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Main results (to appear in 4OR)

1. A complete characterization of constant quadratic functions
over an affine variety Ω = {x ∈ <n : Ax = b}.

2. How to convexify the objective function of a general quadratic
programming problem (Pb) by using the linear constraints.

3. Formulation as a semidefinite program of the partial La-
grangian relaxation of (Pb) where the linear constraints are
not relaxed.

4. Comparison of two semidefinite relaxations made from two
sets of null quadratic functions over an affine variety.
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General Quadratic Programming

(Pb) min
x

f(x) = xtQx + ctx s.t.





xtBix + dt
ix = ei i ∈ I=

xtBix + dt
ix ≤ ei i ∈ I≤

Ax = b

¦ Boolean quadratic problems can be formulated as (Pb) by
considering x2

i = xi for all i in {1, . . . , n}

¦ Standard semidefinite relaxations of 0-1 quadratic programs
are nothing but particular instances of Lagrangian duality
[Poljak et al,1995] [Lemaréchal,2003]

¦ For the Boolean case, the supremum of the corresponding aug-
mented Lagrangian function is equal to the value of the partial
Lagrangian dual (the linear constraints are not relaxed)
[Lemaréchal, Oustry, 2001]
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Characterization of constant quadratic functions

over Ω = {x ∈ <n : Ax = b}

Let F (x) = xtHx+ gtx be a quadratic function that takes a con-

stant value over Ω. (underlying idea: add redundant constraints)

For any x ∈ Ω, u ∈ Ker(A) = {u ∈ <n : Au = 0}, and λ ∈ <
F (x + λu) = F (x) = F (x) + λ2utHu + 2λutHx + λgtu

i.e. F (x + λu) does not depend on λ.

Necessary and sufficient conditions on F (x):

utHu = 0 ∀u ∈ Ker(A) [A]

2utHx + gtu = 0 ∀u ∈ Ker(A)∀x ∈ Ω [B]
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Characterization of constant quadratic functions

over Ω = {x ∈ <n : Ax = b}

Lemma. q(u) = utHu is a null quadratic form over Ker(A) if

and only if q(u) = ut
(
AtW t + WA

)
u, where W is any n×p-matrix.

Sketch proof. choose a ”good” basis for the quadratic form,

write and simplify P tHP , then obtain H = (P t)−1P tHPP−1.

P =
[

At B
]
, the n− p columns of B are a basis of Ker(A).

Theorem. F (x) = xtHx + gtx is a constant quadratic func-

tion over {x : Ax = b} if and only if F (x) = xt
(
AtW t + WA

)
x +

(
Atα− 2Wb

)t
x, where W is a n× p-matrix and α is a p-vector.
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Any constant quadratic function over Ω = {x ∈ <n : Ax = b} can

be obtained by setting particular values to W and α in

F (x) = xt
(
AtW t + WA

)
x +

(
Atα− 2Wb

)t
x

¦ Product member by variable
W = 1

2Eij and α = 0 where E
ij
ij = 1 otherwise Ekl

ij = 0.
F (x) = xia

t
jx− bjxi = 0 ∀x ∈ Ω

¦ Product member by member
W = 1

2AtV with V = 1
2

(
Eij + Eji

)
F (x) = xtaia

t
jx + xtAt(α− V b)

α = V b ⇒ xtaia
t
jx = bibj ∀x ∈ Ω

¦ Penality term
W = 1

2At and α = −b ⇒ F (x) = xtAtAx− 2xtAtb
(Ax− b)2 = 0 ∀x ∈ Ω
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Convexifying the objective function of (Pb)

Consequence of Debreu’s lemma [Lemaréchal, Oustry, 2001]:
If Q is positive definite over Ker(A) then there exists a matrix V
such that Q + AtV A < 0 (not true when Q is not definite)

We prove: If Q is positive semidefinite over Ker(A), there exists
W such that Q + AtW t + WA < 0 over <n

Theorem. Let A and Q be respectively a p × n matrix and a
n×n symmetric matrix. If Q is positive semidefinite over Ker(A)
then there exists a linear combination of qij(x) = xi(a

t
jx− bj) for

i ∈ {1, ..., n} and j ∈ {1, ..., p} that convexifies the quadratic form
xtQx over <n. (null functions over Ω = {x ∈ <n : Ax = b})

Remark: such a combination can be obtained in O(pn2) time
(constructive proof)
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Sketch proof (induction on p)

Choose H = U tW t + WU with UU t = I and U = StA.
H decomposes into the sum H =

∑p
i=1 Hi, where Hi = uiω

t
i+ωiu

t
i.

Let B be a matrix whose columns are the vectors of an ortho-
normal basis of Ker(A).

Li =



y =

p∑

j=i+1

zjuj + Bz : zj ∈ < ∀j ∈ {i + 1, ..., p} , z ∈ <n−p





In particular Lp = Ker(A) and L0 = <n.

Lemma. Let 1 ≤ i ≤ p and Q a n × n symmetric matrix,
if Q +

∑p
j=i+1 Hj < 0 over Li then there exists ωi such that

Q +
∑p

j=i+1 Hj+uiω
t
i + ωiu

t
i< 0 over Li−1 .
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Using convexification in the Lagrangian Approach

(P)min
x

xtQx + ctx s.t. x ∈ Ω = {x : Ax = b}

Lemma. If (P) has a solution and F (x) (a constant quadratic

function over Ω) convexifies the objective function of (P) then

there exists λ such that

minx s.t.Ax=b xtQx + ctx + F (x)

= minx xtQx + ctx + F (x) + λt(Ax− b).

This convexification process transforms the constrained problem

(P ) into an unconstrained one
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(DP): Partial Lagrangian dual problem of (Pb)

(DP)

maxµ minx s.t.Ax=b xt (Q +
∑

i∈I µiBi)x+(c +
∑

i∈I µidi)
t x−∑

i∈I µiei

Partial Lagrangian dual problem of (Pb) where the linear equality

constraints are not relaxed.

J =
{
fj(x) = xtCjx + qt

jx + αj : j ∈ J
}
:

A set of null quadratic functions over Ω

(Pb)J : add the redundant constraints fj(x) = 0 to (Pb).
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(DP)J: partial Lagrangian dual of (Pb)J where the constraints

Ax = b are not relaxed.

(DP)J ⇔ (DP) because fj(x) = 0 for x ∈ Ω and ∀j ∈ J.

(DT)J: total Lagrangian dual of (Pb)J where all the constraints

are relaxed:

max
µ, ν, λ

min
x

xtQ (µ)x + ct (µ)x− e (µ) +
∑

j∈J

νjfj(x) + λt (Ax− b)

(DT)J ≤ (DP)J

Lemma. (convexification) Let µ∗ be a solution of (DP). If

there exists ν∗ such that
∑

j∈J ν∗j fj(x) convexifies xtQ (µ∗)x +

ct (µ∗)x, then (DT)J ⇔ (DP).
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Recall that we have: P =
{
xia

t
jx− bjxi : ∀i ∈ {1, ..., n} ∀j ∈ {1, ..., p}

}

Null quadratic functions over Ω which convexify xt (Q +
∑

i∈I µiBi)x.

Thus the convexification Lemma implies: (DT)P ⇔ (DP)

Remark. This is not the case with: C =
{
(Ax− b)t (Ax− b)

}

Semidefinite formulation of (DT)J

The semidefinite dual of (DT)J is [Lemaréchal, Oustry 2001]:

(SDP )J min
X<xxt

Q•X+ctx s.t.





Bi •X + dt
ix = ei i ∈ I=

Bi •X + dt
ix ≤ ei i ∈ I≤

Ax = b
Cj •X + qt

jx + αj = 0 j ∈ J

Thus (DT)P ⇔ (DP) ⇔ (SDP)P
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C =
{
(Ax− b)t (Ax− b)

}
P =

{
xia

t
jx− bjxi : ∀i ∈ {1, ..., n} ∀j ∈ {1, ..., p}

}

Proposition. (SDP )C and (SDP )P are equivalent.

(SDP )C min
X<xxt

Q•X+ctx s.t.





Bi •X + dt
ix = ei i ∈ I=

Bi •X + dt
ix ≤ ei i ∈ I≤

(Ax = b)
AtA •X − 2btAx + b2 = 0

(SDP )P min
X<xxt

Q•X+ctx s.t.





Bi •X + dt
ix = ei i ∈ I=

Bi •X + dt
ix ≤ ei i ∈ I≤

Ax = b∑n
k=1 AjkXki − bjxi = 0 i ∈ {1, ..., n}

j ∈ {1, ..., p}
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Sketch proof

(X, x) feasible of (SDP )P.

For each j multiply
∑

k AjkXki − bjxi = 0 by Aji, then sum up

them all over j and i: AtA •X − 2btAx + b2 = 0

(X, x) feasible for (SDP )C.

AtA •
(
X − xxt

)
+ (Ax− b)2 = 0.

AtA •
(
X − xxt

)
= 0 ⇒ AtA

(
X − xxt

)
= 0.

∀r, i ∈ {1, ..., n} ∑n
k=1

∑p
j=1 AjrAjkXki = xi

∑n
k=1

∑p
j=1 AjrAjkxk

⇒ ∀r, i ∈ {1, ..., n} ∑p
j=1 Ajr

(∑n
k=1 AjkXki − bjxi

)
= 0.

This a linear combination of the p rows of A.

rank(A) = p ⇒ ∑n
k=1 AjkXki − bjxi = 0 ∀j and ∀i.
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P =
{
xia

t
jx− bjxi : ∀i ∈ {1, ..., n} ∀j ∈ {1, ..., p}

}

C =
{
(Ax− b)t (Ax− b)

}

Less or equal to

DP

Pb

DT

DSDP

SDP SDP

DT

PbPb

DSDP

Equivalent if superconsistant

Equivalent programs
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Conclusion

♦ A complete characterization of constant quadratic functions
over {x ∈ <n : Ax = b}.

♦ For general quadratic programs we have (SDP)P=(DT)P =(DP).

♦ For Boolean problems (DT)C =(DP) but the supremum is not
always reached: consequences for some SDP solvers.

♦ Better design of semidefinite relaxations of quadratic pro-
grams.

♦ Among the p×n constraints of (SDP)P, some may be not ac-
tive, and thus it would be interesting to foresee which constraints
are useful for a given problem.

15


