP problem is exponential in time and thus reducing the size of
the formulation can drastically speed up the solution. Rather than reasoning on
the ILP model, we have studied the impact of extreme live-range splitting on
register coalescing. We have reused 2 properties of interference graphs resulting
from extreme live-range splitting, that are useful for simplifying these graphs.
We have defined 3 optimizations for reducing significantly the size of the ILP
formulations for coalescing. They are general enough and they can be combined
with well-known heuristics for register coalescing.

As said in [16], all the optimizations must go hand in hand to achieve top per-
formance. When our optimizations are combined with a cutting-plane algorithm,
we solve the whole optimal coalescing challenge optimally and more efficiently
than previously.

Moreover, this work on extreme live-range splitting raises many questions.
Indeed, it can be interesting to relax some constraints on split-blocks merging
in order to design new heuristics, or to wonder if unsplitting could be done
before spilling. Finally, since finding optimal solutions for spilling and coalescing
separately is not elusive anymore, one could expect to solve both simultaneously
and to evaluate the real gap arising from the separation.

This work is part of an on-going project called CompCert 2, that investigates
the formal verification of a realistic C compiler usable for critical embedded soft-
ware. Future work concern the formal verification of the optimizations described
in this report.
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A Coalescing’s Proofs of Complexity in Split Interference
Graphs

Theorem 7. The coalescing is NP-hard, even if each connected component of
interference edges is a 2-clique and with two registers.

Proof. The proof is a reduction from 3SAT, which is known as NP-hard. Let us
first define the 3SAT problem. A clause is defined as a disjunction of litterals. A
formula is a conjunction of clauses. The 3SAT problem consists of finding values
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of each litteral of a formula where each clause contains at most three litterals,
such that the formula is satisfied, i.e. each clause is satisfied.

Here, we consider a 3SAT instance containing n clauses. We now describe
how to construct the instance of coalescing. We begin by creating two vertices
T and F (to represent true and false) linked by an interference edge. The idea
is to use the two colors as values true and false and assign to each litteral
a color. The second important point is that any satisfied clique must raise the
same gain for the objective function, in order to be able to know if all the cliques
are satisfied, and that the gain must be strictly lower otherwise. More precisely,
any assignment that satisfies a clause must raise the same gain. To do that, we
handle each clause in function of its size. Figure 10 presents the construction of
the graph corresponding to a clause, in function of its size.

Yet, the graph is almost constructed. The last point is that, for the moment,
two vertices (li, C) and (li, C ′) are seen as different litterals though they must
have the same value. To be sure of that necessity, we defined σ as one plus the
sum of all weight of affinity edges. Then, for each litteral l, we create a path of
affinity edges, all weighted byσ, containing all occurences l. We further call these
specific edges consistancy edges.

Clearly, the size of the graph is polynomial in the size of the SAT problem.
Let us now show that solving coalescing on this graph is equivalent to decide if
the original SAT problem has a solution.

We first prove that any assignment that satisfy a clause raises a gain of 60
and raises stricly less otherwise. If the clause contains exactly one litteral, then it
is obvious. For the other cases, we reason on the number of neighbours of T which
are colored with the same color than it. So, consider a clause with two litterals.
If no vertex representing these litterals is colored with the same color than T
then it raises 0. Otherwise, there are exactly 4 affinity edges that are satisfied
and then it raises 60. The hardest case is the one of a clause with 3 litterals.
We first remark that the vertex that is linked to F with an affinity edge is of the
color of T iff the 3 neighbours of T are colored with the color of T . Indeed, if
one is colored with the color of F then the best choice for the neighbour of F
becomes the color of F . So, if all the neighbours of T have the same color than T
then it raises 60 (the six edges weighted with 10 are satisfied). If the number of
vertices like that is one or two, then it also raises 60 (the edge weighted with 22,
two edges weighted with 4, and three edges weighted with 10). Finally, if there is
no vertex like that then it raises 52 (the edge weighted with 22 and three edges
weighted with 10).

We now prove that any optimal solution of this coalescing problem assigns the
same color to each vertex corresponding to a litteral. So, suppose that there exists
an optimal solution S such that two vertices (li, C) and (li, C ′) are not colored
with the same color. Thus, along the path of consistancy edges corresponding to
li, there is at least one edge which extremities have not the same color. Hence,
if w designs the total sum of all affinity edges, then the value of S is at most
w − σ. Moreover, it is clear that there exist solutions that assign a unique color
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Fig. 10. Detailed construction of the graph for the proof of complexity, for clauses of
1, 2 or 3 litterals (from top to bottom). Weights of the affinity edges are 60 for a single
litteral clause and 15 for two litterals clauses. For a clause of three litterals weights are
10 for edges linking B and T to litterals, 4 for edges linking litterals to their opposite
and 22 for the edge linking B and F. We do not detail how weights are computed and
the graph has been constructed since the reasonment and the proofs are quite long and
not really whorthwhile for the result. Notice that these weights make that any clause
satisfied, that is such that T and a litteral have the same color, ensures a gain equal
to 60.

along all paths of consistancy edges. Any of these solutions has a value which is
greater than w − σ + 1 by definition of σ.

Now we claim that, if q designs the number of consistancy edges, then the
3SAT instance has a solution iff the coalescing instances has a solution of value
qσ + 60n. Clearly, a solution cannot have a greater value than qσ + 60n since
each subgraph corresponding to a clause can increase the objective value of at
most 60. Moreover, if we consider a solution of the coalescing problem of value
qσ + 60n, we assign a litteral to true if vertices representing it are colored as
T and to false otherwise. By construction, it leads to a solution of the 3SAT
instance.
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Finally, the theorem remains correct for unit weights. An edge weighted with
w can be replaced by a path of w unit weighted edges. ut

Corollary 3. The coalescing is NP-hard for any K, even if connected compo-
nent of interference edges is a clique of size lower than K.

Proof. We prove this result by reduction of the above one. Indeed, we can replace
any 2-clique by a clique of size lower than or equal to K, without adding any
affinity edge. Suppose we have solution of the problem with two registers. We
will show that qσ + 24n is an upper bound of the objective function’s value and
that this bound cannot be reached if more than two colors are used for vertices
which have incident affinity edges. To show that qσ + 24n is an upper bound we
only have to prove that 24 is an upper bound for each subgraph corresponding
to a clause, without taking account of consistancy edges, and that no solution
that reaches this bound uses strictly more than two colors. The simplest way is
to solve it with an ILP solver and to verify the result. Indeed, the proof is not
difficult but requires many cases. ut

Corollary 4. The coalescing is NP-hard, even if the interference edges form a
bipartite interval graph and for unit weights.

Proof. The reduction described above constructs an graph where each connected
component of interference edges are 2-cliques. Such a graph is clearly either an
interval graph and a bipartite graph. Hence, the coalescing is NP-hard in both of
these classes. ut

Theorem 8. The coalescing is polynomial if the interference edges form a con-
nected bipartite graph and for K = 2. More precisely, for K = 2, it can be solved
in O(m+ 2pn) where p is the number of interference connected components.

Proof. The proof relies on a simple algorithm. We divide each connected com-
ponents in two independant sets. All these decompositions are unique and can
be done in O(m). Then, for each connected component only two colorings are
possible : one color is assigned to an independant set (two possibilities) and the
other color must be assigned to the other independant set. So, there are only 2p

possible coloring of the graph and each of them takes O(n) to be computed. ut

B Size Reduction Properties

Theorem 9. When using extreme live-range splitting, a statement corresponds
to an interference connected component of the split interference graph. Moreover,
such a component is an interference clique, that we further call statement clique.

Proof. All the variables between each program points are defined in parallel, thus
they all interfere together. It results in a interference clique. Moreover, no other
interference concerns these variables since there is an unique statement where
they are live. ut
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Theorem 10. If C1 and C2 are two statement cliques such that there exists
a clique of C1 dominating C2, then there exists an optimal coalescing coloring
extremities of each edge of the dominant matching with the same color.

Proof. We prove this result by induction on the size of C2. If there is only one
vertex then C2 has no coloring constraint. Thus coloring this vertex with the
same color than its image in the matching leads to an optimal solution. Let us
suppose the property correct for a clique of size p. We decompose a clique of size
p+ 1 into a clique of size p and an other vertex. The result holds for the clique
and the alone vertex. Moreover, there is no constraints between the p vertices
and the last one since p + 1 is lower than or equal to K because spilling has
already been done, and there is no other constraints since an statement clique is
a connected component. Finally, the optimum is reached since minima of each
problems are reached and that the function to optimize is linear. ut

C Decomposition Algorithm Soundness Proofs

Theorem 11. The separation graph of a connected graph is a tree.

Proof. Let us suppose that the separation graph contains a cycle. Thus, vertices
of this cycle are contained into a block. It contradicts the fact that each vertex
of this cycle is a block. In addition, if a graph is connected then its separation
graph is clearly connected too. Hence, the separation graph of a connected graph
is a tree. ut

Theorem 12. The coloring algorithm returns a proper coloring of the graph.
Moreover, this coloring is optimal if we can solve the problem optimally for each
clique-block.

Proof. At any moment where we have to color a clique-block C the set of its
vertices that are already colored is an interference clique, by definition of clique-
blocks, except the first clique-block which contains all the precolored nodes. So,
we can solve coalescing on each clique-block. This approach clearly leads to an
optimal solution iff the problem is optimally solved on each clique-block. ut

D Preprocessing Rules Proofs

Lemma 3. Let G be a graph and (x, y) a preference edge of G. If w(x, y) ≥∑
z 6=y w(x, z) and if NI(x) ⊆ NI(z), where NI(x) denotes the interference neigh-

bourhood of x, then there exists an optimal solution where x and z are colored
with the same color.

Proof. Let Col be an optimal coloring of G. We use val edge and val respec-
tively to denote the value of a preference edge in a coloring (i.e. its weight if
its extremities do not have the same color and 0 otherwise) and the value of a
coloring (i.e. the sum of its edges’ values). If x and z have the same color then
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the result holds. Otherwise, we consider Col′ the coloring such that x is colored
with the color of z in Col and each other vertex has the same color in Col and
in Col′. So we have

val(Col) =
∑

(a,b)∈A,a6=x,b 6=x

val edge(Col, (a, b)) +
∑

(x,z)∈A

val edge(Col, (x, z))

and
val(Col′) =

∑
(a,b)∈A,a6=x,b6=x

val edge(Col′, (a, b)) +
∑

(x,z)∈A

val edge(Col′, (x, z))

Hence
val(Col)−val(Col′) =

∑
(x,z)∈A

val edge(Col, (x, z))−
∑

(x,z)∈A

val edge(Col′, (x, z))

and then, using the hypothesis we obtain

val(Col)− val(Col′) ≤
∑

(x,z)∈A

val edge(Col, (x, z))− w(x, y) ≤ 0

Finally, we have val(Col) ≤ val(Col′). Moreover, Col′ is a proper coloring since
Col is a proper coloring and NI(x) ⊆ NI(z). ut


