
Views for simplifying access

to heterogeneous XML data

Dan Vodislav1, Sophie Cluet2, Grégory Corona3, and Imen Sebei1

1 CNAM/CEDRIC, Paris, France
2 INRIA, Rocquencourt, France

3 Xyleme, Paris, France

Abstract. We present XyView, a practical solution for fast development
of user- (web forms) and machine-oriented applications (web services)
over a repository of heterogeneous schema-free XML documents. XyView
provides the means to view such a repository as an array, queried using a
QBE-like interface or through simple selection/projection queries. Close
to the concept of universal relation, it extends it in mainly two ways:
(i) the input is not a relational schema but a potentially large set of
XML data guides; (ii) the view is not defined explicitly by a query but
implicitly by various mappings so as to avoid data loss and duplicates
generated by joins. Developed on top of the Xyleme content management
system, XyView can easily be adapted to any system supporting XQuery.

1 Introduction

For decades, companies have produced digital data such as notes, contracts,
emails, progress reports, minutes, etc. This data constitute a mine of useful
information that is largely unexploited. The advent of XML provides the oppor-
tunity to change that. Many enterprises are now considering storing their home
data in XML repositories so as to be able to query them in a significant way,
i.e., with tools more sophisticated than full text search engines. In this paper, we
are addressing the problem of querying such repositories. More precisely, we are
interested in developing, easily and quickly, a simple query API (web services)
or user interfaces (web forms) over these repositories.

An important characteristic of the applications we are considering is that
they deal with legacy data that have been mostly produced by human beings
using standard text editors. As a result, the data is (i) poorly typed (well formed
rather than valid XML) and (ii) highly heterogeneous (although documents have
strong semantic connections). These features are particularly challenging since
they call for sophisticated tools to ease the application programmer task while
at the same time disabling most existing approaches.

The solution we propose borrows from the universal relation paradigm of the
seventies [18]: XyView provides the means to easily view a set of heterogeneous
XML documents as a single array that can be queried through simple selec-
tions and projections. Obviously, the context being XML, the array contains
XML subtrees and is built using XQuery. But the fundamental differences with
classical universal relations are the following:

– The array is not defined by one query but by a specification of how a simple
selection-projection user query is to be translated into an XQuery.
This difference is important. The problem with universal relations is that,
unless the database schema has particularly nice properties which is rarely
the case, projection operations generate many duplicates that are not always
easy to remove. This is due to the join operations entering the definition of
the universal relation. Alternatively, the join operations can also be the cause
of missing information. This is usually solved by introducing outer-joins but
at the cost of having to deal with null values.
Note that these problems of data loss and duplicates may occur any time a
view is defined as a structured query (SQL or XQuery).
Our approach is not to define the view as a query but rather as a virtual set
of queries that are generated on the fly to fit the user current requirements.
In this way, we avoid incomplete or verbose answers.

– To deal with the complexity of the input data, we define views in two steps.
The first deals with data heterogeneity and maps heterogeneous, but seman-
tically connected documents into a target structure. At run time, this step
generates unions. The second step corresponds to a standard view definition
where data is aggregated. At run time, this leads to joins.
Borrowing from a general wrapper-mediator architecture, our view model
adds an intermediary level that (i) strongly structures the view by separat-
ing unions from joins, and (ii) provides homogeneous XML typing for the
universal relation elements.

We implemented XyView as a set of tools on top of the Xyleme [19] XML
repository, but it can easily be adapted to any system supporting XQuery. The
XyView tools cover the view definition process but also automatic generation
of web form applications and web services. Although its expressive power is
limited as will be explained in this paper, XyView has proved its worth with
several industrial applications.

The rest of the paper is organized as follows. The next section presents an
example application scenario that illustrates the problem we are addressing.
Section 3 describes the XyView model. Section 4 explores the expressiveness and
some more subtle features of the model, then Section 5 describes the XyView
system that is built on top of an XML repository. The final sections present
related work and explore some future improvements.

2 Example Application Scenario and Motivation

The example that we present here is a drastic simplification of a real life applica-
tion. A sports news company handles several types of news wires. The wires are
well formed XML documents, with no global schema, that have been extracted
from text files. These files have been edited by various local correspondents over
the years, according to the company (mostly verbal) editing recommendations.
The wires have different structures, depending on the sport and the kind of
information they contain.

<!-- Document 1: National league result -->
<GameResult>

<WireHeading> ... </WireHeading>

<Description> Real Madrid 1 - Valencia 0
</Description>

<Date> 2004-05-22 </Date>
<Team>

<Name> Real Madrid </Name>

<Scored> 1 </Scored>
<Scorer><PlayerName> Zidane

</PlayerName>
<Count> 1 </Count>

</Scorer>
</Team>
<Team>

<Name> Valencia </Name>
<Scored> 0 </Scored>

</Team>
</GameResult>

<!-- Document 2: Inter-countries game -->
<Result Date="2004-03-15">

<Summary> France 1 - Spain 1 </Summary>

<Scorers>
<Player Goals="1">

<Name> Zidane </Name>
<Country> France </Country>

</Player>

<Player Goals="1">
<Name> Raul </Name>

<Country> Spain </Country>
</Player>

</Scorers>
</Result>

<!-- Document 3: Sports encyclopedia -->

<Encyclopedia>
<Football>

<Player><Name> Zidane </Name>

<Biography>...</Biography>
</Player>

...
</Football>
...

</Encyclopedia>

Sample queries on football documents

Q1: “Games in which Zidane scored
more than once”

Q2: “The biography of Zidane”

Q3: “Biographies of scorers
from games on 2004-09-08”

Fig. 1. Examples of documents and queries

For ease of understanding, we show in Figure 1 only two such wires about
football (soccer) in a simplified form. The first considers results from national
leagues (e.g., Document 1), and the second results from international games (e.g.,
Document 2). The news company wants to build an application that queries
through simple web forms the various football results wires and a sports ency-
clopedia with detailed information about football players (Document 3).

The application manipulates documents whose structures are similar, but
not necessarily identical, to Documents 1, 2 and 3. Notably, other documents
may have more or less information. These three kinds of documents are stored
in a single XML content management system in collections whose respective
identifiers are NationalURI, InternationalURI and EncyclopediaURI.

The application queries, as those in Figure 1, may concern football results
(Q1), player biographies (Q2), or both (Q3).

These apparently simple queries are in fact rather hard to program in XQuery
as illustrated by Figure 2 for Query Q3 (issues regarding the typing of results
are discussed in Section 4, we assume here that queries return simple strings).

Our objective with XyView is to optimize the productivity of graphical user
interface programmers, who are not database experts, by allowing them to view
the database as something as simple as a query form consisting of fields that can
be used to filter or extract data. In the meantime, we want to simplify as much
as possible the task of creating and maintaining such views.

The main contributions of this paper are the following:

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult,

$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,

$var3 in $var2/Biography
Where $var1/Date = xs:date(’2004-09-08’) and

$var1/Team/Scorer/PlayerName = $var2/Name

Return string($var3),
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result,
$doc2 in collection(EncyclopediaURI),

$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/@Date = xs:date(’2004-09-08’) and

$var1//Player/Name = $var2/Name
Return string($var3))

Fig. 2. Query Q3 expressed in XQuery

– A view model (XyView) that provides a universal relation-like access to
heterogeneous, schema-free XML data, freeing the user from manipulating
complex schemas and query languages.

– A method for avoiding the drawbacks of query-based views: joins in the view
definition produce duplicates or data loss; expressing the view query for het-
erogeneous data is difficult; queries on the view produce nested queries, that
are harder to optimize. Instead, views are defined by simple mappings and
join conditions, easy to create and to maintain with graphical tools. A sim-
ple, effective and scalable query translation algorithm produces equivalent
XQuery, with no useless duplicates, no data loss and no nesting.

– A view structure model, organized on several levels, adapted to heteroge-
neous, schema-free XML data.

– A set of tools for creating views, for rapid development and for automatic
generation of web forms and web services.

3 The XyView model

In XyView, views are defined by a set of mappings and join conditions that spec-
ify how a simple selection-projection user query is translated into an XQuery.
This approach overcomes the problems of query-based views, as explained later.
The view definition is equivalent to a virtual set of flat and easily optimizable
queries that are generated on the fly to fit the user current requirements. No-
tably, given the appropriate view specification, the query of Figure 2 would be
generated at run time by XyView to answer Query Q3.

This results in a simpler definition and maintenance of views, using intuitive
graphical editors. Given the complexity of view queries caused by data hetero-
geneity, this is a crucial advantage for the view designer.

Also, in order to cope with heterogeneous data, XyView adds an intermediary
level in the view definition process. To the physical and view schemas, we add
logical schemas whose purpose is to provide homogeneity to semantically related
data. More precisely:

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography

Encyclopedia

Football

Player

Name Biography

Description Date Team

Name Scored

GameResult

Scorer

CountPlayerName

Result

Date(@) Player

//

Country

Summary

Goals(@) Name

GameDescription

GameDate

Game

TeamGoals

Team

Biography

Scorer

PlayerGoals

PlayerName

Encyclopedia

International

Physical Data Views

National

Encyclopedia

Game

User Data ViewLogical Data Views

Fig. 3. From Trees to Table

1. The first level deals with schema-free data, by defining physical data views
that summarize XML access paths to useful information in documents.

2. The second level deals with heterogeneity, by defining integrated logical data
views over unions of physical data views with similar contents.

3. The third level defines the user data view as joins between logical data views.

Figure 3 illustrates this three level definition. It is built using the sample data
introduced in Section 2. On the right handside is the user data view. It consists
of a set of “concepts” that the user wants to query. Concepts are typed by the
view designer. For instance PlayerGoals and TeamGoals are integers, GameDate
is of type date, the other concepts are considered as XML strings (or elements,
as will be explained in the next section).

As is the case with universal relations, the query language supported at
this level consists of selections and projections. For instance, Query Q3, that
returns biographies of scorers from games on 2004-09-08 consists of a selection
on GameDate = 2004-09-08 and a projection on Biography.

On the left handside of the figure, are the physical data views (PDV).
They represent the data as it is stored in the repository. In the example, there are
three physical data views (National, International and Encyclopedia), the first
two representing respectively local and international soccer games results, the
other a sport encyclopedia. The trees are data summaries, i.e. trees gathering
useful access paths to data elements in the XML documents. Similar to Lore
data guides [8], they are generated by the system to cope with the fact that
many documents are simply well-formed and do not come with a schema.

In Xyleme, these summaries are generated at loading time, there is one sum-
mary per distinct root element. XyView also provides a tool to extract these
summaries from a set of documents. In both cases, we use an incremental al-

gorithm that takes all the XML paths in documents and extends the existing
data summary paths with new subpaths. Note that the algorithm does not care
about data types. It is the view designer who associates types to view concepts.
More will be said on this topic in the sequel.

When designing the view, one can edit data summaries to remove branches
that are useless for the application or to create shortcuts in long branches by
using a descendant (//) connection between two nodes. E.g., the subtree Wire-
Heading has been removed from the structure of Document 1, while the structure
of Document 3 only features the Football element, other sports having been dis-
carded. Also, the Biography element is not detailed in the PDV, because its
internal structure is not useful for the application. PDV International contains
an example of shortcut: element Scorers has been discarded from the path to
Player, because it is useless and removing it introduces no ambiguity; the edge
leading to Player is marked with //. This simplification eases the view design
process, by keeping only useful access paths from possibly cumbersome docu-
ment structures. Also, // shortcuts significantly improve query processing of the
final XQuery, by reducing the number of structural conditions to check.

In the center of the figure, we have gotten rid of the soccer games results
heterogeneity by introducing so-called logical data views (LDV). Logical data
view Game unifies in a single structure game results from documents described
by PDVs National and International. Note that the second LDV (Encyclopedia)
is a duplication of the corresponding PDV. In real life, we do not duplicate data
views, we did it here for the sake of clarity.

We now illustrate how one goes first from physical to logical then to user
data views and the queries that are associated to each level. Next, we further
detail how user queries are translated into queries against the repository.

3.1 From Physical to Logical Data Views

A physical data view consists of a data summary tree and a set of so-
called clusters in which we find documents conforming to the summary (there
may be documents conforming to other summaries as well). A cluster is the unit
in which we store documents and provides an entry point in the repository. It
is queried in XQuery as a collection of documents, by using the fn:collection
function on the cluster URI. For the sake of clarity, in the following examples
we consider a single cluster for each PDV.

Semantics: a PDV P is a view over a collection of documents Coll(P)
(the cluster), whose schema is a data summary tree Tree(P). For each p node of
Tree(P), let path(p) be the path from the root of Tree(p) to p. The interpretation
of p is the set of XML elements that match path(p) in some document of Coll(P),
i.e. the result of the XQuery expression Coll(P)/path(p).

Eval(p) = XQuery(Coll(P)/path(p))

Notations: for x and y nodes in the same tree, LCA(x, y) denotes their
lowest common ancestor and ancestor(x, y) is true if x is ancestor of y.

The interpretation of a tuple (p1, ..., pk), pi ∈ Tree(P) is:

Eval(p1, ..., pk) = {(e1, ..., ek) | ∃doc ∈ Coll(P), ∀i ∈ {1, ..., k},
ei ∈ Eval(pi)

⋂
Elem(doc), ∀j, l ∈ {1, ..., k},

∃ejl ∈ Eval(LCA(pj , pl)), ancestor(ejl, LCA(ej , el))
⋂

Elem(doc)},
where Elem(doc) is the set of XML elements of document doc.

The meaning is that a tuple’s elements must belong to the same document
and must be the “closest” possible. Closeness is expressed wrt the PDV schema:
any two tuple elements ej , el must be at least as close as the corresponding PDV
nodes in the schema pj , pl, i.e. ej and el must have a common ancestor at the
level of LCA(pj , pl).

We will show in Section 3.3 how the query translation algorithm guarantees
closeness by introducing XQuery variables for the LCA nodes.

A logical data view is an annotated data summary. The annota-
tions represent the correspondence (mappings) between physical and logical data
views. This is illustrated on the left side of Figure 4 for LDV Game and PDVs
National and International. Note that to each node in the LDV data summary is
associated the set of corresponding nodes in the physical data views. To keep the
figure readable, only mappings for LDV nodes Game and Date are illustrated.

Mappings between LDVs and PDVs are based on correspondences between
LDV and PDV tree nodes. By identifying a node in a tree with its path from the
root, one can note that this approach to representing correspondence between
trees is close to the path-to-path mappings used in [4]. The restriction we add -
an LDV node can be mapped to at most one node in the same PDV - makes
sure that translation from LDV to PDV in query processing is unique. A PDV
not respecting the restriction can always be split into several “correct” PDVs.

Compared to classical query-based methods to define correspondences be-
tween schemas, the simplicity of our node-to-node mappings approach provides
several advantages.
– In many cases, mappings can be semi-automatically generated by relying on

the semantics carried by a sequence of tags (see [15, 17]).
– The process of creating these mappings can easily be supported by a graph-

ical interface and they are easier to maintain than query-based mappings.
– Such node-to-node mappings are easy to reverse, therefore the view model

can be seen both as global-as-view (providing easy query translation) and
local-as-view (providing easy update).

– In Section 4, we will see that such mappings can easily be extended in order
to support a richer semantics.

Semantics: a LDV L is a view over a set of PDVs PDV (L), whose schema
is a tree Tree(L). The interpretation of a tuple (l1, ..., lk), li ∈ Tree(L) is:

Eval(l1, ..., lk) =
⋃

P∈PDV (L) Eval(p1, ..., pk), pi ∈ P is mapped to li
This union semantics is defined in two variants: strict matching, where only

PDVs containing mappings to all the li are considered, and relaxed matching,
where all the PDVs are considered, but only incomplete tuples, based on existing
mappings, are built in each PDV.

The algorithm in Section 3.3 translates straightforwardly a query against a
LDV into a union of queries against its corresponding PDVs by transforming
paths from the LDV query into the corresponding paths in each PDV.

GameResult

Description Date Team

Name Scored Scorer

CountPlayerName

Result
//

Date(@) Summary Player

Goals(@) Name Country

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography GameDescription

GameDate

Game

TeamGoals

Team

Biography

Scorer

PlayerGoals

PlayerName

(Game:Game/Team/Scorer/Name,
Encyclopedia:Encyclopedia/Football/Player/Name, "=")

Mappings

Joins

Encyclopedia:Encyclopedia/Football/Player/Name
Player −−> Game:Game/Team/Scorer/Name

PlayerGoals −−> Game:Game/Team/Scorer/NbOfGoals

.................
Biography −−> Encyclopedia:Encyclopedia/Football/Player/Biography

Date Description Team

Game

NbOfGoals ScorerName

Name NbOfGoals

Physical Data Views Logical DataViews

Game

International

National

Logical Data Views User Data View

Game

Encyclopedia

Mappings

............

Game:Game −−> National:GameResult, International:Result
Game:Game/Date −−> National:GameResult/Date, International:Result/Date

Fig. 4. From physical to logical data view, from logical to user data view

3.2 From Logical to User Data Views

A user data view consists of a set of typed concepts, their correspon-
dence with nodes in the logical data views and a set of predicates
that are used to join the logical data views (in the example, a single join
predicate is defined). This case is illustrated on the right side of Figure 4. Each
concept has at least a mapping to some LDV node, concept Player being the only
one mapped to both LDVs. The join predicate specifies the joined LDV nodes
and the join operator (’=’ in our example). If several join predicates connect two
LDVs, the global join condition is the conjunction of the individual predicates.

The semantics of a user data view is described by the query translation
algorithm below. Roughly speaking, the interpretation of a tuple of concepts is
a n-ary join of partial tuples of LDV nodes, found in LDVs through mappings.

We now explain in details the translation algorithm from user queries to
physical queries, via logical queries.

3.3 Translating User Queries

Let us now consider Query Q3 as an example to illustrate the translation algo-
rithms. It involves a join between the two LDVs in order to return the biographies
of scorers from games played on 2004-09-08.

Definition 1. A user query in XyView has the form

Q: Select c1, ..., cn

Where cond1(c’1) and ... and condm(c’m)

where ci and c’j , i = 1, ..., n, j = 1, ..., m, are user view concepts and condj

are predicates over a single concept.

Figure 5 illustrates the translation of Query Q3 into XQuery. The translation
algorithm for a user query Q consists of five steps:

Concepts
Biography
GameDate

LDVs
Game
Encyclopedia

TeamDate

Game

{= 2004−09−08}
Scorer

. . .

. . .

Name

Encyclopedia

Football

Player

BiographyName

1

2

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Joins
Game/Team/Scorer/Name =

LDV

Join (=)

LDV

Game

Encyclopedia

Step 1
identify LDVs and joins in query

Encyclopedia/Football/Player/Name

add query annotations to LDVs

Step 2
find PDVs matching the query

PDVs for LDV

PDVs for LDV Game

Encyclopedia

National
International

both have mappings for
the marked nodes
Date and Name

Encyclopedia

has mappings for
the marked nodes
Name and Biography

Step 3 Step 4
generate and annotate combinations of PDV joins

 (=)

Team

Scorer. . .
{= 2004−09−08}

Date

GameResult

. . .

National

PlayerName

 (=)

Player
{= 2004−09−08}

Name

. . .

. . .

Result
//

International

Date(@)

Fig. 5. First steps for translating Query Q3: Select Biography Where GameDate=2004-09-08

1. Identify LDVs and joins involved in user query Q;

2. Produce a tree representation of Q based on the LDV trees;

3. For each LDV annotated tree, find the subset of PDV trees that match Q;

4. Generate all combinations of joins between PDVs;

5. Generate the final XQuery by unioning the combinations of step 4.

Step 1 One identifies the sets of concepts (CQ), LDVs (LQ) and joins (JQ)
involved in Q. They are the following:

CQ = {c1, ..., cn}
⋃

{c’1, ..., c’m}

LQ basically contains only LDVs involved in the query, i.e. having nodes mapped
to some concept in CQ, in order to discard useless joins. Several seman-
tics are implemented in XyView for LQ. One possibility is to remove redun-
dant LDVs from LQ, i.e. those contributing with data already provided by
other LDVs. Another possibility is to add LDVs that appear along some join
path between LDVs in the initial LQ.

JQ = {j=((l1, path1), (l2, path2), op) | j is a join, li ∈ LQ, pathi is a path in
li, i=1,2, op is the join predicate}, joins between members of LQ.

In the example (Figure 5, Step 1),

CQ3={Biography, GameDate}

LQ3={Game, Encyclopedia}, because Game has a node mapped to concept
GameDate and Encyclopedia has a node mapped to concept Biography

JQ3={((Game, Game/Team/Scorer/Name), (Encyclopedia, Encyclopedia/Football/Player/Name),
’=’)} includes the only existing join, because LQ3 contains both joined LDVs.

Step 2 One adds query annotations to nodes of LDV trees from LQ.

Definition 2. The following query node annotations are defined for LDV nodes:

– isProjected, a boolean, true iff the node is mapped to a projected concept;
– condSet, a set of condition predicates composed of predicates condj of Q over

a concept mapped to the node;

– isJoined, a boolean, true iff the node occurs in JQ.

Definition 3. A LDV tree node is called a marked node if isProjected = true
or condSet6= ∅ or isJoined = true.

Figure 5, Step 2 shows query annotations added to LDV trees for Q3. The pro-
jected node, Biography (isProjected=true), is in bold font; join nodes (isJoined=true)
are connected through a dashed line; and the selection node (condSet 6= ∅) is
annotated with the set of condition predicates. We removed nodes that are not
involved in the query.

Step 3 For each l ∈ LQ, the set of PDVs matching Q is

PQ,l = {p | p is a PDV, ∀ n marked node of l ⇒ ∃ n′ of p mapped to n}

This corresponds to the strict matching semantics presented in Section 3.1.
In the example, we obtain PQ3,Game={National, International} and
PQ3,Encyclopedia={Encyclopedia}, because all the marked nodes in Step 2 are
mapped into all the corresponding PDVs. This is not always the case; suppose
that game dates are lacking from PDV National, in that case National must be
removed from PQ3,Game, because Date is a marked node in LDV Game.

Step 4 One computes all the combinations CombQ of joins between PDVs found
at Step 3. Note that joins may be n-ary (in opposition to binary), this may occur
when the schema has more than two LDVs.

For each comb ∈ CombQ, the PDV nodes get the same query annotation as
the LDV nodes to which they are mapped. A PDV node mapped to no LDV
node gets isProjected=false, condSet=∅ and isJoined=false.

Also, for each comb ∈ CombQ, the set Jcomb of join conditions is obtained
from JQ by replacing the LDV nodes by the corresponding PDV nodes.

In our example, there are two such combinations, shown in Figure 5, Step 4.

Step 5 For each comb ∈ CombQ, representing a join between PDVs, a For-
Where-Return query is generated. The final XQuery is obtained by unioning all
these join queries. For our example, the final result is presented in Figure 2.

The algorithm for generating a For-Where-Return query creates For/Where/Return
clauses as concatenations of the clauses generated for each individual PDV. To
the Where clause, one must also concatenate the join conditions from Jcomb.

Let us describe now the algorithms For, Where and Return that generate
the corresponding clauses for a single annotated PDV.

The For clause defines variables and access paths to queried data in the PDV.
Variable generation respects the following rules:

Rule 1 A variable is defined for each projected node in the PDV.

Rule 2 For any two marked nodes of a PDV, there is a variable definition for
their lowest common ancestor in the PDV tree.

Rule 2 ensures the closeness semantics for the XML elements addressed by
the query, i.e. those corresponding to marked nodes. For instance, it ensures that
in query Q3 the date and the scorer name belong to the same game.

ForClause(pdv) → String
pdv.variable = GenerateVar()
pdv.varNodeList =

VariableGen(pdv.root)
forClause = concat(pdv.variable,

’ in collection(’,
pdv.collectionURI, ’)’)

for each ni ∈ pdv.varNodeList repeat
forClause = concat(forClause,

’,’, ni.variable, ’ in ’,
AncestorVarAndPath(ni, pdv))

end for

return forClause
end ForClause

VariableGen(n) → NodeList
for each ni ∈ n.children repeat

varNodeListi = VariableGen(ni)
end for
childrenVarNodeList = concat(varNodeList1, ...)
if n.isProjected then

n.variable = GenerateVar()
n.markedAncestor = true

else maChildren = NbMarkedAncestor(n.children)
n.markedAncestor = n.condSet 6= ∅ or

n.isJoined or maChildren > 0
if maChildren > 1 then

n.variable = GenerateVar()
else n.variable = null

end if
end if
if n.variable 6= null then

return concatList([n], childrenVarNodeList)
else return childrenVarNodeList
end if

end VariableGen

Fig. 6. “For” clause generation for a PDV

Considering the annotated PDV National in the first combination in Figure 5,
Step 4, there are only two marked nodes Date and Name, none of them projected.
Then, the only variable element defined on national games is that of GameResult,
their lowest common ancestor.

The algorithm for generating the For clause for a single PDV is presented in
Figure 6. It adds some new query annotations to tree nodes:
– variable, the name of the variable generated for the node, if any;
– markedAncestor, a boolean, true iff the node’s subtree contains at least a

marked node.

It also adds the following annotation for each PDV:

– variable, the variable name for documents that match the PDV;
– varNodeList, the list of variable nodes in the PDV, following the order of

variables in the For clause.

The ForClause function uses the VariableGen function to obtain the ordered
list of variable nodes in the PDV. The For clause starts by defining the document
variable iterating in the collection associated to the PDV. All variable names
are generated by calls to function GenerateVar, that returns unique variable
names. The rest of the For clause defines variables for each variable node. The
AncestorVarAndPath function searches for the first variable ancestor of the node,
then returns this variable concatenated with the path from this ancestor to the
node. If no variable ancestor exists, one uses the PDV variable and the path
from the root to the node.

The VariableGen function builds the list of variable nodes in the subtree
of the parameter node n, but also annotates with variable and markedAncestor
each node in the subtree. First, it recursively builds the variable node lists for
each child of n, then concatenates these lists. Then, it must decide if n is a
variable node or not; if not, the result is the concatenated list from children, else
n is added in front of this list. This step produces a consistent order for the For
clause, because a node is always placed before its descendants.

Rules 1 and 2 are used to decide if n is a variable node. This is true either if
n is projected, or if it has at least 2 children being markedAncestor. In the latter
case, it is easy to demonstrate that n is the LCA of marked nodes from the sub-
trees of these children. Function NbMarkedAncestor returns the number of nodes
being markedAncestor in the parameter list. Also, n is itself markedAncestor if
it is projected or if it has at least one child being markedAncestor.

Note that the algorithm does not generate useless variables, only
marked nodes (i.e. needed in the user query) are connected through variables on
the LCA.

The algorithm for the Where clause produces a conjunctive condition. For
each PDV node with condSet 6= ∅, it generates a condition predicate for each
element of condSet. The node is identified by the path from its first variable
ancestor. Note that well-typed constants are generated, by using the types of
the view concepts. A similar algorithm is used to generate join conditions.

The Return clause describes the query result, using the variables of pro-
jected PDV nodes. Several choices for the XML type of the result are possible
in XyView; they are discussed in the next section.

4 Deeper inside XyView

4.1 Duplicates and data loss
So far, we have presented views as providing a flat, relational-like, representation
of arbitrary XML trees. The flattening is performed by accessing nodes through
path expressions (preserving closeness through variables on the lowest common
ancestor) and applying the XQuery string() operation on the projected nodes.
The transformation from logical to user data views then corresponds to a sim-
ple sequence of join operations between results of path expressions followed by
projection/map operations. In the transformation from physical to logical data
views, joins are replaced by unions. The main difference with a standard view
mechanism is that the view query is not defined a priori but rather in an op-
portunistic way, depending on the user query, so as to avoid duplicates and
information loss that would be generated by unnecessary joins and variables.

Therefore, XyView differs from any standard view mechanism relying on
query composition: a XyView view is not defined by a query and is not
equivalent to a query. To see why query-based views may be problematic, let
us have a closer look to this possibility.

If we consider that a XyView view is defined by a query, this query has
to provide a full view over the various documents structures for all the view
concepts. Thus, it would naturally feature (i) all the possible join and union
operations in the view, as well as (ii) variables for internal nodes so as to preserve
closeness of all concept elements belonging to the same subtree. A good candidate
for the view query is the user query that projects all the view concepts, i.e. its
translation through the previous algorithm.

A query on this view will face the following problems:

– Data loss: the join operations would make it impossible to return e.g., the
biography of players who are not part of some games. The problem is that

the join with LDV Game, that is part of the view query definition, is useless
when querying player biographies. Data loss can be solved by introducing
outer-joins, but they generate null values and the need to deal with them.
In a similar way, but with no apparent reasonable XQuery solution, useless
variables may be responsible for data loss. E.g., the view query contains
a variable on the internal node representing scorers (required to connect
scorer name and goals). If it cannot be instantiated, the corresponding parent
element would be discarded, i.e. games with no scorer would be discarded
from all results.

– Duplicates: useless joins would also lead to unnecessary duplicates, e.g. by
returning several biography occurrences for most players (one for each occur-
rence as a scorer). The same is true for useless variables, coming from view
concepts not addressed in the query. A result being produced for each new
binding to the tuple of all the variables, useless variables produce duplicates
for the useful variables in the result.
Duplicates can be eliminated through distinct operations, but (i) it is some-
times very difficult to distinguish between good (existing in data) and bad
duplicates, and (ii) distinct operations have a cost (notably when the desired
order is not that required by the distinct operation).

4.2 View customization

More expressive power is added to XyView through LDV node annotations,
which allow customizing query translation, notably by (i) typing results using
tree structures and transformation functions rather than returning flat results
and (ii) adding selections to the view.

Tree results can be obtained in XyView in several ways. The simplest one
consists in typing results according to the PDVs, i.e., returning trees as they are
stored in the repository. Note that this solution leads to heterogeneous results.

For instance, consider a new query, close to Query Q3, modified to ask scorers
(name and number of goals) from games on 2004-09-08.

Q3’: “Scorers from games on 2004-09-08”

This query would be translated as follows:
union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult, $var2 in $var1/Team/Scorer
Where $var1/Date = xs:date(’2004-09-08’)

Return $var2,
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result, $var2 in $var1//Player

Where $var1/@Date = xs:date(’2004-09-08’)
Return $var2)

Note that, in that case, the result of the query is heterogeneous, featuring
scorers as they are stored in National and International PDVs. This solution is
well adapted for ad hoc queries expressed by users who want to see the data as
it has been produced. Also, it is an interesting semantics for the view designer
who, in the preliminary phase, wants to get some information about data types.
However, if the results are to be fed to an application or if the end users are not
aware of the data as it is stored, we need to provide an alternative.

The second solution provides the means to type results according to the
LDVs. This can be performed in a simple way by associating to each leaf node
the full text (or typed atomic value) corresponding to the physical nodes to
which they are mapped. It is then simple to re-construct the elements as they
are defined in the logical data view. Query Q3’ becomes:

union(

For $doc1 in collection(NationalURI),
$var1 in $doc1/GameResult, $var2 in $var1/Team/Scorer,

$var3 in $var2/PlayerName, $var4 in $var2/Count
Where $var1/Date = xs:date(’2004-09-08’)
Return <Scorer>

<Name>string($var3)</Name>
<NbOfGoals>xs:integer(string($var4))</NbOfGoals>

</Scorer>,
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result, $var2 in $var1//Player,
$var3 in $var2/Name

Where $var1/@Date = xs:date(’2004-09-08’)

Return <Scorer>
<Name>string($var3)</Name>

<NbOfGoals>xs:integer(string($var2/@Goals))</NbOfGoals>
</Scorer>)

Note that new variable definitions are generated in the For clause, in order to
access PDV nodes necessary to build the LDV subtree for the scorer. Results of
both unioned queries have the same type, given by the LDV. Note also that the
LDV subtree may not have all the subelements if some of them are not mapped
into the PDV.

Both typing solutions above can be performed automatically by activating
the appropriate translation option. Still, there are some cases where we want
to achieve more sophisticated typing. For instance, we may want to add some
PCDATA or attributes to the internal nodes. To do this, the view designer further
annotates the nodes of the data summaries with transformation functions.

Consider for instance the previous example, but in which we want to add an
attribute called source that gives the URI of the source document. Suppose that
the document URI can be obtained by applying the element2URI(element)
function to some element of that document. Node Scorer in the LDV must be
annotated as follows:

Return: <Scorer source=element2URI($$)> $1 $2 </Scorer>

As in Yacc, we use $$ to signify the current node (Scorer), $1 and $2 to
represent its first (Name) and second (NbOfGoals) children. Typing of children
$1 and $2 is recursively done following the same method. For instance, this
solution allows selecting in the result only part of the node’s subelements. Also,
we use # to represent user input, i.e. the list of constant values in the user query
coming from conditions on the current node, and may be used as an argument
in transformation functions.

Note that producing flat string results, or PDV subtrees, or LDV subtrees is
equivalent, respectively, to the following annotations for the Scorer LDV node:

Return: string($$) //flat
Return: $$ //PDV subtree
Return: <Scorer> $1 $2 </Scorer> //LDV subtree

Selections to the view may also be specified through annotations. Suppose
that we want to discard from our view all the games before 2000. This can be
simply done through a new type of node annotation: selection predicates. In the
example, the following annotation must be added to the Date node in the LDV:

Where: $$ >= xs:date(’2000-01-01’)

If the user query concerns some LDV, all the selection predicates of that LDV
are added to the conjunctive Where clause of the generated XQuery.

These modifications are easily added to the algorithm detailed in the previous
section. However, note that, even with these additions, the view mechanism is far
from supporting all the features of XQuery. Notably, XyView does not provide
grouping/nesting, sorting or disjunctive join predicates. Some of the missing
features can be supported by the client program, using e.g., stylesheets. In any
case, there is a necessary tradeoff between ease of use and expressive power. So
far, the tool has proven useful for most applications.

5 The XyView system

XyView has been implemented as a set of tools for rapid development of web
applications over the Xyleme XML repository. Yet, XyView is not dependent
on Xyleme and can be easily adapted to any content management system that
supports XQuery. The XyView system is composed of the following modules:

– A view editor that enables visual creation and modification of XyView views.

– A run-time environment that provides a simple API for using XyView views
in user- (web forms) or machine-oriented (web services) web application.

– A web-form application generator that provides a graphical environment for
creating simple web-form applications over the Xyleme repository.

The view editor (upper-left window in Figure 7) is a graphical tool enabling
simple and intuitive creation of each view component: PDVs (using data sum-
mary extractors), LDVs, concepts, mappings, joins, etc. Views are saved in a
persistent form, as a set of XML files.

The run-time environment provides a simple Java API for using XyView
views in programs. The main functionalities provided by the XyView API are:
(i) creating/modifying a view, (ii) loading/saving a view from/in its persistent
form, (iii) building user queries against the view, (iv) translating a user query
into an equivalent XQuery.

Note that XyView simply translates the user query into XQuery and does not
interfere afterwards in the communication between the application and the XML
repository. This architecture has the advantage of minimizing the dependency
between XyView and the underlying XML content management system, allowing
easy adaptation of XyView to any system supporting XQuery.

The web-form application generator (upper-right window in Figure 7) enables
complete development of simple applications for end-users that query the Xyleme
repository through a web-form interface. It provides a graphical interface that
helps the application programmer to choose a XyView view, then to formulate

Fig. 7. XyView editor and web-form generator

queries on the view concepts. The web-form built in Figure 7 is based on the
Football example view; it asks user input for conditions on concepts PlayerName
and PlayerGoals and displays concept GameDescription. The system automati-
cally generates the HTML query form (bottom-left window) and the application
servlets producing the query report (bottom-right window).

Several applications were developed with XyView on top of Xyleme, to inte-
grate more or less heterogeneous, semi-structured data sources, covering domains
such as news publishing, financial reports, press archives, etc. Examples used in
this paper are summaries of one such application involving about 50 PDVs and
11 LDVs (an encyclopedia, 10 different sports and an average of 5 kinds of wires
for each). The original documents were well annotated ASCII files transformed
into XML documents using a dedicated tool.

6 Related work and conclusion

Various approaches for simplifying query formulation over XML data were pro-
posed. Systems like XQBE [1] and Xing [6] use visual specification of XML
queries based on tree patterns. But even if it is simpler to express queries graph-
ically than in XQuery, the user must handle XML structures, express joins, etc.
Other systems allow writing queries with minimal knowledge about the struc-
ture of documents: keyword search in XML data [5, 12, 9] or tag and keyword
search [14]. Such systems are not adapted for application development over het-
erogeneous XML documents, because of their limited expressive power (e.g. no
joins) and lack of precision and/or meaningfulness.

XyView’s approach of adapting the universal relation paradigm [18] to sim-
plify query formulation fits well the needs of both end user and application
development. Querying XyView views is very simple, it guarantees precision,
meaningfulness of results and minor processing overhead. The price to pay is
the view designer’s effort to create and maintain the view. But the XyView
model is not query-based and rather borrows from mediator-like [2, 13, 4, 7] or
P2P [10] XML data integration systems, to define views through basic one-to-
one mappings, like those used in [4, 7]. This allows the use of graphical tools,
which greatly simplifies the view designer’s task.

An alternative approach is to shred XML in relations, physically (like many
RDBMS today) or virtually ([11]), then to create a relational view on top. This
solution may work efficiently for homogeneous XML documents, with no struc-
tural variation and when XML is really stored in tables. Our application context
is more general; we build views over heterogeneous and schema-free XML, stored
in any system supporting XQuery.

Among the tools for rapid development of web applications over XML data,
Qursed [16] is close to our application development context. Qursed enables rapid
development of user-oriented applications over XML data, based on web query
forms and reports. Its main module is a visual editor, which roughly takes an
HTML query form (input for the user), a report template (output for the user)
and an XML Schema describing the data. The programmer defines mappings
between input query fields and XML data, then between XML data and report
output. Qursed is similar to our XyGen web-form application generator, but
can produce more sophisticated output reports. Yet, Qursed is not appropriate
for heterogeneous, schema-free XML data. It needs XML Schema for data and
can handle a single document schema in the same application. Also, Qursed is
designed for user-oriented applications, but not to program web services.

In the same category of tools, BEA Liquid Data [3] provides an advanced
environment for data integration and web application development. It overcomes
the limitations of Qursed by defining data views over several schemas connected
through joins. Unions are also possible, but the method to define them is un-
natural, based on a cloning of data view elements. Beyond the fact that this
complex tool focuses on specialized programmers, its support for heterogeneous
schema-free XML documents has several limitations: (i) data sources must pro-
vide a schema, (ii) views are defined by queries, with all the problems of useless
joins and variables, (iii) one cannot reasonably mix in the same data view several
joins and unions, etc. Even if the latter problem can be bypassed by chaining
several data views, this results in bad query processing performance.

Through its simple programming interface that removes the need to work
with XQuery and XML schemas, XyView increases the productivity of pro-
grammers who implement query interfaces on top of a heterogeneous, schema-free
XML repository. The view designer’s task is highly simplified by the intuitive rep-
resentation of views (set of mappings), manipulated through graphical editors.
The query translation algorithm is simple, effective and scalable, it avoids use-
less duplicates, data loss and unnecessary nesting. Tools for Java programming

and for automatic generation of web-form applications complete the XyView
environment.

Although the tool does not provide the full expressive power of XQuery, it has
proven sufficient for many industrial applications. Furthermore, the possibility
to customize the query generation algorithm by adding functions to the view
specification opens interesting perspectives in terms of expressive power. We
illustrated this by considering typing and selections, we plan to further explore
this mechanism to add some needed functionalities such as aggregation.

References

1. E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design and Implementation of a
Graphical Interface to XQuery. Proceedings ACM Symposium on Applied Comput-
ing, pages 1163 – 1167, 2003.

2. C. K. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, P. Ve-
likhov, and V. Chu. XML-Based Information Mediation with MIX. Proceedings
SIGMOD, 1999.

3. BEA Liquid Data. http://www.bea.com.
4. S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository. Pro-

ceedings of the 27th VLDB Conference, pages 271–280, 2001.
5. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search Engine

for XML. Proceedings VLDB, 2003.
6. M. Erwig. Xing: A Visual XML Query Language. Journal of Visual Languages

and Computing, pages 5–45, Februray 2003.
7. I. Fundulaki, B. Amann, C. Beeri, M. Scholl, and A.-M. Vercoustre. STYX: Con-

necting the XML Web to the World of Semantics. Proceedings EDBT, pages
759–761, 2002.

8. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. Proceedings of the 23rd VLDB Conference,
pages 436–445, 1997.

9. L. Guo, F. Shao, J. Shanmugasundaram, and C. Botev. XRANK : Ranked keyword
search over XML documents. Proceedings SIGMOD, 2003.

10. A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data management infras-
tructure for semantic web applications. Proceedings WWW, 2003.

11. A. Halverson, V. Josifovski, G. Lohman, H. Pirahesh, and M. Mörschel. ROX:
Relational over XML. Proceedings VLDB, 2004.

12. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. Proceedings ICDE, 2003.

13. Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML query engine for network-bound
data. The VLDB Journal, 2:380–402, December 2002.

14. Y. Li, C. Yu, and H. Jagadish. Schema-Free XQuery. Proceedings VLDB, 2004.
15. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with

Cupid. Proceedings VLDB, pages 49–58, 2001.
16. Y. Papakonstantinou, M. Petropoulos, and V. Vassalos. QURSED: Querying and

Reporting Semistructured Data. Proc. SIGMOD, 2002.
17. C. Reynaud, J.-P. Sirot, and D. Vodislav. Semantic Integration of XML Heteroge-

neous Data Sources. Proceedings IDEAS, pages 199–208, 2001.
18. J. D. Ullman. Universal Relation Interfaces for Database Systems. Proceedings

IFIP, 1983.
19. Xyleme. http://www.xyleme.com.

