
Certification of automated termination proofs ?

Evelyne Contejean1, Pierre Courtieu2, Julien Forest2, Olivier Pons2, and
Xavier Urbain2

1 LRI – CNRS – Université Paris-Sud
2 CÉDRIC – Conservatoire national des arts et métiers

Abstract. Nowadays, formal methods rely on tools of different kinds: proof as-
sistants with which the user interacts to discover a proof step by step; and fully
automated tools which make use of (intricate) decision procedures. But while
some proof assistants cancheck the soundness of a proof, they lack automa-
tion. Regarding automated tools, one still has to be satisfied with their answers
Yes/No/Do not know , the validity of which can be subject to question, in par-
ticular because of the increasing size and complexity of these tools.
In the context of rewriting techniques, we aim at bridging the gap between proof
assistants that yield formal guarantees of reliability and highly automated tools
one has to trust. We present an approach making use of both shallow and deep
embeddings. We illustrate this approach with a prototype based on the CiME
rewriting toolbox, which can discover involved termination proofs that can be
certified by the COQ proof assistant, using the COCCINELLE library for rewriting.

1 Introduction

Nowadays, formal methods play an increasingly important role when it comes to guar-
anteeing good properties for complex, sensitive or critical systems. In the context of
proving, they rely on tools of different kinds: proof assistants with which the user in-
teracts to discover a proof step by step; and fully automated tools which make use of
(intricate) decision procedures.

Indeed, discovering a proof step by step has a heavy cost. Reducing this cost as
much as possible amounts to using more and more automation. However, while some
proof assistants cancheckthe soundness of a proof, one still has to be satisfied with
the answers of automated tools:Yes/No/Do not know . Yet, since application fields
include (amongst others) sensitive and possibly critical sectors: security, code verifica-
tion, cryptographic protocols, etc.,reliance on verification tools is crucial.

Some proof assistants, like COQ [24], need to check mechanically the proof of each
notion used. Amongst the strengths of these assistants are firstly a powerful specifica-
tion language that can express both logical assertions and programs, hence properties of
programs; and secondly ahighly reliableprocedure that checks the soundness of proofs.

COQ or ISABELLE/HOL [23], for instance, have a small highly reliablekernel. In
COQ, type checking of aproof term is performed by the kernel to ensure a proof’s
soundness. Certified-programming environments based on these proof assistants find

? This work is partially supported by the A3PAT project of the French ANR (ANR-05-BLAN-
0146-01).

here an additional guarantee. Yet, amongst the weaknesses of these assistants, one may
regret the lack of automation in the proof discovery process.

Automation is actually difficult to obtain in this framework: in order to be accepted
by the proof assistant, a property proven by an external procedure has to becheckedby
the proof assistant. Therefore, the procedure has to return atrace of the proof that is
understood by the proof assistant. We want of course proofs that areaxiom free.

We want to meet the important need todelegate proofsof some properties in
the framework of rewriting techniques. We will focus on generic ways to provide
reasonably-sized proof traces for complex properties. It would thus improve communi-
cation between proof assistants and powerful automated provers.

The present work focuses on proofs oftermination: the property of a function/pro-
gram any execution (computation) of which always yields a result. Fundamental when
recursion and induction are involved, it is an unavoidable preliminary for proving many
various properties of a program. Confluence of a rewriting system for instance, becomes
decidable when the system terminates. More generally, proving termination is a bound-
ary betweentotal andpartial correctness of functions and programs. Hence, automating
termination is of great interest for provers like COQ, in which functions can be defined
only if they are proven to be terminating. We restrict here to first order.

The last decade has been very fertile w.r.t. automation of termination proofs, and
yielded many efficient tools (APROVE [15], CiME [7], JAMBOX [13], TPA [19],
TTT [17] and others) referenced on the Termination Competition’s web site [21], some
of which display nice output forhumanreading. However, there is still a clear gap
between proof assistants that provide formal guarantees of reliability and highly auto-
mated tools one has to trust.

In the sequel, we aim at bridging this gap. We shall precise our notations and some
prerequisites about first order term rewriting and about the COQ proof assistant in Sec-
tion 2. Then, in Section 3, we shall address the problem of modelling termination of
rewriting in COQ. Rather than relying on shallow or deep embedding, our approach
tries to take the full benefit ofboth, depending on the addressed criterion (see Sec-
tion 4). With the help of the COCCINELLE library dedicated to that purpose, we enable
the certification of proofs using involved criteria such as Dependency Pairs [1] with
graphs refinement, and mixing orderings based on polynomial interpretations [20] or
RPO [9] with AFS [1]. We illustrate our approach with a prototype based on the CiME
tool box, the proofs of which can be certified using the COQ proof assistant. We shall
adopt the end-user point of view and provide some experimental results in Section 5.
Eventually we briefly compare with related works and conclude in Section 6.

2 Preliminaries

2.1 Rewriting

We assume the reader familiar with basic concepts of term rewriting [2, 11] and ter-
mination, in particular with the Dependency Pairs (DP) approach [1]. We recall usual
notions, and give our notations. AsignatureF is a finite set ofsymbolswith arities.
Let X be a countable set ofvariables; T (F , X) denotes the set of finitetermson F

2

andX. Λ(t) is the symbol at root position in Termt. We write t|p for the subterm of
t at positionp. A substitutionis a mappingσ from variables to terms; we use postfix
notation for their applications. A substitution can easily be extended to endomorphisms
of T (F , X): f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Then,tσ is called aninstanceof t.

A rewrite relation is a binary relation→ on terms which is monotonic and closed
under substitution;→? will denote its reflexive-transitive closure. Aterm rewriting sys-
tem (TRS for short) over a signatureF and a set of variablesX is a (possibly infi-
nite) setR(F) of rewrite rulesl → r. A TRS R defines a rewrite relation→R in the
following way: s →R t if there is a positionp such thats|p = lσ and t = s[rσ]p
for a rule l → r ∈ R and a substitutionσ. We say then thats reduces tot at po-
sition p with l → r denoteds

p−−→
l→r

t. Symbols occurring at root position in the left-

hand sides of rules inR are said to bedefined, the others are said to beconstructors.
The set ofunmarked dependency pairsof a TRSR, denotedDP (R) is defined as
{〈u, v〉 such thatu → t ∈ R andt|p = v andΛ(v) is defined}.

A term is R-strongly normalizable(SN) if it cannot reduce infinitely many times
for the relation defined by systemR. A rewrite relation isterminatingor terminatesif
any term is SN. In the following, we shall omit signatures, systems and positions that
are clear from the context, and we shall restrict to finite systems.

Termination is usually proven with the help ofreduction orderings[10] or quasi-
orderings with dependency pairs. We briefly recall what we need. Anordering pair is a
pair (�, >) of relations overT (F , X) such that: 1)� is a quasi-ordering, i.e. reflexive
and transitive, 2)> is a strict ordering, i.e. irreflexive and transitive, and 3)> · � = >
or � · > = >. We will refer to these asterm orderings. A term ordering is said to
be well-foundedif there is no infinite strictly decreasing sequencet1 > t2 > · · · ;
stableif both > and� are stable under substitutions;weakly(resp.strictly) monotonic
if for all terms t1 and t2, for all f ∈ F , if t1 � (resp. >)t2 thenf(. . . , t1, . . .) �
(resp. >)f(. . . , t2, . . .); a term ordering(�, >) is called aweak (resp. strict) reduction
ordering if it is well-founded, stable and weakly (resp. strictly) monotonic.

2.2 The COQ proof assistant

The COQ proof assistant is based ontype theory. It consists of:

– A formal languageto express objects, properties and proofs in a unified way; all
these are represented as terms of an expressiveλ-calculus: theCalculus of Inductive
Constructions(CIC) [8].

– A proof checkerwhich checks the validity of proofs written as CIC-terms. Indeed,
in this framework, a term is aproof of its type, and checking a proof consists in
typing a term. The tool’s correctness relies on this type checker, which is a small
kernel of 5 000 lines of OBJECTIVE CAML code.

For example the following simple terms are proofs of the following (tautological)
types (remember that implication arrow-> is right associative): the identity function
fun x:A => x is a proof ofA->A , andfun (x:A) (f:A->B) => f x is a proof of
A->(A->B)->B .

3

A very powerful feature of COQ is the ability to defineinductive typesto express
inductive data types and inductive properties. For example the following inductive types
define the data typenat (itself of typeSet) of natural numbers and the propertyeven
of being an even natural number.O and S (successor) being the two constructors of
nat 3.

Inductive nat : Set := | O : nat | S : nat -> nat.
Inductive even : nat -> Prop := | even_O : even O

| even_S : ∀ n : nat, even n -> even (S (S n)).

Hence the termeven_S (even_S (even_O)) is of typeeven (S (S (S (S O))))

so it is a proof that4 is even.

2.3 Termination in COQ

We focus in this paper onto termination. This property is defined in COQ standard li-
brary as the well-foundedness of anordering. Hence we model TRS asorderingsin the
following. This notion is defined using theaccessibilitypredicate. A termt : A is ac-
cessible for an ordering< if all its predecessors are, and< is well-founded if all terms
of typeA are accessible (R y x stands fory < x):

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=
| Acc_intro : (∀ y : A, R y x -> Acc R y) -> Acc R x

Definition well_founded (A : Type) (R : A -> A -> Prop) :=
∀ a : A, Acc R a.

3 Modelling termination of rewriting in C OQ

If R is the relation modelling a TRSR, we should writeR u t (which meansu < t)
when a termt rewrites to a termu. For the sake of readability we will use as much as
possible the COQ notation:t -[R]> u (andt -[R]*> u for t →∗ u) instead.

The wanted final theorem stating thatR is terminating has the following form:

Theorem well_founded_R: Well_founded R.

Since we want certified automated proofs, the definition ofRand the proof of this theo-
rem are discovered and generated in COQ syntaxwith full automationby our prototype.
In order to ensure that the original rewriting systemR terminates, the only things the
user has to check is firstly that the generated relationRcorresponds toR (which is easy
as we shall see in Section 3.2), and secondly that the generated COQ files do compile.

3.1 Shallow vs deep embedding

In order to prove properties on our objects (terms, rewriting systems, polynomial inter-
pretations. . .), we have to model these objects in the proof assistant by defining a theory
of rewriting. There are classically two opposite ways of doing this:shallow embedding

3 Note that this notion of constructors is different from the one in Section 2.1.

4

anddeep embedding. When using shallow embedding, one definesad hoctranslations
for the different rewriting notions, and theninstantiatescriteria on the particular en-
coding of those notions. When using deep embedding, one definesgenericnotions for
rewriting andprovesgeneric criteria on them, and then instantiates notions and cri-
teria on the considered system. Both shallow and deep embedding have advantages
and drawbacks. On the plus side of shallow embedding are: an easy implementation
of rewriting notions, and the absence of need of meta notions (as substitutions or term
well-formedness w.r.t. a signature). On the minus side, one cannot certify acriterion
but only itsinstantiationon a particular problem, which often leads to large scripts and
proof terms. Regarding deep embedding, it leads usually to smaller scripts and proof
terms since one can reuse generic lemmas but at the cost of a rather technical first step
consisting in defining the generic notions and stating andprovinggeneric lemmas.

We present here an hybrid approach where some notions are deep (Σ-algebra, RPO)
and others are shallow (rewriting system, dependency graphs, polynomial interpreta-
tions). The reason for this is mainly due to ourproof concern which makes sometime
deep embedding not worth the efforts it requires (some generic premises can be rather
tricky to fulfil). We will show that using both embeddings in a single proof is not a
problem, and moreover that we can take full benefit of both.

3.2 The COCCINELLE library

The deep part of the modelling is formalised in a public COQ library called COC-
CINELLE. To start with, COCCINELLE contains a modelling of the mathematical no-
tions needed for rewriting, such as term algebras, generic rewriting, generic and AC
equational theories and RPO with status. It contains also properties of these structures,
for example that RPO is well-founded whenever the underlying precedence is so.

Moreover COCCINELLE is intented to be a mirror of the CiME tool in COQ; this
means that some of the types of COCCINELLE (terms, etc.) are translated from CiME
(in OBJECTIVE CAML) to COQ, as well as some functions (AC matching)4. Translat-
ing functions and proving their full correctness obviously provide a certification of the
underlying algorithm. Moreover, some proofs may require thatall objects satisfying
a certain property have been built: for instance in order to prove local confluence of a
TRS, one need to get all critical pairs, hence a unification algorithm which is complete5.

Since module systems in OBJECTIVE CAML and COQ are similar, both CiME and
COCCINELLE have the same structure, except that CiME contains only types and func-
tions whereas COCCINELLE also contains properties over these types and functions.

Terms A signature is defined by a set of symbols with decidable equality, and a function
arity mapping each symbol to its arity.

4 It should be noticed that COCCINELLE is not a full mirror of CiME: some parts of CiME
are actually search algorithms for proving for instance equality of terms modulo a theory or
termination of TRSs. These search algorithms are much more efficient written in OBJECTIVE

CAML than in COQ, they just need to provide atracefor COCCINELLE.
5 Local confluence is not part of COCCINELLE yet.

5

The arity is not simply an integer, it mentions also whether a symbol is free of arity
n, AC or C (of implicit arity 2) since there is a special treatment in the AC/C case.

Inductive arity_type : Set :=
| Free : nat -> arity_type | AC : arity_type | C : arity_type.

Module Type Signature.
Declare Module Export Symb : decidable_set.S.
Parameter arity : Symb.A -> arity_type.

End Signature.

Up to now, our automatic proof generator does not deal with AC nor C symbols,
hence in this work all symbols have an arityFree n . However, AC/C symbols are used
in other parts of COCCINELLE, in particular the formalisation ofAC matching[5].

A term algebra is a module defined from its signatureF and the set of variablesX.

Module Type Term.
Declare Module Import F : Signature.
Declare Module Import X : decidable_set.S.

Terms are defined as variables or symbols applied to lists of terms (lists are built
from two constructorsnil and:: , and enjoy the usual[x ; y; ...] notation).

Inductive term : Set :=
| Var : variable -> term | Term : symbol -> list term -> term.

This type allows to share terms in a standard representation as well as in a canonical
form; but this also implies that terms may be ill-formed w.r.t. the signature. The module
contains decidable definitions of well-formedness. However, the rewriting systems we
consider do not apply on ill-formed terms, so we will not have to worry about it to prove
termination.

The term module type contains other useful definitions and properties that we
omit here for the sake of clarity. The COCCINELLE library contains also afunctor
term.Make which, given a signature and a set of variables, returns a module of type
Term. We will not show its definition here.

Module Make (F1 : Signature) (X1 : decidable_set.S) : Term.

Rewriting systems TRSs provided as a set of rewrite rules are not modelled directly in
COCCINELLE. Instead, as explained in the introduction of this Section, we use orderings
built from any arbitrary relationR : relation term (by definition relation A

is A -> A -> Prop). The usual definition can be retrieved obviously from a list of
rewrite rules (i.e. pairs of terms)R by definingRas:

∀s, t ∈ T (F , X), s -[R]> t ⇐⇒ (s → t) ∈ R
The COCCINELLE library provides a module typeRWRwhich defines a reduction

relation (w.r.t. the "rules"R) and its properties.

Module Type RWR.
Declare Module Import T : Term.

The first step toward definition of the rewrite relation is the closure by instantiation:

6

Inductive rwr_at_top (R : relation term) : relation term :=
| instance : ∀ t1 t2 sigma, t1 -[R]> t2

-> (apply_subst sigma t1) -[rwr_at_top R]> (apply_subst sigma t2).

Then we define a rewrite step as the closure by context of the previous closure.
Notice the use of mutual inductive relations to deal with lists of terms.

(∗∗ One step at any position . ∗)
Inductive one_step (R : relation term) : relation term :=
| at_top : ∀ t1 t2, t1 -[rwr_at_top R]> t2 -> t1 -[one_step R]> t2
| in_context : ∀ f l1 l2, l1 -[one_step_list R]> l2

-> (Term f l1 -[one_step R]> Term f l2)
with one_step_list (R : relation term): relation (list term) :=

| head_step : ∀ t1 t2 l, t1 -[one_step R]> t2
-> (t1 :: l -[one_step_list R]> t2 :: l)

| tail_step : ∀ t l1 l2, l1 -[one_step_list R]> l2
-> (t :: l1) -[one_step_list R]> (t :: l2).

This module type contains properties declared using the keywordParameter .
This means that to build a module of this type, one must prove these properties. For
instance it contains the following property stating that ift1 → t2 thent1σ →+ t2σ

6 for
any substitutionσ.

Parameter rwr_apply_subst :
∀ R t1 t2 sigma, t1 -[rwr R]> t2 ->

(apply_subst sigma t1 -[rwr R]> apply_subst sigma t2).

The library contains a functorrewriting.Make building a module of typeRWR

from a moduleT of typeTerm. This functorbuilds in particularthe proof of all prop-
ertiesrequired byRWR. For anR representing the rules of the TRS under consideration,
the final theorem we want to generate is:

Theorem Well_founded_R: Well_founded (one_step R).

To ensure thatone_step R corresponds to the original TRSR, it suffices for the
userto perform the easy check thatR corresponds to the set of rules definingR.

Note that since the datatypeterm represents anyΣ-algebra (via application of the
functorMake), we can say that terms are represented in a deep embedding. However,
to simplify proofs, we avoid using substitutions by quantifying on sub-terms as much
as possible. That makes our use of the typeterm slightly more shallow on this point.

4 Generation of proof traces

We will illustrate our approach by presenting proof generation techniques at work on a
small example in our prototype, namely CiME 2.99. While being based on the CiME 2
tool box, this prototype does not certify all its predecessor’s termination power. For
instance, modular criteria [25] and termination modulo equational theories are not sup-
ported yet. In the following, we restrict to (marked/unmarked) Dependency Pairs [1]

6 the transitive closure ofone_step is defined asrwr in COCCINELLE.

7

with/without graphs refinements. The orderings we deal with include strictly the or-
derings that CiME generates: (non-linear) polynomial interpretations (section 4.6) and
RPO with status7 (section 4.7).

4.1 Global structure of a generated proof

A close look at different termination tools reveals a common underlying methodology
which we use as the skeleton of our generated proofs. It consists in deriving recursively
from a relationR a set of other relationsRi such that if allRis are terminating, then so
is R. For instance, this structure appears explicitly in the output format of APROVE.

This recursive decomposition is done usingtermination criteria, like DP criteria,
(complex) graph criteria, modular criteria, etc. Some tools may use some backtracking
but if the procedure succeeds, it means that an implicit tree was built:

<
<1 (poly. interp.)

{. . . 〈t1,i, u1,i〉 . . .}

<
<4 (RPO)

{. . . 〈t2,1,i, u2,1,i〉 . . . }
<3 (poly. interp.)

{. . . 〈t2,2,i, u2,2,i〉 . . . }
<

{. . . 〈t2,i, u2,i〉 . . . }
SUB-GRAPH

Rdp = {. . . 〈t i, ui〉 . . . }
GRAPH

Rinit = {. . . li → ri . . . }
DP

This tree is rooted by the initial problem, namely the initial rewriting system and
the first termination criterion used. Each intermediate node is also labelled by a relation
and the termination criterion used to decompose the node into its children. Finally each
leaf must be labelled by a relationRi and a well-founded ordering which includes it.

The tree structure is reflected in the generated file. Indeed, for each criterion step
(R replaced by sufficient conditions{Ri}), we will generate a lemma of the form:

Lemma wf_R_if_wf_Ri : well_founded R1 -> well_founded R2 ...
-> well_founded R.

The proof of this lemma depends on the termination criterion used (Sec. 4.4 and 4.5).
Each time a leaf is proven using an ordering, we generate a lemma of the form:

Lemma wf_Ri : well_founded Ri.

The proof is made by induction on the ordering built by the automated tool. Once all
leaves have been proven this way, one can easily build the proof of the initial termination
property by applying lemmas from leaves to the root:

Lemma final: well_founded R.
Proof . apply (wf_R_if_wf_Ri wf_R1 wf_R2 ...). Qed.

4.2 The running example

We illustrate our method with two TRSsR_ack andR_add below in CiME syntax.
The first one is the Ackerman function on integers and the second one is the classical
addition on binary integers. We will use them separately or together to show how several
criteria and orderings may be used in the same proof.

7 To date, CiME can discover polynomials and LPO with AFS.

8

let F_ack = signature " # : constant ; s : unary ; ack : binary ; ";
let R_ack = TRS F_ack X "ack(s(x), #) -> ack(x, s(#));
ack(#, y) -> s(y); ack(s(x), s(y)) -> ack(x, ack(s(x),y)); ";

let F_add = signature
" # : constant ; 0,1 : postfix unary ; + : infix binary ; ";

let R_add = TRS F_add X "
(#)0 -> #; # + x -> x; x + # -> x;
(x)0 + (y)0 -> (x+y)0; (x)0 + (y)1 -> (x+y)1;
(x)1 + (y)0 -> (x+y)1; (x)1 + (y)1 -> (x+y+(#)1)0; ";

4.3 Generation of the TRS definition

The generation of theΣ-algebra corresponding to a signature in the automated tool is
straightforward. We show here the signature corresponding to theΣ-algebra ofF_ack .
Notice the module type constraint<: Signature making COQ check that definitions
and properties ofSIGMA_F_ack comply withSignature as defined in Section 3.2.

Module SIGMA_F_ack <: Signature.
Inductive symb : Set := | sig_sharp : symb | sig_s : symb ...
Module Export Symb.

Definition A := symb.
Lemma eq_dec : ∀ f1 f2 : symb, {f1 = f2} + {f1 <> f2}...

End Symb.
Definition arity (f:symb) : arity_type :=

match f with | sig_sharp => Free 0 | sig_s => Free 1... end .
End SIGMA_F_ack.

A moduleVARSfor variables is also defined and functors defining the term algebra
and rewrite system on it are applied:

Module Import TERMS := term.Make(SIGMA)(VARS).
Module Import Rwr := rewriting.Make(TERMS).

Now we can define the rewriting system corresponding toR_ack :

Inductive R : term -> term -> Prop :=
| R0 : ∀V_1 : term, (∗ ack(#,V_1) −> s(V_1) ∗)

Term sig_ack [Term sig_sharp nil;V_1] -[R]> Term sig_s [V_1;nil]...

Notice that from now on notationT -[R]> U denotes thatT rewrites toU in the
sense of section 2.1, i.e. there exists two sub-termst and u at the same position in
respectivelyT andU, such thatRu t (see the definition ofone_step in section 3.2).

4.4 Criterion: Dependency Pairs

The (unmarked) dependency pairs ofR_ack generated by CiME are the following:

< ack(s(x),#) , ack(x,s(#)) >
< ack(s(x),s(y)) , ack(x,ack(s(x),y)) >
< ack(s(x),s(y)) , ack(s(x),y) >

9

An inductive relation representing thedependency chains[1] is built automatically.
A step of this relation models the (finite) reductions byR_ack in the strict subterms
of DP instances (x0 →? s(V0), . . .) and one step of the relevant dependency pair
(〈ack(sx, #), ack(x, s#)〉 with σ = {x 7→ V0}):
Inductive DPR : term -> term -> Prop :=
| DPR_0: ∀ x_0 x_1 V_0, (∗ < ack(s(x),#) , ack(x,s(#)) > ∗)

x_0 -[one_step R]*> Term sig_s [V_0] ->
x_1 -[one_step R]*> Term sig_sharp nil ->
Term sig_ack [x_0 ; x_1] -[DPR]>

Term sig_ack [V_0 ; Term sig_s [term sig_sharp nil]] ...

The main lemma on dependency pairs is the following and fits in the general struc-
ture we explained on section 4.1:

Lemma wfR_if_wfDPR: well_founded DPR -> well_founded (one_step R).

The proof follows a general scheme due to Hubert [18]. It involves several nested
inductions instantiating the proof of the criterion in the particular setting ofDPRand
one_step R .

Marked symbolsA refinement of the DP criterion consists in marking head symbols
of dependency pairs’s lhs and rhs in order to relax ordering constraints. We simply
generate the symbol type with two versions of each symbol and adapt the definition of
orderings. The proof strategy needs no change.

4.5 Criterion: Dependency Pairs with graph

Not all DPs can follow another in a dependency chain: one may consider the graph of
possible sequences of DPs (dependency graph). This graph is not computable, so one
uses graphs containing it. We consider here Arts & Giesl’s simple approximation [1].

The graph criterion [1] takes benefit from working on the (approximated) graph. In
its weak version, it consists in providingfor each strongly connected component(SCC)
an ordering pair that decreases strictly for all its nodes, and weakly for all rules. In its
strong version, it considerscycles:

Theorem 1 (Arts and Giesl [1]).A TRSR is terminating iff for each cycleP in its
dependency graph there is a reduction pair(�P ,�P) such that: (1)l �P r for any
l → r ∈ R, (2) s �P t for any〈s, t〉 ∈ P, and (3)s �P t for at least one pair inP.

In practice, our tool uses a procedure due to Middledorp and Hirokawa [16] which
splits recursively the graph into sub-components using different orders. The proof uses
shallow embedding. One reason for this choice is that a generic theorem for a complex
graph criterion is not easy to prove since it involves a substantial part of graph theory
(e.g. the notion of cycle). Moreover, verifying the premises of such a theorem amounts
to checking that all SCCs found by the prover are really SCCs and that they are ter-
minating, but also toproving that it foundsall SCCs of the graph. That is tedious. On
the contrary, using shallow embedding we use these factsimplicitly by focusing on the
termination proof of each component.

10

Weak versionThe first thing we generate is the definition of each component as com-
puted by CiME. To illustrate graph criterion on our example we have to take a rewrite
system containing rules ofR_ack and R_add. CiME detects two components: we
generate the two corresponding inductive relations which are sub-relations ofDPR.

Inductive DPR_sub_0 : term -> term -> Prop :=
| DPR_sub_0_0 : ∀ x_0 x_1 V_0, (∗ < ack(s(V_0),#) , ack(V_0,s(#)) > ∗)

x_0 -[one_step R]*> Term sig_s [V_0] ->
x_1 -[one_step R]*> Term sig_sharp nil ->
Term sig_ack [x_0 ; x_1] -[DPR_sub_0]>

Term sig_ack [V_0 ; Term sig_s [term sig_sharp nil]] ...
Inductive DPR_sub_1 : term -> term -> Prop := ...

We formalise the graph criterion by a lemma, fitting the general structure explained
in Section 4.1. It is of the form:

Lemma wf_DPR_if_wf_sub0_sub1 : well_founded DPR_sub_0 ->
well_founded DPR_sub_1 -> well_founded DPR.

The proof of this kind of lemmas is based on the idea that if we collapse each SCC
into one node, they form a DAG. Thus we can reason by cases on the edges of this DAG
in a depth-first fashion.

Strong version In addition, when the strong version of the criterion is used, the ter-
mination of each sub-component may itself be proven from the termination of smaller
components, each one with a different ordering. Due to lack of space, we will not go
into the details of this methodology.

It remains to conclude using orderings.

4.6 Orderings: Polynomial interpretations

In our framework a polynomial interpretation is defined as a recursive function on terms.
Here is the interpretation as output by CiME for R_add dependency pairs:

[#]= 0; [0](X0)= X0 + 1; [1](X0)= X0 + 2; [+](X0,X1)= X1 + X0;

From this interpretation we produce a measure:term → Z:

Fixpoint measure_DPR (t:term) {struct t} : Z := match t with
| Var _ => 0 | Term sig_sharp nil => 0
| Term sig_0 [x0] => measure_DPR x0 + 1
| Term sig_1 [x0] => measure_DPR x0 + 2
| Term sig_plus [x0; x1] => measure_DPR x1 + measure_DPR x0
end .

Notice that despite our term definition is a deep embedding, the measure is defined
as if we were in a shallow embedding. Indeed it is defined by a direct recursive function
on terms and does not refer to polynomials, substitutions or variables (x0 above is a
COQ variable, it is not a rewriting variable which would be of the formVar n). This
choice is, once again, because our proofs are simpler to generate this way. In a deep
embedding we would need a theory for polynomials, and a generic theorem stating that

11

a polynomial on positive integers with positive factors is monotonic. But actually this
property instantiated onmeasure_DPR above can be proven by a trivial induction
on t . So again the effort of a deep embedding is not worth it. The final lemma is:

Lemma Well_founded_DPR : well_founded DPR.

which is equivalent to∀ x, Acc DPR x . This is proven firstly by induction on the value
of (measure_DPR x) then by cases on each DP, finally by applying the induction hy-
pothesis using the fact that each pair is decreasing bymeasure_DPR . One concludes by
polynomial comparison. It is well known that the comparison of non linear polynomi-
als onN is not decidable in general. Since CiME generates non linear polynomials, we
have a decision procedure for the particular kind of non linear polynomials it produces.

4.7 Orderings: RPO

The COCCINELLE library formalises RPO in a generic way. Once again we use the
module system. RPO is defined using a precedence (a decidable strict orderingprec
over symbols) and astatus(multiset/lexicographic) for each symbol.

Inductive status_type: Set := Lex:status_type | Mul:status_type.
Module Type Precedence.

Parameter (A: Set)(prec: relation A)(status: A -> status_type).
Parameter prec_dec : ∀ a1 a2 : A, {prec a1 a2} + { ∼prec a1 a2}.
Parameter prec_antisym : ∀ s, prec s s -> False.
Parameter prec_transitive : transitive A prec.

End Precedence.

We define a module type describing what should contain a RPO. First it should be
built from a term algebra and a precedence.

Module Type RPO.
Declare Module Import T : term.Term.
Declare Module Import P : Precedence with Definition A:= T.symbol.

The library contains a functorrpo.Make building a RPO from two modules of
type Term andPrecedence . It also builds among other usual properties of RPO,
the proof that if the precedence is well-founded, then so is the RPO. This part of the
library is on a deep embedding style, proofs of termination using RPOs are very easy to
generate as it is sufficient to generate the precedence, the proof that it is well-founded
and apply the functorrpo.Make .

Here is the generated definition of the RPO used for proving termination of depen-
dency chains ofR_ack .

Module precedence <: Precedence.
Definition A : Set := symb.
Definition prec (a b:symb) : Prop :=

match a,b with | sig_s,sig_ack => True | _,_ => False end .
Definition status: symb -> status_type:= fun x => Lex.
Lemma prec_dec: ∀ a1 a2: symb, {prec a1 a2}+{ ∼ prec a1 a2}. ...
Lemma prec_antisym: ∀ s, prec s s -> False. ...
Lemma prec_transitive: transitive symb prec. ...

End precedence.

12

Argument filtering systemsThe use of Dependency Pairs allows a wide choice of order-
ings by dropping the condition of strict monotoncity. Regarding path orderings, this can
be achieved using argument filtering systems (AFS) [1]. We define AFSs as fixpoints
and apply them at comparison time. This does not affect the (COQ) proof scheme.

5 Results and benchmarks

5.1 The user point of view

Our CiME prototype is publicly available from the A3PAT project website8. To illustrate
the trace production we consider the Ackerman function as defined in section 4.2. The
system being defined we have to choose the termination criterion and the orderings.
Here, we may select (marked) Dependency Pairs without graphs refinement and RPO
with AFSs, then ask CiME to check termination of the defined TRS.

CiME> termcrit "dp"; termcrit "marks"; termcrit "nograph";
CiME> polyinterpkind {("rpo",1)}; termination R;

Since the system is found to be terminating, CiME displays a human readable sketch
of the termination proof. We may now ask for its COQ trace:

CiME> coq_certify_proof "example.v" R;

This produces a COQ scriptsexample.v which ends with a proof of the lemma:

Lemma well_founded_R : well_founded R.

Now, if as COQ user we want to prove the termination of a given relation, we first
have to translate this relation into CiME then to process as explained above, to compile
the file, and eventually toRequire the generated COQ module. Note that the relation
should be syntactically equal to the one produced by CiME.

5.2 Results

We used theTermination Problems Data Base9 V3.2 as challenge. Until now we have
produced a COQ certificate for 100% of the 358 TRS that CiME proves terminating
without using modular technique or AC termination10. We will now give some details
on our experiments. We give below the average and maximal sizes of compiled COQ

proofs, as well as themaximalcompilation time (on a 2GHz, 1GB machine, running
Linux). We omit average compilation time: most of the files compile in less than 1s.

with graph without graph
RPO 2.76MB / 4.7MB / 54s 2.6MB / 4.7MB / 68s

Interpretations 0.2MB/ 3.3MB / 23.25s0.2MB/ 24.7MB / 544.79s
RPO+Interpretations2.8MB / 9.4MB / 54.3s 1.4MB / 6.2MB / 41.57s

8 http://www3.ensiie.fr/~urbain/a3pat/pub/index.en.html
9 http://www.lri.fr/~marche/tpdb

10 Remark that not all the systems of the database are terminating, and that some of them are
proven by CiME 2 using modular techniques or AC termination for which our prototype does
not produce certificate yet.

13

Note that criteria do not affect sizes with RPO. Regarding polynomials, one interest-
ing remark is that the small overhead (in the script) due to involved criteria may results
in simpler interpretations and thus in dramatically smaller compiled proofs.

6 Related works and conclusion

There are several works to be mentioned w.r.t. the communication between automated
provers and COQ. Amongst them, the theorem-prover ZÉNON [12], based on tableaux,
produces COQ proof terms as certificates. ELAN enjoys techniques to produce COQ

certificates for rewriting [22]. Bezem describes an approach regarding resolution [3].
However, these systems do not tackle the problem of termination proofs.

To our knowledge the only other approach to generate termination certificates for
rewriting systems relies on the CoLoR/Rainbow libraries [4]. In this approach, term
algebras and TRSs are handled via an embedding even deeper than in COCCINELLE,
since a TRS is given by a set of pairs of terms. Notice that the RPO in CoLoR is weaker
than the usual one, since the underlying equivalence used to compare terms is not≤RPO

∩ ≥RPO, but the syntactic equality: this means that CoLoR’s RPO contains less pairs
of terms than the usual RPO (as in COCCINELLE for instance). Further note that this
RPO is not used in Rainbow for termination certificates: only polynomial interpretations
are used as indicated on the Rainbow web page. There are currently 167 out of 864
termination problems in TPDB proven by TPA [19] and certified by CoLoR/Rainbow.

We presented a methodology to make automated termination tools generatetraces
in a proof assistant format. We illustrate this approach using our CiME 2.99 prototype
which generates COQ traces. The performances of the prototype on the examples of the
TPDB database are promising. Our approach is easy to extend, in particular because
extensions may be done in deep or shallow embedding.

To apply this methodology on different tools and targeted proof assistants, one needs
a termination trace language. An ongoing work in the A3PAT group is to define a more
general language that can even tackle proofs of various rewriting properties such as
termination, confluence (which needs termination), equational proofs [6], etc. We think
that a good candidate could be based on the tree structure we explained on Section 4.1.

One particularly interesting follow-up of this work is the possibility to plug au-
tomated termination toolsas external termination tacticsfor proof assistants. Indeed
termination is a key property of many algorithms to be proven in proof assistants. More-
over, in type theory based proof assistants like COQ, one cannot define a function with-
out simultaneously proving its termination. This would allow to define functions whose
termination is not obvious without the great proof effort it currently needs.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.Theoretical
Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge University Press, 1998.
3. M. Bezem, D. Hendriks, and H. de Nivelle. Automated proof construction in type theory

using resolution.J. Autom. Reasoning, 29(3-4):253–275, 2002.

14

4. F. Blanqui, S. Coupet-Grimal, W. Delobel, S. Hinderer, and A. Koprowski. Color, a coq
library on rewriting and termination. In Geser and Sondergaard [14].

5. E. Contejean. A certified AC matching algorithm. In V. van Oostrom, editor,15th Interna-
tional Conference on Rewriting Techniques and Applications, volume 3091 ofLecture Notes
in Computer Science, pages 70–84, Aachen, Germany, June 2004. Springer-Verlag.

6. E. Contejean and P. Corbineau. Reflecting proofs in first-order logic with equality. In20th In-
ternational Conference on Automated Deduction (CADE-20), number 3632 in Lecture Notes
in Artificial Intelligence, pages 7–22, Tallinn, Estonia, July 2005. Springer-Verlag.

7. E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving termination of rewriting with
CiME. In A. Rubio, editor,Extended Abstracts of the 6th International Workshop on Termi-
nation, WST’03, pages 71–73, June 2003.http://cime.lri.fr .

8. T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf and
G. Mints, editors,Proceedings of Colog’88, volume 417 ofLecture Notes in Computer Sci-
ence. Springer-Verlag, 1990.

9. N. Dershowitz. Orderings for term rewriting systems.Theoretical Computer Science,
17(3):279–301, Mar. 1982.

10. N. Dershowitz. Termination of rewriting.Journal of Symbolic Computation, 3(1):69–115,
Feb. 1987.

11. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,Handbook
of Theoretical Computer Science, volume B, pages 243–320. North-Holland, 1990.

12. D. Doligez. Zenon.http://focal.inria.fr/zenon/ .
13. J. Endrullis. Jambox.http://joerg.endrullis.de/index.html .
14. A. Geser and H. Sondergaard, editors.Extended Abstracts of the 8th International Workshop

on Termination, WST’06, Aug. 2006.
15. J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Automatic termination proofs in

the dependency pair framework. In U. Furbach and N. Shankar, editors,Third International
Joint Conference on Automated Reasoning, volume 4130 ofLecture Notes in Computer Sci-
ence, Seattle, USA, Aug. 2006. Springer-Verlag.

16. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In F. Baader,
editor, 19th International Conference on Automated Deduction (CADE-19), volume 2741
of Lecture Notes in Computer Science, pages 32–46, Miami Beach, FL, USA, July 2003.
Springer-Verlag.

17. N. Hirokawa and A. Middeldorp. Tyrolean termination tool. In J. Giesl, editor,16th In-
ternational Conference on Rewriting Techniques and Applications (RTA’05), volume 3467
of Lecture Notes in Computer Science, pages 175–184, Nara, Japan, Apr. 2005. Springer-
Verlag.

18. T. Hubert. Certification des preuves de terminaison en Coq. Rapport de DEA, Université
Paris 7, Sept. 2004. In French.

19. A. Koprowski. TPA.http://www.win.tue.nl/tpa .
20. D. S. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-

3, Mathematics Department, Louisiana Tech. Univ., 1979. Available athttp://perso.
ens-lyon.fr/pierre.lescanne/not_accessible.html .

21. C. Marché and H. Zantema. The termination competition 2006. In Geser and Sondergaard
[14]. http://www.lri.fr/~marche/termination-competition/ .

22. Q. H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical proof assistants.
J. Autom. Reasoning, 29(3-4):309–336, 2002.

23. T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 ofLNCS. Springer, 2002.

24. The Coq Development Team.The Coq Proof Assistant Documentation – Version V8.1, Feb.
2007.http://coq.inria.fr .

15

25. X. Urbain. Modular and incremental automated termination proofs.Journal of Automated
Reasoning, 32:315–355, 2004.

16

A RPO definition

The RPO makes use of an equivalence generated by symbols having multi-set status.

Inductive equiv : term -> term -> Prop :=
| Eq : ∀ t, equiv t t
| Eq_lex : ∀ f l1 l2, status f = Lex -> equiv_list_lex l1 l2

-> equiv (Term f l1) (Term f l2)
| Eq_mul : ∀ f l1 l2, status f = Mul -> permut equiv l1 l2

-> equiv (Term f l1) (Term f l2)
with equiv_list_lex : list term -> list term -> Prop :=

| Eq_list_nil : equiv_list_lex nil nil
| Eq_list_cons : ∀ t1 t2 l1 l2, equiv t1 t2 -> equiv_list_lex l1 l2

-> equiv_list_lex (t1 :: l1) (t2 :: l2).

It also makes use of the notion of permutations modulo the equivalence defined above.
Permutations are defined in another module.

Declare Module Import LP : list_permut.S
with Definition EDS.A:=term with Definition EDS.eq_A := equiv.

Then RPO is defined as the following mutual inductive relation :

Inductive rpo : term -> term -> Prop :=
| Subterm : ∀ f l t s, mem s l -> rpo_eq t s -> rpo t (Term f l)
| Top_gt : ∀ f g l l’, prec g f

-> (∀ s’, mem s’ l’ -> rpo s’ (Term f l))
-> rpo (Term g l’) (Term f l)

| Top_eq_lex : ∀ f l l’, status f = Lex -> rpo_lex l’ l
-> (∀ s’, mem s’ l’ -> rpo s’ (Term f l))
-> rpo (Term f l’) (Term f l)

| Top_eq_mul : ∀ f l l’, status f = Mul -> rpo_mul l’ l
-> rpo (Term f l’) (Term f l)

with rpo_eq : term -> term -> Prop :=
| Equiv : ∀ t t’, equiv t t’ -> rpo_eq t t’
| Lt : ∀ s t, rpo s t -> rpo_eq s t

with rpo_lex : list term -> list term -> Prop :=
| List_gt : ∀ s t l l’, rpo s t -> length l = length l’

-> rpo_lex (s :: l) (t :: l’)
| List_eq : ∀ s s’ l l’, equiv s s’ -> rpo_lex l l’

-> rpo_lex (s :: l) (s’ :: l’)
with rpo_mul : list term -> list term -> Prop :=

| List_mul : ∀ a lg ls lc l l’,
permut l’ (ls ++ lc) -> permut l (a :: lg ++ lc) ->
(∀ b, mem b ls -> ∃a’, mem a’ (a :: lg) /\ rpo b a’) ->
rpo_mul l’ l.

The module also contains generic proofs of the fact that

– equiv is an equivalence relation,
– rpo_eq is an ordering over the equivalence classes ofequiv ,
– rpo is strict part ofrpo_eq ,

17

– equiv , rpo andrpo_eq monotonic and stable under substitution,
– if the precedenceprec is well-founded, then so isrpo .

18

