
Functional Testing in the Focal environment

Matthieu Carlier, Catherine Dubois

CÉDRIC-ENSIIE,
1 square de la résistance, 91025 Évry Cedex, France,

{carlier, dubois}@ensiie.fr

Abstract. This article presents the generation and test case execution
under the framework Focal. In the programming language Focal, all prop-
erties of the program are written within the source code. These properties
are considered, here, as the program specification. We are interested in
testing the code against these properties. Testing a property is split in
two stages. First, the property is cut out in several elementary properties.
An elementary property is a tuple composed of some pre-conditions and
a conclusion. Lastly, each elementary property is tested separately. The
pre-conditions are used to generate and select the test cases randomly.
The conclusion allows us to compute the verdict. All the testing process
is done automatically.

1 Introduction

The Focal environment [9], developed by the Focal project1 (initiated by T.
Hardin and R. Rioboo and further developed by researchers coming from labo-
ratories LIP6, CÉDRIC and INRIA), allows one to incrementally build library
components and to formally prove their correctness. A component of a Focal li-
brary can contain specifications, implementations of operations and proofs that
the implementations satisfy their specifications. In the early development stages,
components contain only specifications, then step by step components are refined
and completed with implementations by a refinement mechanism based on in-
heritance. Proofs may be done at any time. The Focal environment incorporates
a prover called Zenon [4] which can automatically discharge proof obligations,
with the help of intermediate lemmas given by the user. Focal components are
translated into OCaml executable code and are verified by the Coq proof assis-
tant [12].

Even if the Focal environment ensures a high level of confidence because of
its methodology based on specification and proof, we cannot do without testing.
Here are some reasons:

– The user, based on the informal specification from the user or the domain
expert, writes the formal system specification. In Focal, it consists in formal
properties maybe distributed in different components. For some of them the
developer will provide a proof that the code is correct with respect to this

1 http://focal.inria.fr

formal specification. But some of the properties may not be proven, for ex-
ample low level properties about the addition of machine integers (we trust
them because of external formal formalizations) or very general mathemat-
ical properties. In the latter case, these properties are assumed to be true
(the keyword assumed is used instead of giving a sketch of proof). These
properties may become test objectives.

– In the context of a functional validation process, when it is independent
from the validation done by the development team, engineers often verify
by testing the correctness of the final software with respect to their own
specification. Let us call this specification the external one. So thanks to the
inheritance mechanism of Focal, these external properties can be encoded in
Focal in a component, from which the implementation will inherit. Then as
previously it becomes possible to verify by testing if the code satisfies these
new properties.

– There exist some basic types in Focal, e.g. int. This type is translated into
the Ocaml type int and the Coq type Z. So in the executable code, machine
integers are used but proofs are done with inductively defined integers. So
we have some confidence in the code but we must test code to verify if the
properties are verified, in particular around the bounds.

– Some OCaml untrusted code may be imported in a Focal certified code. No
proof is done on this imported code.

– When Zenon, the prover integrated with Focal, does not succeed in proving
a property automatically, two issues are possible: either it is not true or
Zenon needs to be helped by giving some intermediate lemmas the user
has to find. So before beginning the latter expensive task, we can test a
not yet proven property in order to discover a counter-example or to have
more confidence in the property. It can also be used to have confidence in
the lemmas we need to introduce while proving a property (e.g. invariants,
technical intermediate lemmas, supplementary assertions). In this context,
testing is used for debugging specifications and programs before a proof is
attempted or while it is being attempted. Such testing facilities have been
integrated into the Isabelle [2] or Agda/Alfa [10] proof assistants.

In this paper we propose to test the code with respect to the expected proper-
ties written by the specifier or expressly introduced by the tester as for instance
metamorphic relations (as introduced by Chen, Tse and Zhou [6]). We describe
the testing framework and the corresponding tool FocalTest. More precisely a
property, considered as an executable predicate, is exercised with some randomly
generated inputs. Experience shows this style of testing is a useful method for
debugging programs and specifications as exemplified by the tool Quickcheck
developed for Haskell by Claessen and Hugues [8].

The tool FocalTest automatically produces the test environment and the
drivers to conduct the tests. We benefit from the inheritance mechanism to
isolate this testing code, called the testing harness in the paper, from the com-
ponents written by the programmer.

The paper is organized as follows. First we briefly present the environment
Focal and its large-spectrum language also called Focal. Then in Section 3, we
define the syntax of the properties allowed for testing and overviews the testing
procedure. The generation of the testing harness is detailed in Section 4. We
illustrate our purpose with the triangle example in Section 5. Section 6 proposes
a coverage analysis. Lastly we mention some related work before some concluding
remarks and perspectives.

2 The Focal environment and its language

The program development environment Focal is a framework dedicated to the
complete development of certified components —in the sense of piece of specifi-
cation/code proved correct with respect to the specifications— from the specifi-
cation stage to the implementation one. In this section we give a brief overview
of the underlying language, also called Focal. For further explanations please
consult the documentation at http://focal.inria.fr and [9].

The language Focal is a functional language whose syntax is close to OCaml.
It also incorporates some object oriented features such as inheritance, abstrac-
tion, late binding and redefinition. It allows us to define two kinds of structures,
species and collections.

Roughly speaking a species defines a set of values that can be manipulated
through functions called methods. At early stages in the development, those
values and methods are abstract. For methods it means the user only writes
their type, i.e. the types of the parameters and the result. He/she can also write
specifications as properties involving the methods. As an example let us consider
the species Setoid that specifies the notion of a set equipped with an equivalence
relation equal:

species setoid =

rep;

sig equal in self -> self -> bool;

property equal_refl: all x in self, equal(x,x)

property equal_sym: all x, y in self, equal(x,y) -> equal(y,x);

property equal_trans: all x, y, z in self,

equal(x,y) -> equal(y,z) -> equal(x,z);

end

This small example deserves some explanations about syntax: self is put
for the type of the elements defined in the current species. The keyword rep

introduces the type of the elements manipulated by the methods of the species.
In the early development phases, it is usually abstract as in the example, it is
later refined and defined as a concrete type à la ML called the carrier type.

Let us complete this species with a binary method different which returns
true if its arguments are different and false otherwise. We can define this
function although equal is not already defined (#not_b is the predefined opera-
tion on booleans) thanks to the mechanism of late binding. Furthermore we can

demonstrate a property, that is different and equal are dual from each other.
The proof is not detailed here —no proof will be shown in the paper— because
its form does no matter in this paper.

let different(x,y)= #not_b(equal(x,y));

theorem different_not_equal: all x, y in self,

different(x,y) <-> (not equal(x,y))

proof:

...

Species may be defined from scratch but they are usually defined by using
inheritance, more precisely multiple inheritance. Thus a Focal development forms
a hierarchy whose nodes are species. Nodes close to a root correspond to pieces of
specifications whereas deep nodes are made more and more precise, and then are
close to implementations. Along inheritance paths, methods, carriers, properties
can be refined (defined or redefined, proved in the case of properties). When a
carrier type is defined in an inherited species, it cannot be redefined.

A species is said complete when every declared method (inherited or not) is
defined and every stated property (inherited or not) has been proved or admitted
(in such a case the proof is replaced by the special keyword assumed).

Collections are the implementations of species. A collection derives from a
complete species. Collections are the leaves of the inheritance graph, cannot be
refined by inheritance (like a final Java class for example). A collection is close
to an abstract data type: it defines a type whose representation is abstracted
and elements of the collection can only be manipulated with the help of the
collection (those of the generating species, inherited or not).

The type of a collection is its interface obtained from the complete species
the collection derives from: by removing definitions and proofs and abstracting
the rep type in all the method types. The interface of a collection is named
as the complete generative species it comes from. Interfaces can be ordered by
inclusion, which gives a very simple notion of sub-typing.

Species can be parameterized by collections. The formal parameter is intro-
duced by a name c and an interface I. Any collection CC having an interface
including I can be used as an actual parameter for c. In the species body, the
methods and properties of the parameter are denoted by c!m. The fact that CC
has been created upon a complete species ensures that no link error can ar-
rive at runtime and that proofs of CC can be used as lemmas. Species can also
be parameterized by elements of collections, themselves introduced as parame-
ters, thus introducing a dependence between parameters. Type-checking forbids
dependence cycles between parameters.

3 Testing properties

3.1 Overview

Usually, software testing requires the definition of an oracle that will determine
whether or not an input/output pair satisfies a given predicate. The oracle is

traditionally the tester itself, another existing program or an executable specifi-
cation. In this case, during the execution of a test case, the tester or the testing
tool will compare the actual output with the expected output computed by the
oracle in order to establish the verdict. Our motivation is to verify the code
by testing some properties extracted from the specifications or expressly written
from test purpose. Since a property defines an executable predicate, we just need
to know if the target property holds or not for some valuations of its bounded
variables. Thus properties serve as oracles in their general acception.

The only information required in the test of a property are the test set and
the verdict of the calculus. We can consider the property under test as a tuple
composed of some pre-conditions and a conclusion that will help us to decide if
test data are relevant or not and to compute the test verdict.

Testing a property of a species S requires to execute the methods involved
in the statement. Thus those methods need to be defined in S or inherited.
Furthermore the carrier type must be defined at this stage in order to be able
to design test cases. For simplicity we impose that S is a complete species (no
matter whether the proofs are done or not, we do not care about them). This
hypothesis can be relaxed without any difficulty. In fact, a dependency analysis,
already implemented in the Focal compiler, is enough to verify if the property
to be tested can be executed.

The property under test is either defined in the species or inherited. Thus it
can have been written at any development stage and can be a very abstract one.

3.2 Testable Properties

Focal allows us to express a large class of properties. Because efficiently testing
any property is not possible at first glance2, we restrict ourselves to the class of
testable properties which take the following form:

∀X1 : τ1 . . . Xn : τn.α1 ⇒ . . . ⇒ αn ⇒ (A1

1
∨ . . . ∨ A1

n1
) ∧ . . . ∧ (Am

1
∨ . . . ∨ Am

nm

)

where the αi are produced by the grammar

α ::= α ∨ α|α ∧ α|A

The atomic formulas A and Aj
i are calls to Focal boolean methods, with an op-

tional negation, and τ1 . . . τn denote Focal types.So, testable properties are some
first order formulas in prenex form without any existential quantifier. These for-
mulas may contain free variables, the Focal compiler ensures that these variables
are well defined somewhere in the species or the inheritance path.

We distinguish two parts in these properties: the pre-condition and the con-
clusion.

Definition 1. Let P ≡ ∀X1 : τ1 . . .Xn : τn.α1 ⇒ . . . αn ⇒ β. We call the
pre-condition (resp. the conclusion) of the property P , the predicate Pre(P) =
α1 ∧ . . . ∧ αn (resp. Con(P) = β).

2 The ∃ quantifier is known to be a difficult problem.

3.3 Elementary properties

In order to test a property, we first transform it into a set of simpler properties
called elementary properties by applying the rewriting rules detailed in Figure 1.
All the properties issued from the transformation will be tested separately. They
are all together logically equivalent to the initial property (see Theorem 1). The
reason why we transform a property into a set of elementary ones is that the
property may specify a large variety of behaviors. Intuitively, an elementary
property specifies a more restricted effect.

α1 ⇒ . . . ⇒ (β1 ∨ . . . ∨ βm) ⇒ . . . ⇒ αn 7−→

α1 ⇒ . . . ⇒ β1 ⇒ . . . ⇒ αn

α1 ⇒ . . . ⇒ β2 ⇒ . . . ⇒ αn

...
α1 ⇒ . . . ⇒ βm ⇒ . . . ⇒ αn

α1 ⇒ . . . ⇒ (β1 ∧ . . . ∧ βm) ⇒ . . . ⇒ αn 7−→ α1 ⇒ . . . ⇒ β1 ⇒ . . . ⇒ βm ⇒ . . . ⇒ αn

α1 ⇒ . . . ⇒ αn ⇒ (β1 ∧ . . . ∧ βm) 7−→

α1 ⇒ . . . ⇒ αn ⇒ β1

...
α1 ⇒ . . . ⇒ αn ⇒ βm

Fig. 1. Rewriting system

In the rewriting rules (Figure 1), quantifiers are omitted. The first rule con-
sists in eliminating a disjunction appearing in the left hand side of a property, it
creates a set (more precisely a multi-set) of properties. Intuitively, it corresponds
to a case analysis. The second rule transforms a conjunction in the left hand side
by its equivalent form with implications. The third rule splits the conjunction in
the right hand side of the last implication. Like the first rule, it creates as many
properties as sub-formulas in the initial right hand side conjunction.

These transformation rules constitute a rewriting system. It terminates (triv-
ial by considering the number of ⇒ and ⇔ occurrences and the number of ∨
and ∧ occurrences) and is confluent (all critical pairs can be joined). So every
testable property P can be rewritten in a normal form (each formula of the set
obtained from a rewriting step is again rewritten until convergence), which is a
multi-set of formulas written P ∗

↓ . The elements of P ∗
↓ are called the elementary

properties of the original property. They have the following form:

∀X1 : τ1 . . .Xn : τn. A1 ⇒ . . . An ⇒ B1 ∨ . . . ∨ Bm

where Ai and Bi are atomic formulas.

Theorem 1. Let P the property ∀X1 : τ1 . . .Xn : τn.A1 ⇒ . . . An ⇒ B1 ∨ . . . ∨

Bm. So P is equivalent to
∧

f∈P∗
↓

∀X1 : τ1 . . .Xn : τn.f

3.4 Test procedure

The original property is not considered in the test procedure. It is replaced in this
process by its elementary properties. Each elementary property is considered and
tested separately. Thus each elementary property has its own test set (composed
of independent test cases).

A test case is a valuation σ which maps each quantified variable Xi to a
value. It is randomly generated; we detail the generation in a next section. The
elementary property ∀X1 : τ1 . . . Xn : τn.A1 ⇒ . . . An ⇒ B1 ∨ . . . ∨ Bm is then
checked by considering its pre-condition and its conclusion in two steps:

– firstly, the pre-condition is evaluated with respect to σ. This is the validation
part of the test case. If the pre-condition reduces to false or fails, the test
case is rejected as being irrelevant. If it evaluates to true, go on with the
next step;

– lastly, if the test case passes the pre-condition, we can compute the verdict.
For that purpose, we evaluate the conclusion with respect to σ. If the result
is true, then the verdict is OK. If it is false, the verdict is KO and we have
found a counter-example that exemplifies the property is not satisfied for
that test set. Anf if an exception is raised, the tester should decide himself
if the exception is expected or not.

4 Test harness

In this section we describe the test environment and the drivers we automatically
produce to conduct the tests.

4.1 Structure

Our tool does not modify the species S that contains the property to be tested,
FocalTest automatically derives a species SHarness from S, called here the test
harness of S. This species principally contains a method random of type int ->

self which generates random values of the carrier type, a method test prop

which implements the test loop and a method gen report which produces the
testing report (e.g. in XML format).

For the synthesis and execution of test cases, we need to create and manip-
ulate some data of the types given for the quantified variables of the property
under test.

The type of a quantified variable in a property can be self, a basic Focal
type int, bool . . . , a concrete ML like type, a cartesian product or one of the
abstract types described by the collections which may parameterize the species
under test. In the latter case the type receives the name of the parameter. For
example, in a species S parameterized by a collection C we can use the type
C in particular to describe the carrier type of S (e.g. rep = int * C means an
element of the species S is represented by a pair composed of an integer and an
element of C).

We suppose the methods which generate values for the basic Focal types are
known. In the case of the self type, we need the associated concrete representa-
tion. It is available since we have assumed the species is complete. So, FocalTest
will produce the data generator by following the structure of the type (see next
section for more details). In the case where S is parameterized by a collection
C of interface S1 and when the carrier type refers to a parameter of the species
(e.g. rep = int * C), the generator of rep values will call the generator for val-
ues of type C. So, in this case the harness of S is a species parameterized by a
collection C′ whose interface is S1Harness that is the harness derived from S1.

C1Harness

S1

.

.

.
.

.

.

S

SHarness

C’: S1Harness

C: S1

S1Harness

C2Harness<C1Harness>

Fig. 2. The test hierarchy: target and harness

By extension, we call harness the set of species which add the random gen-
erators and the testing loop.

Figure 2 shows an example of a Focal hierarchy equipped with harness. Square
boxes represent species (complete species in our context) whereas rounded boxes
represent collections. Dotted arrows represent abstraction links between a col-
lection and the species it is built from (e.g. C1 and S1). Plain arrows represent
inheritance dependencies (e.g. S2Harness inherits from S2). The parameter of
a species is represented by a small dotted rectangle in the right upper corner
(e.g. S2 is parameterized by C of interface S1). When an instance is created, the
effective parameter is indicated between < and > (e.g. the collection C2 is the
result of the application of S2 on the parameter C1). In this example S1 is com-
plete. Finally FocalTest creates the collection C2Harness by applying SHarness

to C1Harness, a collection built from S1Harness.

4.2 Test data generation

The FocalTest tool automatically creates the methods which pseudo-randomly
generate values for the quantified variables of the test target. For each type τ ap-
pearing in the target property, FocalTest automatically defines a generator which
can produce values of this type. its body is created by following the structure of
τ . For a product type τ1 ∗ τ2, it means FocalTest generates firstly the method for
the type τ1, secondly the method for the type τ2 and lastly the methods for the
product by combining the two previous generators. Focal allows to define con-
crete types that are defined by enumerating the values constructors. In the case
of a concrete type, FocalTest generates for each constructor the generators for
the constructor parameters and then combines them into the method generating
values for the full type. In the case of the special imported OCaml types like int,
FocalTest relies on the existing methods and imports them. In case of recursive
data-types, we first choose the nature of the constructor, recursive/non-recursive
with probability 1/2. Then we take uniformly a constructor in the chosen family.

Our approach to generate random values is a naive one. The distribution is
not uniform and the generators tend to generate small sized values. However,
they do not exclude any value, in other words, the functions are surjective. This
can be improved, taking benefit from work as for instance [11].

5 FocalTest Experimentation

This section illustrates the usage of FocalTest on a classical example in testing
literature, the triangle type program. The program takes the three lengths of
the sides of a triangle and returns the nature of the triangle formed by input
lengths: Equilateral, Isosceles, Scalene or Error if the three lengths do not
define a triangle. So, the output of the program is the next Focal type:

type triangle_type =

Equilateral in triangle_type; Isosceles in triangle_type;

Scalene in triangle_type; Error in triangle_type;

The length of a triangle edge is represented by an integer considered as an
element from a commutative monoid. Thus, triangles are entities of a collection
whose carrier type is a 3-tuple of lengths. The method implementing the specifi-
cation given upper is named type triangle, it has type self → triangle type.

Two kinds of properties, soundness and correctness properties, are defined to
specify the link between the arguments and the returned value of type trian-
gle. The soundness properties specify which constraints on lengths hold when
the method type triangle returns a specific value. The completeness properties
specify which value can be returned by triangle type.

The properties are shown in Figure 3. We have only detailed some of them
because lack of space. The property triangle type correct equiv states that
if the method triangle type returns the value Equilateral for the triangle

property triangle_type_complete: all t in self,

triangle_type(t) = Equilateral or triangle_type(t) = Isosceles or

triangle_type(t) = Scalene or triangle_type(t) = Error;

property triangle_type_correct_equiv: all t in self,

triangle_type(t) = Equilateral ->

(edge!equal(fst(t), snd(t)) and edge!equal(fst(t), thrd(t)) and

edge!equal(snd (t), thrd(t)) and edge!gt(fst(t), edge!zero))

Fig. 3. Some properties about type triangle

t, then its three lengths are equal and greater than zero. The other correctness
properties are similar.

This Focal development has been tested under FocalTest. The integers im-
plementing lengths were constrained to be chosen in the interval 0–10. We tested
14 properties among those that were specified. These ones led to 40 elementary
properties and asked FocalTest to generate 10 test cases for each property. This
experiment detected no bugs. The test generation and execution were immedi-
ate. A potential overhead can be observed because of the harness compilation.
For a large majority of the properties, less than 100 irrelevant test cases were
required before obtaining the 10 valid required test cases. Some properties asked
for about 1 000 irrelevant test cases.

For evaluating the quality of our testing tool, we created 10 mutants of the
triangle program. We used mutation operations such as the replacement of an
operator or a connector by another one (e.g. ≤ by ≥, ∧ by ∨), the replacement of
a variable by another one in a property, the replacement of a constant by another
constant. We have evaluated the capacity of FocalTest to kill mutants. For this
purpose, FocalTest has been run on each mutant several times, each time with
new randomly generated test data, with the same parameters as previously. We
can notice three behaviours among the 10 mutants. 2 mutants led to properties
with unsatisfiable preconditions, a timeout was raised after 100 000 invalid test
cases for each execution of FocalTest. Another mutant was never killed, indeed
the domain (1–10) we chose was too restrictive and negative values should have
killed the mutant (an experimentation with such a domain for lengths allowed
us to confirm it). The 7 remaining mutants were killed every time FocalTest was
run.

6 Coverage analysis

Before defining some coverage criteria, we formalize the notion of pre domain
and establish the basis of our testing method.

6.1 Pre-conditions and Pre-domains

The pre-condition and the conclusion of a testable property play a fundamental
role. Intuitively, the pre-condition defines a set of values.

Theorem 2. Let P1 and P2 such that P1 7−→ P2, then Pre(P2) implies Pre(P1).

Proof. All rules but the first leaves the pre-condition unchanged. So we have to
prove the fact for the first rule only. In that case, the pre-condition changes from
α1 ∧ . . .∧ (β1 ∨ . . . ∨ βm) ∧ . . . ∧ αn to the pre-conditions α1 ∧ . . .∧ βi ∧ . . . ∧ αn

for some i ∈ [1, m]. The conclusion is then obvious.

The next theorem allows us to extend the previous property to an elementary
property of P .

Theorem 3. Let P by a testable property and P ′ an elementary form of P .
Then Pre(P ′) implies Pre(P).

So any elementary property of a testable property P has a pre-condition
weaker than the pre-condition of P . So any valid test case for an elementary
property of P is a valid test case for P .

Definition 2. Let P ≡ ∀X1 : τ1 . . .Xn : τn.α1 ⇒ . . . αn ⇒ β be a testable prop-
erty. We call pre-domain of P , the set PrD(P) where (v1, . . . , vn) ∈ PrD(P) if
and only if Pre(P) holds for X1 = v1, . . . , Xn = vn.

Intuitively, for a property P , PrD(P) defines the set of all valuations σ which
validate the pre-condition of P . The following theorem shows us the link between
a property and its elementary forms according to the notion of pre-domain.

Theorem 4. If a property P ′ is an elementary form of a property P then
PrD(P ′) ⊆ PrD(P)

Proof. Since, Pre(P ′) implies Pre(P), PrD(P ′) ⊆ PrD(P) follows.

Hence, the pre-condition of each elementary form can be considered as the
definition of a domain, identifying a kind of equivalence class of the pre-domain
of the initial property. Because the pre-domain of an elementary form is a sub-
set of the pre-domain of the original property, we can consider an elementary
property as a sub-property. The original property is the combination of these
sub-properties. So testing these properties separately is a gain since we have a
finer granularity.

By the last theorem, all elementary forms of a property define a domain of
test cases which is a subset of the original property’s domain. But we should
prove we do not loose any element of the pre-domain of P by considering only
the elementary properties. Any test case in the pre-domain of P should be in
the pre-domain of, at least, one elementary property of P .

Theorem 5. Let P be a property. Let P ′
1
, . . . , P ′

n the properties resulting from
the application of a rewriting rule on P . Then, PrD(P) = ∪n

i=1
PrD(P ′

i).

Proof. All rules but the first one leave the pre-condition unchanged. So the
property is immediately true for these rules. For the first rule, if Pre(P) =
α1 ∧ . . . ∧ (β1 ∨ . . . ∨ βm) ∧ . . . ∧ αn then Pre(P ′

i) = α1 ∧ . . . ∧ βi ∧ . . . ∧ αn.
So, ∪n

i=1
PrD(P ′

i) = {v1, . . . vm|(v1, . . . , vm) ∈ ∪n
i=1

PrD(P ′
i)}. Also, by defini-

tion of PrD, (v1, . . . , vm) ∈ ∪n
i=1

PrD(P ′
i) ↔ Pre(P ′

1
) ∨ . . . ∨ Pre(P ′

n) holds

for X1 = v1, . . . , Xm = vm. We prove by definition of Pre that Pre(P ′
1
) ∨

. . . ∨ Pre(P ′
n) ⇔ Pre(P). And so ∪n

i=1
PrD(P ′

i) = {v1, . . . , vm|(v1, . . . , vm) ∈
PrD(P)} = PrD(P).

Theorem 6. Let P be a testable property. Then PrD(P) =
⋃

P ′∈P∗
↓

PrD(P ′).

The last theorem (following from Theorem 5 and associativity of ∪) tells us
that the rewriting system preserves pre-domains. Testing the elementary prop-
erties separately is complete; any test case relevant for the original property is
a possibly test case for at least one elementary property. Two pre-domains may
overlap or even be equal (for example the third rule creates many properties all
sharing the same pre-domain). It would be interesting to detect that two non
equal pre-domains overlap. It probably means that the original property contains
some redundant parts.

An elementary form coverage criteria consists in considering all the elemen-
tary properties obtained by the rewriting rules except the third one (to avoid
pre-condition duplication). Then for each elementary property P ′

1
, select a test

case in PrD(P ′
1
) which is not a member of PrD(P ′

2
) for some other elemen-

tary form P ′
2
. When a test case belonging to the pre-domains of two different

elementary properties is discovered, it is worth reporting it.

6.2 A MC/DC like criteria

In the last section, we have proposed a first coverage criteria. Since a pre-
condition can be considered as a decision, we explore some decision coverage.
More precisely we are interested in the MC/DC coverage.

In the MC/DC criteria we have to demonstrate that every condition in a
decision changes the outcome of the decision independently of the other condi-
tions. For this purpose, for each condition there should be two test cases where
the condition evaluates differently while the other conditions evaluate to the
same value while the outcome of the decision is modified for both test cases. In
a property (or an elementary form), the pre-condition and the conclusion are
both decisions. A MC/DC style criteria for a set of elementary forms consist in
applying for each elementary form the following scenario:

– select a test set satisfying the MD/DC criteria on the pre-condition. Because
the pre-condition is a conjunction of a number of conditions, only one test
set can be applied. It requires one test case where all decisions are evaluated
to false (so the outcome of the pre-condition is false also). And for each
decision, one test case where this decision evaluates to false while the other
ones evaluate to true. It requires n + 1 test cases where n is the number of
decisions;

– select a test set satisfying the MC/DC criteria on the conclusion: i) a set
of test cases where all conditions but one evaluate to false. Each test case

should evaluate the pre-condition to true; ii) a test set where all conditions
evaluate to false.

For the first requirement, we ensure that the pre-condition can be evaluated to
false. If the pre-condition cannot be evaluated to false, it means the pre-condition
plays no role in the elementary form. This would emphasize that in the property
(before rewriting) there is a part of the pre-condition without any effect. It also
ensures each element of the pre-condition has an effect. A condition of the pre-
condition which cannot be set to false means the pre-condition of the original
property contains some useless parts.

With the second requirement, we ensure first, in the case the pre-condition
is true, all conditions in the conclusion are independent from each other and
they can all together set the conclusion to true. Like for the pre-condition, if a
condition of the conclusion is not independent from the others, it means the con-
clusion of the original property contains useless parts. The second requirement
ensures also that the conclusion can be evaluated to false.

Presently FocalTest is able to calculate the coverage of such a criterion by
the generated test sets, but only for the conclusion of each elementary property.
Pre-conditions are not yet taken into account because as soon as a test case
valuates a precondition to false, FocalTest rejects it. We have run FocalTest 10
times on the triangle example (10 test cases per property). We have obtained a
rate of 76% in the coverage of the conclusions, as defined previously.

7 Related work

A lot of works have been done in the area of testing, especially for imperative lan-
guages and more recently for object oriented languages. For functional languages,
the interest is more recent. One of the most advanced tools for testing functional
programs is probably QuickCheck a tool for testing Haskell programs [8]. It pro-
vides a powerful specification language based on the first order logic and offers
some combinators to write specification. The user has to type a correctness prop-
erty and sends it to QuickCheck. The property could be a simple predicate or a
more complex one with a pre-condition part. The tool analyses the type of the
proposition and generates randomly test data, submits them and calculates the
verdict for an arbitrary number of test cases. For a more effective use of Quick-
Check, the user may define his own data generator. For example, if a property
deals with a sorted list of integers, the user can provide a generator which only
returns sorted lists. The Quickcheck approach and its good evaluation by users
have inspired our own approach. Gast [13] is similar to Quickcheck for the lan-
guage Clean. The user does not have to supply test data generators, they are
automatically generated for arbitrary data types. On this point, we share the
same particularity. But for recursive types, Gast does not randomly select the
size of the values, it performs a breadth-first enumeration. And so, it is usually
limited to small sized values, e.g. lists. On the contrary FocalTest tries to gen-
erate random values by distinguishing recursive constructors and non-recursive
constructors and chooses one of them with a uniform distribution.

Other tools integrated in proof assistants have been inspired by the previous
approach. For example, in Isabelle [2] by Berghofer and Nipkow or in Agda [10]
by Dybjer, Haiyan and Takeyama. They allow the user to test some theorems
before attempting a proof. and thus to debug specifications and proofs.

Another initiative has been proposed and implemented in Isabelle/HOL. The
testing tool HOL-Testgen [5] on top of Isabelle-HOL aims to add some unit
testing features. It allows the user to write test specifications. The tool partitions
the input space of the specification and generates automatically the test script
in SML. The implementation is then tested. HOL-Testgen exploits the common
testing hypothesis formalized in [3], e.g. the regularity hypothesis. A regularity
level k hypothesis means that if an implementation satisfies the requirements for
test data of size less or equal than k then the implementation is correct for all
data.

Our approach considers a formal specification as a test oracle. A decision
procedure for the test oracle is automatically derived from the specification.
Many researchers have proposed such an approach, e.g. [1, 7]. We do not use
a runtime assertion checker directly on the assertions written by the user but
on an equivalent set of more tractable and traceable properties (for coverage
computations for example).

8 Conclusion and future work

In this paper we have presented the FocalTest tool that permits to validate one or
several components with respect to the specifications written in them. It can be
used a posteriori or during the development process to debug specifications and
implementations or also to have some confidence in a property before proving it.
Although the case study presented in the paper is a small one, it demonstrates
that our approach and its associated tool, FocalTest, are useful to find bugs.
Furthermore, FocalTest has been used on the Focal standard library itself. It
has permitted to reveal an error in a component: a comparison operator was
wrong in a property which was not proven. In that case, the code was correctly
written but the specification was not.

We rely on randomly selected test cases. A first requirement is put on these
test cases: they must satisfy the pre-condition of the property under test. We
can repeat the random draw until convenient values are produced but it can be
an expensive process for some kind of pre-condition. To overcome this drawback,
several solutions can be proposed. A first one is to provide the user with the pos-
sibility to define a specific purpose data generator tuned to generate valid test
cases. Another method consists in exploring very carefully the pre-condition and
more precisely the definition of the involved methods in order to produce con-
straints upon the values of the variables. Then it would remain to instantiate the
constraints in order to generate test cases ready to be submitted. This method
is a white box method testing whereas the currently implemented method is a
black box testing method. This direction is one of our perspectives to improve
our testing method and is currently under study.

References

1. S. Antoy and D. Hamlet. Automatically checking an implementation against its
formal specification. IEEE Trans. Softw. Eng., 26(1):55–69, 2000.

2. S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In J. Cuellar and
Z. Liu, editors, Software Engineering and Formal Methods (SEFM 2004), pages
230–239. IEEE Computer Society, 2004.

3. G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on formal specifi-
cations: a theory and a tool. Software Engineering Journal, 6(6), 1991.

4. R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An extensible automated theo-
rem prover producing checkable proofs. In N. Dershowitz and A. Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, 14th International
Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings,
volume 4790 of LNCS, pages 151–165. Springer, 2007.

5. A. D. Brucker and B. Wolff. Test-sequence generation with hol-testgen – with an
application to firewall testing. In B. Meyer and Y. Gurevich, editors, TAP 2007:
Tests And Proofs, volume 4454 of LNCS. Springer-Verlag, Zurich, 2007.

6. T. Y. Chen, T. H. Tse, and Z. Zhou. Fault-based testing without the need of
oracles. Information & Software Technology, 45(1):1–9, 2003.

7. Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The
jml and junit way. In ECOOP ’02: Proceedings of the 16th European Conference
on Object-Oriented Programming, volume 2374, pages 231–255, London, UK, 2002.
Springer-Verlag.

8. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

9. C. Dubois, T. Hardin, and V. Viguié Donzeau-Gouge. Building certified com-
ponents within focal. In H.-W. Loidl, editor, Revised Selected Papers from the
Fifth Symposium on Trends in Functional Programming, TFP 2004, München,
Germany, volume 5 of Trends in Functional Programming, pages 33–48. Intellect,
2006.

10. P. Dybjer, Q. Haiyan, and M. Takeyama. Combining testing and proving in de-
pendent type theory. In D. Basin and B. Wolff, editors, Proceedings of Theorem
Proving in Higher Order Logics, volume 2758 of LNCS, pages 188–203. Springer-
Verlag, 2003.

11. P. Flajolet and R. Sedgewick. Analytic Combinatorics. 2007. Chapters I-IX, Draft
available electronically from P. Flajolet’s home page.

12. INRIA. Coq, version 8.1, Nov. 2006. Available at: http://coq.inria.fr/.
13. P. W. M. Koopman, A. Alimarine, J. Tretmans, and M. J. Plasmeijer. Gast:

Generic automated software testing. In R. Pena and T. Arts, editors, Imple-
mentation of Functional Languages, 14th International Workshop, Madrid, Spain,
September 2002, Revised Selected Papers, volume 2670 of LNCS, pages 84–100.
Springer, 2003.

