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Abstract

We introduce parameterized pattern queries as a new paradigm to extend traditional
pattern expressions over sequence databases. A parameterized pattern is essentially
a string made of constant symbols or variables where variables can be matched
against any symbol of the input string.

Parameterized patterns allow a concise and expressive definition of regular ex-
pressions that would be very complex to describe without variables. They can also
be used to express additional constraints, to “relax” pattern expressions by allowing
more freedom, and finally to cluster patterns in order to minimize the number of
symbols’ comparisons.

Key words: Representation and Manipulation of Data, Pattern matching,
Optimization

1 Introduction

The detection of patterns in sequence databases is a requirement of many ap-
plications such as analysis of stock market prices (where a common problem
for example consists in detecting two consecutive peaks in price patterns in
order to make a buying decision), search for DNA sequences, stream mining,
etc. Motivated by these applications, several models have been recently pro-
posed to express pattern-based queries and to retrieve efficiently sequences
that match them [1–5]. Many languages proposed in these articles extend in
some way (querying, aggregation, data mining) the functionalities of SQL with
some variant of regular expressions and query evaluation techniques built on
well-known pattern matching algorithms.

In this paper, we propose an extension of traditional patterns with variables
which can be bound to any value of the underlying discrete domain during
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query evaluation. For instance, if a is a value and x is a variable, the param-
eterized pattern @x.a.@x denotes all the substrings where a is preceded and
followed by the same value. This extension provides a much more expressive
and flexible querying framework. Indeed, the presence of variables offers many
opportunities to match a pattern with a sequence by simply changing the
variables bindings. Moreover, the introduction of variables promotes patterns
to first-class query objects, since variables can be used in other parts of a
query for expressing constraints (e.g., @x != c), joins (@x = @y, where x and
y appear in different patterns), output of variable values, etc. The constraints
may be simple comparisons between variables and constants, or more complex
application-dependent predicates. Actually, as shown in Section 4, the specific
constraint language is independent from our extension because taking account
of constraints is a part of our pre-processing phase.

A potential problem associated with any extension of pattern-matching queries
is the cost of the query evaluation algorithms. In the traditional setting (pattern-
matching on strings) several well-known algorithms have been proposed to ef-
ficiently perform this search, either exactly [6–8] or approximately. Our main
contribution is an extension of the KMP algorithm [7] to parameterized pat-
tern matching which preserves its linear time complexity and enjoys low space
requirements. More specifically, we show that the space requirements are in-
dependent from the alphabet or input sequence sizes, and that the time com-
plexity matches that of related algorithms in the worst case, and is lower on
the average.

Next, we analyze the potential of parameterized queries to relax the matching
constraints. Pattern c.a.b for instance can be relaxed to @x.a.b, or c.a.@y,
or @x.a.@y, etc., by replacing one constant symbol by a variable. Obviously,
a parameterized pattern matches a superset of the sequences matched by the
same pattern where one variable is bound to a constant symbol. We provide a
formal description of query relaxation. We also show how this feature can be
exploited when many patterns have to be evaluated together against an input
sequence.

Relaxation allows the clustering of query patterns, and leads to a common
evaluation of the parts shared by similar patterns. This constitutes a useful
feature in publish/subscribe applications where a crucial property of the no-
tification system is its ability to group subscriptions and to filter out events
in order to minimize useless or redundant comparisons [9,10].

We implemented our algorithms and carried out several evaluations. The ex-
perimental evaluation shows that our algorithm saves a large amount of com-
putations and therefore decreases the query evaluation time compare to a
näıve approach. The filtering approach is also implemented and discussed.
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In the following we describe first (Section 2) some motivating applications
with sample queries. Section 3 introduces the data model and Section 4 is de-
voted to query evaluation algorithms, including our solution. In Section 5 we
consider the evaluation of multiple patterns over a large input sequence and
describe how parameterized patterns can be used to filter out many redundant
or useless comparisons. We provide experimental results in Section 6. Related
work is covered by Section 7. Some conclusions are drawn in Section 8. This
paper extends shorter versions presented in [11] and [12]. More specifically,
we improve the representation of the edges and propose a quadratic algorithm
for building the table of edges, instead of the O(n3) naive algorithm presented
in [11]. The present paper also features the proofs of the results from both [11]
and [12], as well as a detailed complexity analysis. Finally it provides addi-
tional motivating examples and experiments to validate our approach.

2 Informal presentation

We provide in this section an illustration of our approach with some repre-
sentative applications. Their common feature is to represent as sequences the
evolution of values over a discrete domain for some information of interest,
and to perform querying and analysis tasks on these sequences.

2.1 Motivating examples

Applications that deal with DNA or proteins rely on a database that stores
millions of sequences [13]. Consider for instance a protein sequence database.
Basically a protein is often composed of between 100 and 200 amino acids.
There are 20 distinct amino acids that are commonly denoted by a symbol
with one letter. Here is the example of lysozyme, composed of 130 amino acids:

K V F E R C E L A R T L K R L G M D G Y R G I S L A N W M C L A K W
E S G Y N T R A T N Y N A G D R S T D Y G I F Q I N S R Y W C N D G K
T P G A V N A C H L S C S A L L Q D N I A D A V A C A K R V V R D P Q

G I R A W V A W R N R C Q N R D V R Q Y V Q G C G V

where for instance N is the standard symbol to denote the amino acid named
Asparagine. Beyond classical pattern matching on such sequences, our lan-
guage allows advanced parameterized search. For instance the parameterized
pattern @x.Q.L.@x matches the sequences where the substring Q.L is found,
preceded and followed by the same letter. Variables provide a concise way
to represent patterns that otherwise would be expressed with a regular ex-
pression that enumerates all the possible bindings, and whose size is likely to
discourage any user.
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Next, consider another application that aims at analyzing the behavior of
web users on a site in order either to improve the ergonomy of the site, or
to find the best places for advertisements. Assume that each page is uniquely
referred to by an url. The database can thus store the sequences of page urls –
or histories – successively crawled by a user [14,15]. A simple query of interest
in such a context is for instance to search for users that came back to page
A after visiting another page. This can be expressed by the pattern A.@x.A.
The value of @x can be output if required when a match has been found (and
thus when a value is bound to @x).

Finally, let us take a spatio-temporal application that will serve as a support
to our examples in the rest of the paper. As in [16], we consider a partition of a
2D embedding space such that each zone is uniquely identified with a symbol
from an alphabet Σ. This partition is the reference map M supporting queries.

Assume that each object is equipped with a location-aware device that peri-
odically sends its position and that Σ = {a, b, c, d, e, f, g}. Since each object
moving in the partitioned area crosses a sequence of distinct zones (we assume
at least one event per zone), our patterns can be used to query such sequences.
Here is a sample of such queries (they will be referred to by Qi, i = 1, · · · , 4 in
the following)

• Q1: which objects went through zone a, then crossed zone d and moved to
zone c?

• Q2: which objects went through zone b, then crossed c and e and then
moved to f?

• Q3: which objects went from f to d crossing another zone?
• Q4: which objects left one zone to reach a, then came back to their departure

zone before going to another zone?

The corresponding patterns for these queries are respectively Q1 =a.b.c,
Q2 =b.c.e.f, Q3 =f.@x.d with an instantiation of @x different from f and
d, and Q4 =@x.a.@x.@y, with an instantiation of @x different from those of
@y.

2.2 Features of the model

The main feature of our language is the introduction of variables in pattern ex-
pressions. Variables bring flexibility in many aspects: expression of constraints,
query relaxation, comparison and filtering of patterns.

Variables can be seen as references to some symbols of the input sequence.
This creates a bridge between the pattern expression and the classical query
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predicates. A first potential use is the expression of additional constraints.
Consider for instance the DNA application. The pattern Y.A.@x can be com-
bined with the constraint Polar(@x) where Polar is a predicate which checks
whether the instantiation of @x belongs to the Polar class of amino acids.
Second, variables can simply be introduced in the query result. Referring to
the previous example, this would allow to know exactly which amino acid @x

has been met when a match is found with Y.A.@x.

Next, by replacing constant symbols with variables, the user can relax the
constraints on sequences expressed by a pattern, in order to capture more se-
quences. Returning to the web log analysis application, we saw that A.@x.B.@x
matches all the sequences where a page @x is accessed successively from two
distinct pages, respectively A and B. If we do not wish to mention explicitely A

and B in the previous example, we can relax the pattern as @y.@x.@z.@x, along
with the constraints @x != @y and @y != @z. This matches all the sequences
where page @x is accessed successively from two distinct pages, whatever their
urls.

Finally adding or removing variables provides a useful mean to compare pat-
terns or to filter out patterns evaluation. As mentioned above, variables can
be seen as a way to express concisely a class of variable-free patterns. Consider
the spatio-temporal application, and assume that several patterns are regis-
tered in order to detect the trajectories that go from zone g to zone d. Some
possible expressions are g.c.d, g.b.d, g.e.d. A relaxation common to these
three patterns is g.@x.d which represents the class of variable-free patterns for
trajectories that go from g to d with one intermediate step. The specification
of such “summaries” brings the following benefits:

• From a classification point of view, one can define a comparison strategy
based on the addition or removal of variables. More specifically, we exhibit
a partial order on patterns based on the number of variables necessary to
transform one into another.

• The second benefit is less common, although important as well. Basically,
if a trajectory does not match g.@x.d, the common relaxation of our three
patterns, then it will not match any of them. This property allows to avoid
many useless computations by creating clusters of pattern-based queries and
by filtering out the evaluation of these queries.

In summary our approach aims at providing a flexible, powerful and efficient
pattern-based query language. The flexibility is brought by the presence of
variables. The larger the number of variables in a pattern, the larger the
number of matches which can be found. Of course, the additional cost, if any,
of these extended functionalities has to be evaluated. We show in the following
that, in spite of an apparent added complexity, we can still rely on efficient
pattern matching operations.
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3 The model

Let Σ be a finite set of symbols and V be a set of variables such that Σ∩V = ∅.
In the following, letters a, b, c, . . . denote symbols from Σ, and @x, @y, @z,
. . . variables. A sequence is a word in Σ∗. A pattern is a word t1.t2 . . . tm in
(Σ∪V)∗. In their simplest form, patterns are words in Σ∗ such as, for instance,
Q1 = a.d.c and Q2 = b.c.e.f. For clarity, we use the string concatenation
symbol “.” to separate symbols from Σ or variables in a pattern.

The interpretation of a pattern P without variable is natural: a sequence T
matches a pattern P if P is a substring of T . The interpretation of patterns
(with variables) is an extension of this trivial semantics: a sequence T matches
a pattern P if one can substitute each variable in P by a symbol from Σ, such
that the resulting pattern is a substring of T . More formally:

Definition 1 (Substitution and valuation) A substitution σ is a finite
set of the form {x1/t1, x2/t2, . . . , xn/tn} where xi ∈ V, i = 1, . . . , n, and each
ti is either a variable in V or a symbol in Σ. σ is a valuation if ti ∈ Σ, for all
i ∈ [1, n].

σ(P ) denotes the pattern obtained from P by replacing, for each xi/ti ∈ σ,
each occurrence of xi in P by ti. Each element xi/ti is called a binding for xi

and the set of variables {x1, x2, . . . , xn} is denoted by bound(σ). Sometimes, if
x is bound to t, for brevity t will be referred to as σ(x). If, for instance, P =
a.b.@x.@y.b.@z.b and σ = {@x/c, @z/@x}, then σ(P ) = a.b.c.@y.b.@x.b.
In the following var(P ) and symb(P ) denote respectively the set of variables
and constant symbols in P .

Note that if σ is a valuation and var(P ) ⊆ bound(σ), then σ(P ) is a word
in Σ∗ (for the sake of clarity we shall denote a valuation by ν). Hence the
definition:

Definition 2 (Interpretation of a pattern) A sequence s matches a pat-
tern P (denoted s ∈ L(P )) iff there exists a valuation ν such that ν(P ) is a
substring of s.

A query q is simply a pair (P, C) such that P is a pattern, and C = {c1, c2, · · · , cm},
m ≥ 0, is a (possibly empty) set of predicates over var(P ). The semantics of
a query is straightforward from that of a pattern: a sequence satisfies a query
iff there exists a valuation of var(P ) which satisfies the pattern of the query
and the predicates in C . In the following we focus on the evaluation of pat-
terns. The evaluation of queries checks the progressive bindings of variables
against the predicates. Note that the predicates are application-dependent
i.e., we might have spatial predicates in a mobile application, or specialized
conditions on proteins, or url comparisons.
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Symbol Meaning

P A pattern

m The length of a pattern

l A position within a pattern (0 ≤ l ≤ m − 1)

n the length of the sequence

e, e1, e2, · · · Edges

ν, σ Resp.: a valuation, a substitution

t1, t2, · · · Symbols or variables from Σ ∪ V

a, b, c, · · · Symbols from Σ

@x,@y,@z, · · · Symbols from V

Table 1
Table of symbols used in the paper

4 Query evaluation

We present now two algorithms for an evaluation of parameterized patterns.
The first one follows a näıve approach which repeatedly checks the new read
symbols and backtracks on the sequence whenever a mismatch occurs. The
second one is our optimized technique. The notations used throughout the
paper are listed in Table 1.

4.1 The näıve approach

The first algorithm is a simple extension of well-known pattern-matching tech-
niques to patterns with variables and relies on the following operations: a
matching attempt between a pattern P and a sequence T at a position i, and
a shift of P whenever a mismatch occurs.

The Compare operation

A matching attempt compares, one by one, from left to right, the symbols
P [0], P [1], . . . , P [m− 1] of the pattern to the symbols T [i], T [i + 1], . . . , T [i +
m− 1] of the sequence. During the matching attempt, the variables in var(P )
are progressively bound to symbols in Σ, and these bindings define a valuation
ν, called the runtime valuation, initially empty. If P [j] is a variable @x, the
following binding rules apply:

(1) if @x 6∈ bound(ν), the comparison is always successful and ν := ν ∪
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{@x/T[i+j]} i.e., @x is bound to symbol T [i + j]. This binding remains
in effect until the end of the matching attempt;

(2) else, if @x ∈ bound(ν) the comparison is successful if and only if T [j] is
equal to ν(@x).

Consider for instance the matching attempt for P = a.@x.b.@x and T =
a.c.b . . .. The comparisons are successful for j = 0, 1, 2. When P [1] = @x is
compared to T [1] = c, variable @x is bound to symbol c. The valuation ν
is, at this point, {@x/c}. The following comparison P [3] = T [3] can then be
successful only if the next symbol read in the sequence’s representation is c,
the current instantiation of @x. If all the comparisons are successful, then so
is the matching attempt, else there is a mismatch. In both cases the Shift

operation is performed.

The Shift operation

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

pattern

sequence a bab

a b a c
shift

a bab

a b a c
shift

bba

a b

a

a c

c

c

a

ab

ba

aba

caba

a b a b asequence

pattern

(a) mismatch at pos. 3 (c) scan a new label of the sequence

(d) a new label a is read (e) c is read ; successful match

(b) mismatch at pos. 0

Fig. 1. Matching attempt for a pattern without variable

A Compare operation is performed each time a new symbol is read. Whenever
a mismatch occurs (say, at position l, with 0 ≤ l ≤ m − 1), Shift shifts
the pattern by one position and a comparison with the l − 1 last symbols
of the sequence has to be done. If the matching is successful, one reads the
next symbol of the sequence, else a new shift is necessary. Figure 1 shows an
example.

When the pattern contains variables the algorithm is quite similar except
for the binding of the variables. Whenever a mismatch occurs, the current
substitution is deleted: all the bindings are discarded. The pattern is shifted
one symbol to the right. Figure 2 illustrates this algorithm.

This technique is simple but costly since the algorithm to test the whole
sequence runs in O(m×n). Each symbol of the sequence is potentially checked
several times against the pattern.
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0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

@x b a

bcba

a@xb@x

acbcbacbcba

@x b @x apattern

sequence

sequence

pattern

bcba

b @x a
shift

bcba

@x b @x a
shift

(a) @x bound to a

mismatch at pos. 2

(b) @x bound to b

mismatch at pos. 1

(c) scan a new symbol

of the sequence

(e) a is read :(d) a new label c is read

successful match

@x @x

Fig. 2. Matching attempt for a pattern with variables

4.2 Optimized evaluation

The KMP algorithm

The Knuth, Morris and Pratt (KMP) [7] algorithm relies on the observation
that, in the case of a mismatch, several symbols can be skipped. Moreover
the pattern contains all the information needed for determining the number
of symbols to be skipped. This is illustrated in Figure 3 with the pattern
P =a.b.c.a.b.c.b and the substring T = a.b.c.a.b.c.a.

?
a b c a cb a

a b c a b c b

a b c a b c a

pattern

sequence

bcacba

1 2 3 4 5 60

(a) a mismatch occurs at pos. 6

i i + 6

1 2 3 4 5 60

the right and restarts the matching

(b) The KMP shifts 3 symbols to

i i + 6

b

Fig. 3. Example of a shift determined by the KMP algorithm

A mismatch occurs at position 6 of the pattern. We successfully superposed
P [0]. · · · .P [5] on the lastly read six symbols of T . A shift of one or two symbols
to the right always leads to a mismatch. Indeed after a shift of one symbol,
P [0] =a is compared to T [i+1] =b. Similarly a shift of two symbols attempts
to superpose P [0] =a on T [i + 2] =c.

Nonetheless, a shift of three symbols to the right is possible since P [0]. · · · .P [2] =
T [i+3]. · · · .T [i+5] (Figure 3(b)). It turns out that this shift is allowed because
P [0]. · · · .P [2] = P [3]. · · · .P [5]. Therefore it can be determined by examining
the pattern, at compile-time, independently from any specific sequence.

More generally, for each substring sl = P [0]. · · · .P [l− 1], l < m of P , we need
to know the longest prefix el of sl which is also a suffix of sl. Such a string el
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is called an edge. If the mismatch occurs at position l in the pattern, then the
shift is of length l − 1 − |el|. Figure 4 illustrates this.

before

mismatch

after

mismatch

pattern

sequence

pattern

sequence

?

1

l

l

1

e e

e e

e e

ee

Fig. 4. Using an edge for determining the appropriate shift.

Note that taking the longest suffix means that the shift is minimal, and guaran-
tees that the algorithm does not miss any solution. The edges are precomputed
and stored in a table called the table of edges.

The KMP algorithm is decomposed into two steps. First an offline scan of
the pattern to detect the edges for each substring in the pattern; second an
online use of the table of edges to apply the appropriate shift each time a
mismatch occurs. Using the table of edges often avoids the need to check an
input symbol several times when performing a matching attempt.

Extended KMP algorithm

b baaba @x

a b c a ab a

(a) a mismatch occurs at pos. 6

@x is bound to c

1 2 3 4 5 60

i i + 6

a b a b a b@x

a b c a b a a

(b) we directly shift 3 symbols to

the right and bind @x to a

1 2 3 4 5 60

i i + 6

Fig. 5. A shift for a pattern containing variables

Consider the pattern P = a.b.@x.a.b.a.b and the example of Figure 5. A
mismatch occurs at position 6. The shift is determined by two conditions. First,
if we consider the pattern prefix a.b.@x.a.b.a and assume that @x is bound to
a, one may envisage the shift that superposes the prefix P [0].P [1].P [2] with the
suffix P [3].P [4].P [5]. After the shift, P [2] = @x is bound to a. So P [0].P [1].P [2]
may be superposed with the suffix P [3].P [4].P [5] This first condition is nec-
essary but not sufficient: assume we have a variable @current that stores
the current symbol of the sequence, then the mismatch occurred because the
value of @current (i.e., ν(@current)) does not match with P [6] = b. One
must check that it matches the symbol P [3] after the shift (Figure 5.b). Since
P [3] = a = ν(@current), the necessary and sufficient conditions are fulfilled
and the shift is possible.
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a b c a b a

a b @x@y b @z b

a

6543210

i + 6i

a b @x@y b @z b

aabacba

6543210

i i + 6

to a, @y to a and @z not bound

(b) shift 3 pos. to the right, @x bound(a) mismatch at pos. 6, @x bound to c,

@y to a, and @z to a

Fig. 6. A shift involving a substitution

Next, consider a more complex case where the bindings after the shift depend
on the bindings before the mismatch (Figure 6). Once again a mismatch occurs
at position 6, @x being bound to c, @y to a and @z to a. The current symbol
that leads to the mismatch is ν(@current) = a.

The first condition applies to the edges of the sub-pattern P [0]. · · · .P [5] =
a.b.@x.@y.b.@z. The prefix a.b.@x can be superposed with the suffix @y.b.@z

if and only if @y is bound to a. In that case the shift binds @x to the former
binding of @z, a. There is no condition on the value of the current symbol of
the sequence: since P [3] is the first occurrence of a variable, @y, it is always
possible to bind @y to the value of @current after the shift. The analysis of
the pattern at compile-time gives all the needed information to evaluate the
conditions and the substitutions that must be performed at runtime.

a @x a c @y@x b

a b a c a b a

a @x a c @y@x b

(b) since @y was bound to a, and the

read symbol is a, applying an edge of length 2 is

654321 6543210 0

i i + 6 i i + 6

possible ; then @x is now bound to b

a b a c a b a

(a) mismatch at pos. 6, @x bound to b,

y to a since @x is bound to b,

edge of length 4 is not allowed.

Fig. 7. A shift that depends on the runtime valuation and on the value of @current

Here is a last example which develops the full mechanism of conditions/ sub-
stitutions. In Figure 7.a, a mismatch occurs at position 6. The sub-pattern
P [0]. · · · .P [5] is a.@x.a.c.@y.@x. An edge of length 4 can be envisaged, since
the prefix a.@x.a.c can be superposed on the suffix a.c.@y.@x, the necessary
condition being that ν(P [5]) = P [3], i.e., @x must be bound to c prior to the
shift. This is not the case in Figure 7. Next we can consider an edge of length
2 which superposes the prefix a.@x on the suffix @y.@x. This is only possible
if @y is bound to a, which, on the example of Figure 7, is true. It remains
to check the condition on @current: for a shift of length 2, one must have
ν(@current) = P [2]. This is verified and the shift can be performed.
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4.3 Edges

As shown by the previous examples, the choice of an edge at run-time depends
on conditions on the variables bindings and on the value of the current symbol
of the sequence. Moreover a shift determines a substitution of variables values
which depends, partially or totally, on the runtime valuation. The notion of
edge covers these conditions and substitutions.

Definition 3 (Edge of a pattern) Let P be a pattern of length m. An edge
of P is a triple (length, νmin, σshift), where νmin is a valuation and σshift a
substitution, which satisfies the following properties:

• νmin(σshift(P [0]. · · · .P [length−1])) = νmin(P [m−length]. · · · .P [m−2].@current),
• there does not exist an edge e′ = (length, ν′

min, σ
′
shift) with ν ′

min ⊆ νmin.

The valuation νmin expresses the necessary and sufficient conditions for ap-
plying the shift: given the runtime substitution ν, the edge e is applicable iff
νmin ⊆ ν (we sometimes say that ν is compatible with νmin). Finally σshift is
the substitution used to bind the edge’s variables after the shift. Both νmin

and σshift are computed at compile time.

Assume that during the superposition of a pattern P on a sequence T a
mismatch occurs at position l of P . If (length, νmin, σshift) is an edge of
P [0]. · · · .P [l − 1] and νmin is compatible with the runtime valuation ν, then
we can shift P of l− length− 1 symbols to the right and restart the matching
process at position length+1 for P (see Figure 4). The new runtime valuation
is ν ◦ σshift.

To illustrate this, let the subpattern be @x.b.@y.c.@z.@x.a.d. There exists
an edge e(4, νmin, σshift) of length 4 with νmin = {@x/b, @current/c} and
σshift = {@x/@z, @y/a}

This is interpreted as follows. If a mismatch occurs with the last symbol of
P , a shift of size 4 can be performed if the following conditions hold: (i) @x is
bound to b and (ii) @current is bound to c.

Then the prefix @x.b.@y.c can be superposed with @z.@x.a.@current. Since
@x replaces @z, it takes the value assigned to @z by the runtime valuation, while
@y takes always the value a. One easily verifies that: νmin(σshift(@x.b.@y.c)) =
νmin(@z.@x.a.@current) = @z.b.a.c.
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Computing the edges

A brute-force technique for determining the edges of P consists in considering,
for each subpattern P [0 . . .m−1], all the possible edges of length i < m. This
algorithm runs in O(m3) (number of comparisons). A better algorithm uses
the edges already determined at a given position l − 1 to deduce the edges at
position l. The algorithm relies on the following property (see Figure 8):

Lemma 1 Let e = (i + 1, νmin, σshift) be an edge for P [0 . . . l]. Then there
exists an edge e′ = (i, ν ′

min, σ
′
shift) for P [0 . . . l − 1] with











ν ′
min = νmin|var(P [l−i...l−1])

∪ {@current/P [i − 1]}

σ′
shift = σshift|var(P [0...i−1])

where σ|var(q)
(resp. νmin|var(q)

) denotes the restriction of σ (resp. νmin) to the
variables in q.

P

P [0 . . . l − 1]

P [0 . . . l] α

α

ml − 1

β

0

0

0

e′

e

e′ ∈ Edges[l − 1]

e ∈ Edges[l]

β current

currentγ

Fig. 8. Computation of Edges[l − 1] from Edges[l]

Proof : Let e = (i+1, νmin, σshift) be an edge of P [0 . . . l]. From the definition
of an edge, νmin(σshift(P [0 . . . i])) = νmin(P [l − i . . . l]) = ω.α, with ω.α ∈
(Σ∪V)∗ × (Σ∪ V). Therefore we have νmin(σshift|var(P [0...i−1])

(P [0 . . . i− 1])) =

νmin|var(P [l−i...l−1])
(P [l − i . . . l − 1]) = ω

In other words, let ν ′
min = νmin|var(P [l−i...l−1])

∪ {@current/P [i − 1]} and let

σ′
shift = σshift|var(P [0...i−1])

then (i − 1, ν ′
min, σ

′
shift) is an edge e′ for the pattern

P [0 . . . l − 1]. 2

This lemma leads to an optimized algorithm EdgesConstruction that it-
eratively constructs the table of edges, deducing Edges[l] from the edges in
Edges[l − 1]. Each step of the algorithm is of the form:

EdgesConstruction (step l)
Edges[l] := (0, ∅, ∅)
for each (i, νmin, σshift) ∈ Edges[l − 1]

// Initialize ν ′
min and σ′

shift

ν ′
min := νmin;σ′

shift := σshift

Remove from ν ′
min and σ′

shift the conditions and substitutions on @current.
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// Set the new constraints linked to @current

if P [i] ∈ Σ then ν ′
min := νmin ∪ {@current/P[i]}

else σ′
shift := σshift ∪ {P [i]/@current}

endif

if P [i − 1] ∈ Σ then

if P [l − 1] ∈ Σ and P [l − 1] = P [i − 1] then (i + 1, ν ′
min, σ′

shift) ∈ Edges[l]

else if P [l − 1] ∈ V then

// if there is no substitution P [l − 1]/P [i − 1], add it to ν ′
min

if P [l − 1]/P [i − 1] ∈ νmin then (i + 1, ν ′
min, σ′

shift) ∈ Edges[l]

else (i + 1, ν ′
min ∪ {P [l − 1]/P [i − 1]}, σ′

shift) ∈ Edges[l]

endif

endif

else // P [i − 1] is a variable, modify the substitution if needed
if P [i − 1]/P [l − 1] ∈ σshift then (i + 1, ν ′

min, σ′
shift) ∈ Edges[l]

else (i + 1, ν ′
min, σ′

shift ∪ {P [i − 1]/P [l − 1]}) ∈ Edges[l]

endif

endif

endfor

Consider the pattern a.@x.b.a.@x.@y and assume that we already computed
the edges at position 4: Edges[4] = {(0, ∅, ∅), (1, {@current/a}, ∅), (2, ∅, {@x/@x})}.
For each of these edges of resp. length 0, 1 and 2, we compute the possible edges
of length 1, 2 and 3 and add the default edge (0, ∅, ∅).

• (0, ∅, ∅) ∈ Edges[4] and P [5] ∈ V ⇒ (1, {@current/a}, ∅) ∈ Edges[5]
• (1, {@current/a}, ∅) ∈ Edges[4] and (P [0], P [4]) ∈ Σ×V and P [1] = @x

⇒ (2, {@x/a}, {@x/@current}) ∈ Edges[5]
• (2, ∅, {@x/@x}) ∈ Edges[4] and (P [1], P [4]) ∈ Σ2 and P [2] = b

⇒ (3, {@current/b}, {@x/@x}) ∈ Edges[5]

Finally we add the default edge (0, ∅, ∅) to Edges[5].

Proposition 1 EdgesConstruction is in the worst case quadratic in the
size of the pattern.

Proof : First note that in the worst case, we have l edges at the position l
of a pattern P , with lengths ranging from 0 to l − 1. Algorithm EdgesCon-

struction computes an edge of Edges[l] with length i + 1 from an edge of
Edges[l − 1] with length i if a matching between P [l] and P [i] is successful.
So the set Edges[l] is computed from the set Edges[l − 1] by carrying out
one comparison for each edge of Edges[l− 1] (we also add the default edge to
Edges[l]). Consequently in the worst case l comparisons are necessary, which

leads to an amount of
∑m−1

l=1 l = (m−1)(m−2)
2

comparisons for the whole table of
edges. 2
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Finally, given a query q(P, C), the computation of edges must take into account
the constraints C. Once the table of edges is built as described above, any edge
whose variables binding is incompatible with one of the query constraints must
be removed. We do not elaborate further on the constraint language, since
constraint evaluation is clearly indenpendent of the core of our algorithm.

Representation of edges

The basic idea for the edge representation consists in building two structures.
The first one is a set of arrays of edges, one for each position in the pattern,
that stores all the existing edges at that position. The second one describes
the association between the variables valuations and the edges.

More formally, let Ll < l be the number of edges at position l in the pattern
P . The edges are stored in an array Edges[l] = [el

0, e
l
1, · · · , e

l
Ll

], sorted on
their length in ascending order. Let Pl denote the prefix of P until position l:
Pl = P [0]. · · · .P [l]. In addition we maintain, for each l and for each variable v
in Pl ∪ {@current}, an array of bits f l

v. Given a symbol α in Pl and k ≤ Ll,
the entry f l

v[α, k] is initialized as follows.

f l
v[α, k] =











1 if ∄(@xj/β) ∈ el
k.νmin with β 6= α,

0 otherwise

Recall an edge is applicable if its valuation is compatible with the run time
valuation. This happens if all variable bindings in the edge valuation are in
the run time valuation. We set entry f l

v[α, k] to 1 if the binding of v to k is
compatible with the edge el

k. Since a variable in νmin may only be bound to a
symbol of P , all the f l

v[α, k] for α ∈ Σ− symb(P ) are identical. Consequently
for each variable v, we need to maintain at most |symb(P )| + 1 entries, one
for each α ∈ symb(P ), and one that represents the compatibility for all the
symbols in Σ − symb(P ).

Here are the edges of the pattern P = a.@x.b.a.@x.@y.a, to be used when a
comparison fails with P [6] = a.

• e6
0 = (0, ∅, ∅) the default edge that corresponds to a shift of the whole

pattern;
• e6

1 = (2, {@y/a}, {@x/@current}), because if ν is compatible with {@y/a},
then the end of the sequence is of the form a.@current; it matches the
beginning of P , a.@x, @x being bound to @current.

• e6
2 = (3, {@x/a, @current/b}, {@x/@y}), because if ν is compatible with
{@x/a, @current/b}, the end of the sequence is of the form a.ν(@y).b. It
matches the first three symbols of P , a.@x.b, the new binding of @x being

15



the former binding of @y.

There is no edge of length 4, because when a mismatch occurs, @current is
not a. One cannot find edges of length 5 or 6. The array of bits for these edges
are:

f 6
@x[α] =











[1 1 1] for α = a

[1 1 0] otherwise
f 6
@y[α] =











[1 1 1] for α = a

[1 0 1] otherwise

f 6
@current(α) =











[1 1 1] for α = b

[1 1 0] otherwise

The matching process relies on this array of bits to efficiently determine which
edge must be applied when a mismatch occurs. Basically, when a mismatch is
detected at position l, we consider all the variables v of Pl and perform a logical
AND on the bit arrays f l

v[ν(v)]. The bits set to 1 indicate which edges can
be applied for the run time valuation. We choose of course the longest edge.
Since the edges are sorted in ascending order on their length, the rightmost
bit set to 1 gives the shift that must be performed.

With the previous example, assume that a mismatch occurs at position 5, with
the following runtime valuation: ν = {@x/a, @y/c, @current/b}. In order to
choose the edge, the following AND is performed:

E = f 6
@x(a)∧ f 6

@y(c)∧ f 6
@current(b) = [1 1 1]∧ [1 0 1]∧ [1 1 1] = [1 0 1]

The right-most 1 in E is at the third position; edge e6
2 must be chosen.

4.4 The Match algorithm

The evaluation of a pattern P maintains a buffer (or “sliding window”) B
containing the last |P | symbols of the input sequence T . When a match is
found, the content of B constitutes the result output to the user. Note that
during a matching attempt at position i, the run-time valuation ν of a variable
with position k is the symbol T [i + k], which can be found directly in B.

The following Match algorithm is invoked when a new symbol is read and
assigned to the special variable @current. It takes as an input the current
position l in P and returns the new position l′ in P . If a match is found, the
substring that matches P is output.
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Match(l)
Input: l, the current position in P
Output: l′, the next position in P
begin

mismatch := false; match := false;
if (l < m) then

if (P [l] ∈ V and P [l] 6∈ bound(ν)) then // P [l] is a variable not yet bound
l′ := l + 1

else if (P [l] = ν(@current) or ν(P [l]) = ν(@current)) then

// P [l] is equal to (or already bound to) ν(@current)
l′ := l + 1

else

mismatch := true // there is a mismatch
endif

endif

// If the whole pattern has been matched, the attempt is successful
if (l′ = m) then

match := true; output the content of buffer B;
endif

// Mismatch or match : in both cases perform the shift
if (mismatch or match) do

// Get the right edge
E := f l

@current(ν(@current))

for each (@xi/α ∈ ν) do E := E ∧ f l
@xi

(α)

e := the edge that corresponds to the rightmost 1 in E
// Right shift of the pattern
l′ := e.length + 1

endif

return l′

end

Complexity analysis

Let us first examine the required storage. The main structure is the set of bit
arrays used to determine the shift. Given a position l, let V ≤ l be the number
of variables and l−V the number of constant symbols in P [0]. · · · .P [l−1]. For
each variable we represent its compatibility with at most l edges as an array
of size (l − V + 1) × ⌈ l

w
⌉ where w denotes the size of a machine word. The

size of the arrays for a position l can be estimated to be V × (l − V + 1)⌈ l
w
⌉,

that is, at worse ( l
2
)2⌈ l

w
⌉. However for a large number of applications, m

is smaller than the word size w. Then ⌈ l
w
⌉ = 1 and the size of the arrays

for a position is effectively at worse ( l
2
)2. Therefore the space required for

storing this set of arrays over all the positions in the pattern of size m is
∑m

l=0(
l
2
)2 = m.(m+1)(2m+1)

24
, thus in O(m3). Note that this is independent both

from the alphabet and from the input sequence.
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We now show that the time complexity is linear in the sequence size n. We
estimate the average time complexity by taking into account the filtering rate
of a pattern which gives the probability to match P [0. · · · .l − 1] after reading
l symbols. We assume a uniform distribution of symbols from Σ in a sequence
(our model does not depend on this assumption, but a more precise distribu-
tion law is application-dependent). Each constant symbol can be found with
probability 1

|Σ|
. As far as variables are concerned, the first occurrence of a

variable has no impact on the filtering rate because any symbol will match.
All the other occurrences must be bound to the same value in Σ. In summary
we estimate the selectivity of a symbol at position l in a pattern P [0 . . .m] by:

τP (l) =











1
|Σ|

if α ∈ Σ ∪ var(P [0 . . . l − 1])

1 otherwise

The filtering rate is then estimated by the following formula:

τ(P ) =
m
∏

k=0

τP (k)

When Match receives a new symbol, the probability to be at position l on
the pattern is τ(P [0 . . . l − 1]) and the mismatch probability at that position
is 1− τP (i). In case of mismatch, we must perform as many AND operations
as there are distinct variables in P [0]. · · · .P [l− 1]. The cost of AND depends

on the size w of a computer word and can be estimated as
⌈

l
w

⌉

(recall that

there are at most l edges at position l).

The average cost for processing a symbol involves at least one comparison,
and the possible computation of a shift. It can be estimated to be:

1 +
m

∑

l=1

τ(P [0 . . . l − 1]) × (1 − τP (l)) × kl ×

⌈

l

w

⌉

+ τ(P [0 . . .m]) × km ×
⌈

m

w

⌉

where kl denotes the number of distinct variables in P [0]. · · · .P [l]. The last
term corresponds to a successful matching.

The worst case corresponds to a pattern which only consists of distinct vari-
ables. In that case τ(P [0 . . . l − 1]) = 1 and (1 − τ(P [l])) = 0 for 0 < l ≤ m.

The worst-case cost for processing a symbol is k×
⌈

m
w

⌉

, and n× k ×
⌈

m
w

⌉

for a
sequence of length n. If the pattern is small with respect to the size of a word,
the time complexity is O(n × k).
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5 Multiple patterns evaluation

With this algorithm at hand, we can turn our attention to the evaluation of
multiple patterns over a large input sequence.

5.1 Patterns containment

Patterns are equivalent up to a renaming of variables, e.g., b.@x.a ≡ b.@y.a.
Note also that adding at the end of a pattern P a variable which does not
already appear in P yields an equivalent pattern, i.e., b.@x.a ≡ b.@x.a.@y.
Indeed, since @y can be bound to any symbol, a sequence that matches b.@x.a
matches b.@x.a.@y as well, and conversely 1 . We use as equivalence class rep-
resentatives normalized patterns. Let the marking of a pattern P be the pattern
where each variable v of var(P ) is replaced by @x marked by a subscript over
N, representing the rank of the first occurrence of v in P . A pattern P is
normalized iff the following conditions hold: (i) P = marking(P ), and (ii) if
P is of the form P ′.@x, then @x ∈ var(P ′). It is straightforward that for any
pattern P , there exists a unique equivalent normalized pattern. For instance
the normalized pattern of @y.c.@x.@y.@z is @x1.c.@x2.@x1.@x3.

The containment relation holds on equivalent classes of patterns. A pattern
P1 contains a pattern P2 if any sequence S matching P2 at position l matches
also P1 at l. This means first that |P1| ≤ |P2|, and second that there exist
two valuations ν1 and ν2 such that both ν1(P1) and ν2(P2) are substrings of S
starting at l. Therefore:

Definition 4 A pattern P1 contains a pattern P2, denoted P2�P1, iff for each
valuation ν2, there exists a valuation ν1 such that ν1(P1) is a prefix of ν2(P2).

Syntactically, containment means tighter matching constraints. There exists
several ways of doing so: by suffixing a pattern with some constant symbols,
by replacing a variable with a constant symbol, and finally by binding the
variables.

It follows that the containment of P2 in P1 can be decided by a comparison
of the patterns’ symbols from left to right. At each position one checks that
the current symbol from P1 is a “relaxation” of the corresponding symbol of
P2, according to the following rules: (i) a constant symbol can be relaxed to
itself or to a variable; (ii) a variable can be relaxed to another variable whose
subscript is greater or equal.

1 We consider unbounded sequences, thus the length of a pattern is never an issue.
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Consider again P1 = a.@x1.b and P2 = a.c.b Then, a can be relaxed to a,
c to @x1 and b to b: P2 � P1. The second condition ensures that no problem
comes from the multiple occurrences of a same variable. Take for instance
P1 = a.@x1.b.@x1 and P2 = a.@x1.b.@x2. The variable @x2 in P2 cannot be
relaxed to the second occurrence of @x1 in P1. However the second occurrence
of @x1 in P1 can be relaxed to @x2. Indeed, in that case, P1 � P2.

It is easily verified that � is a partial order on (Σ ∪ V)∗. Furthermore, it can
be shown that two patterns have a unique minimal common ancestor or least
upper bound (lub) with respect to relation �.

Proposition 2 The set of patterns over (Σ ∪ V) ordered by � is an upper
semi-lattice.

Proof : Let P1 and P2 be two patterns and U be the set of (normalized)
patterns P containing P1 and P2 : P1 �P and P2 �P . U is non empty, because
it contains at least the pattern Pmax = @x1. Assume that we have two distinct
lubs in U , Plub1 and Plub2, and let l = min(|Plub1 |, |Plub2|). Then, for each
i ∈ [0, l − 1],

• either Plub1[i] ∈ Σ, and there exists k ∈ {1, 2} such that Pk[i] = Plub1[i].
Therefore, either Plub2 [i] = Pk[i] = Plub1[i] or Plub2[i] ∈ V. If Plub2 [i] ∈ V
we can build a new pattern P ′

lub2
by replacing Plub2[i] by Pk[i] in Plub2 . This

pattern belongs to U and satisfies P ′
lub2

�Plub2, so Plub2 is not a lub. A similar
reasoning holds for Plub1.

• or Plub1[i] ∈ V, and Plub2 [i] also belongs to V. If there is another occurrence
of Plub1[i] in Plub1 , it must be the same for Plub2[i] otherwise Plub2 � Plub1.

It follows that Plub1 and Plub2 are equal. 2

The following algorithm computes the lub of two patterns. Function NewVar

returns a variable name that has not yet been used. Subst(d1, d2, r) is a set
of substitutions. A triple (d1, d2, r) associates a pair of symbols (d1, d2) from,
respectively, P1 and P2, with a symbol r in the lub.

Lub(P1[0 . . . m1], P2[0 . . . m2])
Input: two patterns P1 and P2

Output: the lub of P1 and P2

begin

Subst := ∅; m := min(m1,m2) // m is the maximal length of the lub
for (k := 0 to m) do

if (∃x, P1[k], P2[k], x) ∈ Subst) then lub[k] := x
else if ((P1[k], P2[k]) ∈ Σ2 and P1[k] = P2[k]) then x := P1[k]

else x := NewVar()
Subst := Subst ∪ {(P1[k], P2[k], x)}
endif
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lub[k] := x
endfor

return Normalize(lub)
end

The final normalization is necessary to remove the useless variables which may
appear in the suffix.

5.2 Filtering

From the previously defined interpretation of the containment relation, If P1

and P2 are two patterns, then the set of sequences matched by lub(P1, P2) is
a superset of the sequences respectively matched by P1 and P2. Then, we can
construct hierarchies of patterns ordered by containment, and use the root of
each subtree as a filter of the patterns contained in the subtree.

In principle it would be possible to maintain the transitive reduction of the
containment graph but its construction turns out to be too costly 2 . Moreover
this is not necessary since it is sufficient to maintain one and only one path
from the root to any node. This guarantees that any pattern can be reached,
if needed.

Our goal is thus to construct a spanning tree of the containment graph such
that the average evaluation cost is minimized. Intuitively, the minimization
implies choosing the most filtering paths. Let us look at Figure 9, assum-
ing an alphabet with only four symbols a, b, c and d. The pattern set is
{@x1, a.@x1.b, @x1.c, a.b.c.d}. The transitive reduction of the graph is shown
at the top of the figure, and there exists two possible spanning trees, shown
in the bottom part.

P1 = @x

P3 = @x.cP2 = a.@x.b

P5 = a.c.b.d P6 = a.c.b.eP4 = a.@x.b.@x.e

Fig. 9. Issues in patterns tree construction

2 The computation of the transitive reduction runs in O(n) for a graph of size n,
for each node insertion [17]. Therefore one might, in the worst case, need to update
all the nodes of the graph when a new pattern is inserted.
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In order to decide which solution minimizes the evaluation cost, we assign
to each out-edge of a node N a weight equal to the filtering rate of N . The
problem reduces now to find the minimum spanning tree, i.e., the connected
subgraph containing all the nodes such that the sum of the edge weights is
minimal [18]. From our application point of view, this means that for each
pattern P one keeps the path to P which is the most filtering one in the
graph of the containment relation. In the case of Figure 9, the bottom left
choice is the best one. Intuitively, only 1

16
of the matching attempts will have

to evaluate the pattern a.c.b.d, instead of 1
4

if the solution of the right part
were adopted.

5.3 The clustering algorithm

Since subscriptions (patterns) may be added or removed dynamically, one must
maintain incrementally a tree T of patterns. However, maintaining incremen-
tally the optimal solution results in a very significant cost (in the worst case,
the whole tree must be reconstructed). We propose an algorithm which de-
livers a non-optimal solution but runs quite efficiently. Our experiments show
that it still provides an effective reduction of the overall evaluation cost with
respect to the trivial solution that evaluates separately each of the submitted
patterns.

The insertion of a new pattern P is performed in two steps:

• Candidate parent selection.
A node N in T is a candidate parent for P if the following conditions hold:
(i) P �N , and (ii) for each child N ′ of N , P ⋪ N ′, i.e., P is strictly contained
in N but does not contain any child of N .

The algorithm performs a depth-first search to seek for a candidate par-
ent. Starting from the root, one chooses at each level the most selective
child which contains P . When such a child no longer exists the candidate
parent is found. Note that this is an heuristic which avoids to follow an
unbounded number of paths in the tree, but does not guarantee that the
“best” candidate parent (i.e., the most selective one) is found.

• Lub selection.
Once the candidate parent N is found, the second step inserts P as a child
or grandchild of N as follows. First, for each child N ′ of N , one computes
lub(P, N ′) and keeps only those lubs which are strictly contained in N . Now:

(1) if at least one such lub L = lub(P, N ′) has been found, the most selective
one is chosen, and a new subtree L(P, N ′) is inserted under N ;

(2) else P is inserted as a child of N .

Let us take as an example the left tree of Figure 10. The pattern P = b.a.c.a
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@x1

@x1.a

@x1

@x1.ab.@x1.c

b.a.a

d.a.d

b.d.c.dc.a.@x1.d b.a.a b.c.c b.@x1.c.@x1

d.a.d

c.a.@x1.d

b.d.c.d b.a.c.a

b.c.c

b.@x1.c

Fig. 10. Insertion of the pattern b.c.a

must be inserted. First one checks P against the root node. Since P � @x1, we
consider the two children of the root. P is strictly contained in both @x1.a and
b.@x1.c which constitute therefore two possible paths. Since τ(@x1.a) = 1

|Σ|

and τ(b.@x1.c) = 1
|Σ|2

, the second is chosen. None of its children contain P ,
therefore b.@x1.c is the candidate parent.

Next one determines the lubs of P with each child of b.@x1.c, and keeps those
which are strictly contained in b.@x1.c. For instance lub(b.a.c.a, b.c.c) =
b.@x1.c, so it is not kept. However lub(b.a.c.a, b.d.c.d) = b.@x1.c.@x1

is a candidate lub. One finally obtains the tree of the right part of Figure 10.

It may happen that several equivalent choices are possible. Assume for in-
stance that the pattern P ′ = b.a.d is inserted. The candidate parent is
@x1.a, and one must choose between L1 = lub(P ′, d.a.d) = @x1.a.d and
L2 = lub(P ′, b.a.a) = b.a. Both have the same filtering rate. The tie-
breaking procedure compares the prefixes of length l < min(|L1|, |L2|), start-
ing with l = 1. As soon as one of the prefixes is found to be more selective
than the other one, the corresponding lub is chosen. The rationale is that a
mismatch will occur more quickly, and that less comparisons are necessary.
In our example, since @x1 is a less filtering prefix than b we create the lub
lub(P ′, b.a.a) = b.a.@x1.

The insertion algorithm follows a single path from the root to a node in the
pattern tree. At each level, a comparison must be carried out with each child.
Its complexity is determined by the following properties.

Proposition 3 The depth of a pattern tree T is bound by l+1 where l denotes
the size of the longest pattern in T . Each internal node N of the tree has at
most |Σ| × |var(N)| children.

Proof : Assume that the size of longest pattern is l, and that there exists a
node N of length l′ ≤ l whose depth is l+2. Since N is contained in its parent
N ′, N ′ relaxes some constraints and/or is shorter. There cannot be more than
l′ + 1 relaxation operations to reach the root of the tree from l. Therefore its
depth is at most l′ ≤ l + 1.

Next, consider the pattern equivalent to the parent whose size is equal to
the longer child. It is obtained by adding free variables until we reach the
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appropriate length. We note then that two children can not replace a given
free variable of their parent by the same constant symbol, since in that case
a lub would have been created for these children. So for the first free variable
@x1 of the lub we can have only |Σ| different patterns that instantiate @x1,
each of them with a different instantiation for @x1, Consider now the patterns
that do not instantiate @x1. We can iterate the same reasoning for the second
free variable @x2 and so on until the last free variable of the non-normalized
parent. 2

5.4 Multi-pattern evaluation

The evaluation mechanism associates one automaton with each pattern in
the pattern tree. These automata may be active or inactive, according to the
following rules:

(1) Initially the automaton Aroot associated with the root is active; others
automata are inactive.

(2) When a matching is found for an automatonAP , all the inactive automata
associated with the sons of P become active; AP itself becomes inactive.

(3) When a matching fails for some automaton AP , its parent becomes active
and AP becomes inactive.

P1 = @x

P3 = @x.cP2 = a.@x.b

P5 = a.c.b.d P6 = a.c.b.eP4 = a.@x.b.@x.e

Fig. 11. Evaluation over a pattern tree

Consider the tree of Fig. 11 and the sequence a.c.b.c.a.d.b. · · ·. Each pat-
tern Pi is associated with an automaton APi

. Initially the automaton AP1 is
the only one active. Figure 12 illustrates the successive activation status.

The first symbol of the sequence matches P1. Hence AP2 and AP3 become active
in turn (Figure 12(b)). The next symbol is c: a matching is found with P3. AP3

becomes inactive, while the automata of its sons become active (Figure 12(c)).
Let us now focus on the subtree rooted at P2. When the third symbol, b, is
read from the sequence, a matching is found. AP2 becomes inactive, AP4, AP5

and AP6 become active (Figure 12(d)).
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a) seq. read :

P2

P1

P3

b) seq. read : a

P2

P1

P3

c) seq. read : a.c

P2

P1

P3

P1

P2 P3

f) seq. read : a.c.b.c.a.d.b

P1

P3P2

e) seq. read : a.c.b.cd) seq. read : a.c.b

P3

P1

P2

Fig. 12. Active patterns during the evalution of a.c.b.c.a.d.b

When the fourth symbol, c, is received, the matching attempt fails for P5 and
P6 (Figure 12(e)). The evaluation proceeds then as follows:

• P4 is matched by the sequence; notifications are sent and the automaton
AP4 remains active;

• AP5 and AP6 become inactive but AP2, their common parent, becomes ac-
tive.

Finally after receiving a.d.b, AP2 reaches a successful state and activates
again AP5 and AP6 (Figure 12(f)). In that case a mismatch occurs at once
because the second symbol is d whereas both AP5 and AP6 expect a c. Actually,
when several sibling patterns fail, their common prefix is represented by their
parent. Making active the parent is a way to “factorize” the query evaluation
for this prefix, but this does not guarantee that any of its children will succeed.

6 Experiments

In order to validate our approach, we have implemented and compared two
algorithms in Java on a Pentium 4 processor (3GHz) with 1,024MB of mem-
ory. The first algorithm, Näıve, is the näıve one described in Section 4.1,
which shifts the pattern only one symbol to the right whenever a mismatch
occurs. The other one is the extended KMP algorithm which uses the table of
edges. We evaluate their respective performance with respect to the following
parameters:

• the length of the patterns;
• the number of variables in each pattern;
• the size of the alphabet.
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number of variables within the pattern

0 1 2 3 4 5

|Σ| = 2 Näıve 2.01 2.19 2.38 2.78 3.08 3.64

Match 1.00 1.12 1.30 1.49 1.65 1.85

|Σ| = 4 Näıve 1.33 1.44 1.59 1.84 2.20 2.39

Match 1.00 1.09 1.18 1.37 1.53 1.79

|Σ| = 10 Näıve 1.11 1.22 1.32 1.51 1.82 2,00

Match 1.00 1.10 1.17 1.36 1.51 1.68

|Σ| = 30 Näıve 1.04 1.14 1.22 1.44 1.67 1.78

Match 1.00 1.09 1.18 1.31 1.52 1.73

Fig. 13. Number of operations versus number of variables (×106), for various alpha-
bet sizes; pattern length: 10

Our experimental setting includes a random text of 1 000 000 symbols, a pat-
tern size with a length between 5 and 20, and four alphabet sizes, ranging from
2 to 30. The average performance was taken over a set of 500 queries to avoid
results biased by a peculiar pattern aspect (all the variables at the beginning
or at the end for instance). The evaluation of the two algorithms is based
on the total number of operations (comparisons and AND operations). Note
that the length of the patterns chosen in the experiments is lower than a ma-
chine word size (nowadays, mostly 32 or 64 bits). Nonetheless a performance
degradation is expected for long patterns.

6.1 Evaluation of the extended KMP algorithm

We successively study the impact of the alphabet size and that of the pattern
length. Figure 13 illustrates the impact of the number of variables in the
pattern on the total number of operations, for different alphabet sizes. As
expected, our extended KMP algorithm always outperforms the näıve one.
The gain decreases with the size of the alphabet. For 5 variables for instance,
the gain is 50% with an alphabet size of |Σ| = 2, while it reaches 30% for
|Σ| = 4, 10% for |Σ| = 10, and only 3% with an alphabet of 30 symbols.
This result was expected since our algorithm relies on KMP that performs
better for small size alphabets [8]. Indeed, with large alphabets, there is a high
probability to have a mismatch on the first symbol of the pattern, thus both
Näıve and Match realize a single comparison, then shift by one. Small size
alphabets, on the opposite, allow large partial matchings before a mismatch. In
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variables rate within the pattern

0% 10% 20% 30% 40% 50%

m = 5 Näıve 1.97 2.16 2.34 2.58 2.82 3.16

Match 1.00 1.14 1.29 1.48 1.66 1.88

m = 10 Näıve 2.01 2.19 2.38 2.78 3.08 3.64

Match 1.00 1.12 1.30 1.49 1.65 1.85

m = 15 Näıve 2.00 2.16 2.35 2.76 3.06 3.59

Match 1.00 1.11 1.27 1.49 1.62 1.86

m = 20 Näıve 2.00 2.21 2.44 2.72 3.11 3.68

Match 1.00 1.13 1.33 1.43 1.65 1.88

Fig. 14. Number of operations versus percentage of variables in the pattern for
different lengths of pattern (×106), alphabet size=2

that case our algorithm determines the best shift and avoids all the redundant
comparisons performed by Näıve.

Figure 13 illustrates also the impact of variables on the processing cost, both
for Näıve and Match. Without variable, our algorithm is standard KMP (a
single operation per input symbol). With an alphabet size of 2, the cost is
increased by 30% if the number of variables is 2, and by 85% for 5 variables.
Indeed, without any variable the algorithm finds the good shift, without per-
forming any operation on the variables valuations. The presence of variables
necessitates several AND operations to detect the correct shift when a mis-
match occurs. Regarding the behavior of Näıve in the presence of variables,
we note that longer partial matchings are possible on the average, which means
that longer sub-patterns must be re-processed after a mismatch. This explains
that, on the average, the performance is affected as well.

It turns out that the number of variables has a low impact on the relative
gain of Match with respect to Näıve. For instance with 0 variable (i.e., our
algorithm reduces to the standard KMP) and |Σ| = 2, the gain is 50%, and so is
approximately the gain with |Σ| = 30. This is explained by two opposite effects
of variables. First more variables lead to more edges, and therefore extend the
possibilities of having an edge compatible with the current valuation. The
counterpart is that the probability of having longer edges (so smaller shifts)
increases. Moreover, remind that when a mismatch occurs, we perform an
AND operation for each variable located before the mismatch position.

Figure 14 shows the number of operations as a function of the number of
variables, for various pattern sizes. The algorithm performance is not sensitive

27



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10  100  1000  10000

nu
m

be
r 

of
 n

od
es

number of patterns

alphabet’s size:   4
alphabet’s size: 12
alphabet’s size: 26

 0

 2

 4

 6

 8

 10

 12

 10  100  1000  10000

he
ig

ht
 o

f t
he

 tr
ee

number of patterns

alphabet’s size:   4
alphabet’s size: 12
alphabet’s size: 26

 2

 2.5

 3

 3.5

 4

 10  100  1000  10000

av
er

ag
e 

nu
m

be
r 

of
 c

hi
ld

re
n

number of patterns

alphabet’s size:   4
alphabet’s size: 12
alphabet’s size: 26

Fig. 15. Tree properties with respect to the number of patterns

to the pattern length for a given rate of variables. We observe nonetheless an
exception for small patterns (m = 5 or less), where Näıve performs better
than with large patterns. The explanation is that with small patterns a shift
occurs after a few symbols, even if there is no mismatch, since we quickly reach
the end of the pattern. With larger patterns we may read more symbols before
being compelled to shift. Our algorithm avoids this and achieves a constant
cost whatever the size of the pattern is. The global cost is only impacted by
the ratio of variables. Figure 14 shows that for 50% of variables, the cost is
approximately 1.85 × 106 for a pattern length of 5, 10, 15 or 20.

6.2 Filtering

The filtering approach has been implemented. We evaluated its impact over a
set of patterns. The evaluation cost is measured with respect to the following
parameters: (1) the number of submitted patterns, (2) the size of the alphabet,
(3) the length of the patterns.

Figure 15 summarizes some properties of the pattern tree with respect to
several alphabet sizes, for a number of patterns that varies from 1 to 10,000.
The top-left graph shows that the size of the alphabet does not affect the total
number of nodes when the number of patterns is less than 1,000 because of
the low probability to draw duplicate patterns. The impact of the alphabet
size on the number of nodes becomes significant for 1,000 patterns and more,
and can be directly related to the probability of adding an already existing
pattern, which is of course higher for small alphabets.

As expected, with a larger alphabet, the internal nodes have more children.
The size of the alphabet has an opposite effect on the height of the tree.
The reason is essentially that internal nodes contain more variables when the
alphabet’s size is large, and therefore capture more patterns. The probability
of having two “close” patterns tends to be low, and prevents the generation
of precise lubs. When a new pattern is introduced, if the size of the alphabet
is large, there is a high probability to insert it as a child of an existing node,
rather than creating a new internal node. These differences grow with respect
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Fig. 16. Evaluation cost with respect to the number of patterns

to the number of patterns.

Figure 16 illustrates the benefit of an evaluation based on our structure com-
pared to the independent processing of each pattern. The higher the number
of patterns, the more important the gain. The ratio between the number of
comparisons for the two solutions is 0.55 for 10 patterns, reaches 0.35 for 100
patterns, 0.15 for 1.000 and 0.05 for 10,000. This ratio hardly depends on the
size of the alphabet, even if a small alphabet gives slightly better results over
a large number of patterns, for previously presented reasons.

On the other hand, the number of simultaneously active automata is strongly
related to the properties of the tree, and is therefore influenced by the alphabet
size. Two of these properties, namely the filtering rate of an internal node and
its number of children, have a divergent impact. As shown by the cost model,
the filtering rate of internal nodes tends to be higher for large alphabets, while
the number of children grows (on the average) for each node. The latter factor
explains the relative importance of active automata for large alphabets, since
each time a matching has been found for an internal node, all its children must
be activated.

Finally, we performed additional tests with real-life data, i.e., DNA sequences
of different plants [19]. For these data we evaluate the gain of the Match

algorithm over Näıve when searching for subsequences with various lengths,
from short subsequences to very large ones, and with various variables ratios.
The results for our tests with a substring of size 117591 symbols of the glycine
DNA sequence are reported in Figure 17. These results on real-life dataset
confirm the evaluation on synthetic data. The gain of Match over Näıve

is 1.3 (Figure 17 with length=10) as for synthetic dataset (Figure 13 with
|Σ| = 4).
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ratio of variables within the pattern

0% 10% 20% 30% 40% 50%

length = 10 Näıve 156 169 187 216 259 281

Match 118 128 139 161 180 210

length = 20 Näıve 159 173 187 219 261 286

Match 118 131 141 162 183 214

length = 50 Näıve 161 174 189 219 265 286

Match 118 133 145 165 183 215

length = 100 Näıve 161 174 190 219 265 287

Match 118 134 145 165 185 215

Fig. 17. Number of operations versus percentage of variables (×103), for various
lengths of pattern with a DNA glycine sequence with 117591 symbols

7 Related work

The problem addressed in this paper is related to several research areas, includ-
ing sequences databases, exact and approximate string matching and context-
sensitive string matching.

Most studies on sequence databases aim at extending SQL with pattern-
matching operators. In [2], the authors present a language called SEQUIN
based on SQL in order to query sequences. In [20] sequences are considered as
sorted relations where each tuple is assigned to a number that represents its
position in the sequence. A shift operator using this number is defined in order
to join tuples of the same sequence. The SQL-TS language presented in [21,22]
shares several ideas with the present proposal. It applies to sequences of tu-
ples an extension of the KMP algorithm to detect trends in the evolution of
some attributes values. The focus is rather put on time series and on queries
over successive versions of a constantly changing value. Some other papers for
querying and mining similar sequences, as well as for detecting events from
time series data (i.e., sequences of real numbers) are [23–27]. In [16] the authors
describe a mining algorithm for retrieving spatio-temporal periodic patterns
for objects moving on a partitioned map. It supports the “undefined” sym-
bol inside a pattern but the data model, as well as the techniques used, are
essentially different from ours.

The problem examined in this paper can be related to approximate string
matching, which accepts a matching up to a predefined number of errors.
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There has been an important amount of work in this area, see for exam-
ple [28–31]. [30] presents the agrep algorithm, an extension of [32] to find
a matching allowing k errors. An error is either an insertion, a deletion or
a substitution. The space complexity is O(k × |Σ|), and the worst-case time
complexity in O(k×n×⌈m

w
⌉). Our problem is related to theirs if we restrict er-

rors to substitutions. However, even in that case, a major difference between
approximate string matching and parameterized patterns is that errors are
allowed at any position. This requires some computations for each input sym-
bol, whereas we can take advantage of the a-priori knowledge on the variables
positions, variables repetitions and query constraints to limit these computa-
tions to the cases where a mismatch occurs. Instead, using an approximate
string matching algorithm would require many post-matching tests to remove
a posteriori some solutions. Our algorithm constitutes a more specialized and
efficient solution to the parameterized matching problem.

Introducing variable parts in patterns has been investigated in [33–36]. In [34]
the goal is to match two parameterized strings together by finding a renaming
of the parameters. The statement of the “context sensitive string matching
problem” [36] is basically similar to ours, the major difference being that any
word in Σ∗ can be substituted for a variable. The evaluation problem is shown
to be NP-complete in [33], even for approximate solutions [36], and the contain-
ment is shown to be undecidable in [35]. Our restriction (a variable matches
a single symbol) allows for an efficient linear-time evaluation algorithm and
for an easy decision procedure for containment. In [37] we investigated regular
expressions with variables, and described a class of expressions with limited
space requirements. The model was applied to mobile objects tracking, where
trajectories are seen as sequences over a partitioned map. This paper can be
seen as a further improvement of these techniques.

Several papers deal with the problem of multi-patterns matching [38–41]. The
authors of [39] propose an incremental algorithm which builds a multi-pattern
tree. The relaxation does not rely on variables, but on a “wildcard” charac-
ter. We believe that our refinement relation is more precise. Moreover their
evaluation process is quite different from ours. The multi-pattern evaluation
presented in [40] relies on two deterministic automata, one built on the prefix
of the set of patterns and the other on the reverse patterns. They use the
second automaton at a given position until a mismatch occurs, and use the
first one to determine the “shift” on the sequence. The technique is designed
for simple patterns without variables.
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8 Conclusion

This paper introduced parameterized pattern queries as an extension of clas-
sical pattern queries over databases, and proposed an extension of the stan-
dard pattern matching KMP algorithm [7] to parameterized patterns. This
extended algorithm is suited to query answering in settings where the dataset
of sequences is large. As shown by our evaluation, our technique provides
an improvement over the näıve approach which merely shifts one position
at-a-time by avoiding the burden of repeated comparisons of the same part
of a sequence. Moreover it follows from our experiments that parameterized
patterns offer an opportunity for aggregation and filtering in a multi-pattern
evaluation context, with quite effective gains.

Potential for other optimizations remains to be explored. In particular, we aim
at taking into account richer relationships among the different symbols of the
alphabet to improve the selectivity of the query evaluation. By considering
the adjacency of regions in the tracking application for instance, we can de-
tect unsatisfiable patterns, eliminate some inconsistent edges, or remove from
consideration objects that do move in a region “covered” by a given pattern.
Further, we believe that the ideas of the present work could be extended by
applying our variable-relaxation mechanism to the nodes of tree-structured
documents (e.g., HTML or XML) [41,42]. We plan to investigate this new
class of pattern-matching applications.
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