Partial Lagrangian relaxation for General Quadratic Programming

Alain Faye, Frédéric Roupin
CEDRIC, CNAM-IIE

SCRO/JOPT May 9, 2006

Main results (to appear in 4OR)

1. A complete characterization of constant quadratic functions over an affine variety $\Omega=\left\{x \in \Re^{n}: A x=b\right\}$.
2. How to convexify the objective function of a general quadratic programming problem (Pb) by using the linear constraints.
3. Formulation as a semidefinite program of the partial Lagrangian relaxation of (Pb) where the linear constraints are not relaxed.
4. Comparison of two semidefinite relaxations made from two sets of null quadratic functions over an affine variety.

General Quadratic Programming

$$
\text { (Pb) } \min _{x} f(x)=x^{t} Q x+c^{t} x \text { s.t. } \begin{cases}x^{t} B_{i} x+d_{i}^{t} x=e_{i} & i \in I= \\ x^{t} B_{i} x+d_{i}^{t} x \leq e_{i} & i \in I \leq \\ A x=b & \end{cases}
$$

\diamond Boolean quadratic problems can be formulated as (Pb) by considering $x_{i}^{2}=x_{i}$ for all i in $\{1, \ldots, n\}$
\diamond Standard semidefinite relaxations of $0-1$ quadratic programs are nothing but particular instances of Lagrangian duality [Poljak et al,1995] [Lemaréchal,2003]
\diamond For the Boolean case, the supremum of the corresponding augmented Lagrangian function is equal to the value of the partial Lagrangian dual (the linear constraints are not relaxed) [Lemaréchal, Oustry, 2001]

Characterization of constant quadratic functions over $\Omega=\left\{x \in \Re^{n}: A x=b\right\}$

Let $F(x)=x^{t} H x+g^{t} x$ be a quadratic function that takes a constant value over Ω. (underlying idea: add redundant constraints)

For any $x \in \Omega, u \in \operatorname{Ker}(A)=\left\{u \in \Re^{n}: A u=0\right\}$, and $\lambda \in \Re$
$F(x+\lambda u)=F(x)=F(x)+\lambda^{2} u^{t} H u+2 \lambda u^{t} H x+\lambda g^{t} u$
i.e. $F(x+\lambda u)$ does not depend on λ.

Necessary and sufficient conditions on $F(x)$:

$$
\begin{aligned}
u^{t} H u & =0 \forall u \in \operatorname{Ker}(A) \\
2 u^{t} H x+g^{t} u & =0 \forall u \in \operatorname{Ker}(A) \forall x \in \Omega
\end{aligned} \text { [B] }
$$

Characterization of constant quadratic functions

over $\Omega=\left\{x \in \Re^{n}: A x=b\right\}$

Lemma. $q(u)=u^{t} H u$ is a null quadratic form over $\operatorname{Ker}(A)$ if and only if $q(u)=u^{t}\left(A^{t} W^{t}+W A\right) u$, where W is any $n \times p$-matrix.

Sketch proof. choose a "good" basis for the quadratic form, write and simplify $P^{t} H P$, then obtain $H=\left(P^{t}\right)^{-1} P^{t} H P P^{-1}$. $P=\left[\begin{array}{ll}A^{t} & B\end{array}\right]$, the $n-p$ columns of B are a basis of $\operatorname{Ker}(A)$.

Theorem. $F(x)=x^{t} H x+g^{t} x$ is a constant quadratic function over $\{x: A x=b\}$ if and only if $F(x)=x^{t}\left(A^{t} W^{t}+W A\right) x+$ $\left(A^{t} \alpha-2 W b\right)^{t} x$, where W is a $n \times p$-matrix and α is a p-vector.

Any constant quadratic function over $\Omega=\left\{x \in \Re^{n}: A x=b\right\}$ can be obtained by setting particular values to W and α in

$$
F(x)=x^{t}\left(A^{t} W^{t}+W A\right) x+\left(A^{t} \alpha-2 W b\right)^{t} x
$$

\diamond Product member by variable
$W=\frac{1}{2} E^{i j}$ and $\alpha=0$ where $E_{i j}^{i j}=1$ otherwise $E_{i j}^{k l}=0$.
$F(x)=x_{i} a_{j}^{t} x-b_{j} x_{i}=0 \forall x \in \Omega$
\diamond Product member by member
$W=\frac{1}{2} A^{t} V$ with $V=\frac{1}{2}\left(E^{i j}+E^{j i}\right) F(x)=x^{t} a_{i} a_{j}^{t} x+x^{t} A^{t}(\alpha-V b)$
$\alpha=V b \Rightarrow x^{t} a_{i} a_{j}^{t} x=b_{i} b_{j} \quad \forall x \in \Omega$
\diamond Penality term
$W=\frac{1}{2} A^{t}$ and $\alpha=-b \Rightarrow F(x)=x^{t} A^{t} A x-2 x^{t} A^{t} b$
$(A x-b)^{2}=0 \forall x \in \Omega$

Convexifying the objective function of (Pb)

Consequence of Debreu's lemma [Lemaréchal, Oustry, 2001]: If Q is positive definite over $\operatorname{Ker}(A)$ then there exists a matrix V such that $Q+A^{t} V A \succcurlyeq 0$ (not true when Q is not definite)

We prove: If Q is positive semidefinite over $\operatorname{Ker}(A)$, there exists W such that $Q+A^{t} W^{t}+W A \succcurlyeq 0$ over \Re^{n}

Theorem. Let A and Q be respectively a $p \times n$ matrix and a $n \times n$ symmetric matrix. If Q is positive semidefinite over $\operatorname{Ker}(A)$ then there exists a linear combination of $q_{i j}(x)=x_{i}\left(a_{j}^{t} x-b_{j}\right)$ for $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, p\}$ that convexifies the quadratic form $x^{t} Q x$ over \Re^{n}. (null functions over $\Omega=\left\{x \in \Re^{n}: A x=b\right\}$)

Remark: such a combination can be obtained in $O\left(p n^{2}\right)$ time (constructive proof)

Sketch proof (induction on p)
Choose $H=U^{t} W^{t}+W U$ with $U U^{t}=I$ and $U=S^{t} A$. H decomposes into the sum $H=\sum_{i=1}^{p} H_{i}$, where $H_{i}=u_{i} \omega_{i}^{t}+\omega_{i} u_{i}^{t}$. Let B be a matrix whose columns are the vectors of an orthonormal basis of $\operatorname{Ker}(A)$.

$$
L_{i}=\left\{y=\sum_{j=i+1}^{p} z_{j} u_{j}+B z: z_{j} \in \Re \forall j \in\{i+1, \ldots, p\}, z \in \Re^{n-p}\right\}
$$

In particular $L_{p}=\operatorname{Ker}(A)$ and $L_{0}=\Re^{n}$.
Lemma. Let $1 \leq i \leq p$ and Q a $n \times n$ symmetric matrix, if $Q+\sum_{j=i+1}^{p} H_{j} \succcurlyeq 0$ over L_{i} then there exists ω_{i} such that $Q+\sum_{j=i+1}^{p} H_{j}+u_{i} \omega_{i}^{t}+\omega_{i} u_{i}^{t} \succcurlyeq 0$ over L_{i-1}.

Using convexification in the Lagrangian Approach

$$
\text { (P) } \min _{x} x^{t} Q x+c^{t} x \text { s.t. } x \in \Omega=\{x: A x=b\}
$$

Lemma. If (P) has a solution and $F(x)$ (a constant quadratic function over Ω) convexifies the objective function of (P) then there exists λ such that
$\min _{x \text { s.t. } A x=b} x^{t} Q x+c^{t} x+F(x)$
$=\min _{x} x^{t} Q x+c^{t} x+F(x)+\lambda^{t}(A x-b)$.

This convexification process transforms the constrained problem (P) into an unconstrained one

(DP): Partial Lagrangian dual problem of (Pb)

(DP)
$\max _{\mu} \min _{x \text { s.t. } A x=b} x^{t}\left(Q+\sum_{i \in I} \mu_{i} B_{i}\right) x+\left(c+\sum_{i \in I} \mu_{i} d_{i}\right)^{t} x-\sum_{i \in I} \mu_{i} e_{i}$

Partial Lagrangian dual problem of (Pb) where the linear equality constraints are not relaxed.
$\mathfrak{J}=\left\{f_{j}(x)=x^{t} C_{j} x+q_{j}^{t} x+\alpha_{j}: j \in J\right\}:$
A set of null quadratic functions over Ω
$(\mathrm{Pb})_{\mathfrak{J}}:$ add the redundant constraints $f_{j}(x)=0$ to (Pb).
$(D P)_{\mathfrak{J}}$: partial Lagrangian dual of $(\mathrm{Pb})_{\mathfrak{J}}$ where the constraints $A x=b$ are not relaxed.
$(\mathrm{DP})_{\mathfrak{J}} \Leftrightarrow(\mathrm{DP})$ because $f_{j}(x)=0$ for $x \in \Omega$ and $\forall j \in J$.
(DT) $)_{\mathfrak{J}}$: total Lagrangian dual of $(P b)_{\mathfrak{J}}$ where all the constraints are relaxed:

$$
\max _{\mu, \nu, \lambda} \min _{x} x^{t} Q(\mu) x+c^{t}(\mu) x-e(\mu)+\sum_{j \in J} \nu_{j} f_{j}(x)+\lambda^{t}(A x-b)
$$

$(\mathrm{DT})_{\mathfrak{J}} \leq(\mathrm{DP})_{\mathfrak{J}}$
Lemma. (convexification) Let μ^{*} be a solution of (DP). If there exists ν^{*} such that $\sum_{j \in J} \nu_{j}^{*} f_{j}(x)$ convexifies $x^{t} Q\left(\mu^{*}\right) x+$ $c^{t}\left(\mu^{*}\right) x$, then $(D T)_{\mathfrak{J}} \Leftrightarrow(D P)$.

Recall that we have: $\mathfrak{P}=\left\{x_{i} a_{j}^{t} x-b_{j} x_{i}: \forall i \in\{1, \ldots, n\} \forall j \in\{1, \ldots, p\}\right\}$ Null quadratic functions over Ω which convexify $x^{t}\left(Q+\sum_{i \in I} \mu_{i} B_{i}\right) x$.

Thus the convexification Lemma implies: (DT) $\mathfrak{P} \Leftrightarrow$ (DP)
Remark. This is not the case with: $\mathfrak{C}=\left\{(A x-b)^{t}(A x-b)\right\}$

Semidefinite formulation of (DT) $\mathcal{J}_{\mathfrak{J}}$

The semidefinite dual of $(D T)_{\mathfrak{J}}$ is [Lemaréchal, Oustry 2001]:
$(S D P)_{\mathfrak{J}} \quad \min _{X \succcurlyeq x x^{t}} Q \bullet X+c^{t} x$ s.t. $\begin{cases}B_{i} \bullet X+d_{i}^{t} x=e_{i} & i \in I= \\ B_{i} \bullet X+d_{i}^{t} x \leq e_{i} & i \in I \leq \\ A x=b & \\ C_{j} \bullet X+q_{j}^{t} x+\alpha_{j}=0 & j \in J\end{cases}$
Thus $(\mathrm{DT})_{\mathfrak{P}} \Leftrightarrow(\mathrm{DP}) \Leftrightarrow(\mathrm{SDP})_{\mathfrak{P}}$

$$
\mathfrak{C}=\left\{(A x-b)^{t}(A x-b)\right\} \mathfrak{P}=\left\{x_{i} a_{j}^{t} x-b_{j} x_{i}: \forall i \in\{1, \ldots, n\} \forall j \in\{1, \ldots, p\}\right\}
$$

Proposition. $(S D P)_{\mathfrak{C}}$ and $(S D P)_{\mathfrak{F}}$ are equivalent.
$(S D P)_{\mathfrak{C}} \min _{X \succcurlyeq x x^{t}} Q \bullet X+c^{t} x$ s.t. $\begin{cases}B_{i} \bullet X+d_{i}^{t} x=e_{i} & i \in I^{=} \\ B_{i} \bullet X+d_{i}^{t} x \leq e_{i} & i \in I \leq \\ (A x=b) \\ A^{t} A \bullet X-2 b^{t} A x+b^{2}=0\end{cases}$
$(S D P)_{\mathfrak{F}} \quad \min _{X \succcurlyeq x x^{t}} Q \bullet X+c^{t} x$ s.t. $\begin{cases}B_{i} \bullet X+d_{i}^{t} x=e_{i} & i \in I= \\ B_{i} \bullet X+d_{i}^{t} x \leq e_{i} & i \in I \leq \\ A x=b \\ \sum_{k=1}^{n} A_{j k} X_{k i}-b_{j} x_{i}=0 & i \in\{1, \ldots, n\} \\ & j \in\{1, \ldots, p\}\end{cases}$

Sketch proof

(X, x) feasible of $(S D P)_{\mathfrak{P}}$.
For each j multiply $\sum_{k} A_{j k} X_{k i}-b_{j} x_{i}=0$ by $A_{j i}$, then sum up them all over j and i : $A^{t} A \bullet X-2 b^{t} A x+b^{2}=0$
(X, x) feasible for $(S D P)_{\mathfrak{C}}$.
$A^{t} A \bullet\left(X-x x^{t}\right)+(A x-b)^{2}=0$.
$A^{t} A \bullet\left(X-x x^{t}\right)=0 \Rightarrow A^{t} A\left(X-x x^{t}\right)=0$.
$\forall r, i \in\{1, \ldots, n\} \sum_{k=1}^{n} \sum_{j=1}^{p} A_{j r} A_{j k} X_{k i}=x_{i} \sum_{k=1}^{n} \sum_{j=1}^{p} A_{j r} A_{j k} x_{k}$
$\Rightarrow \forall r, i \in\{1, \ldots, n\} \sum_{j=1}^{p} A_{j r}\left(\sum_{k=1}^{n} A_{j k} X_{k i}-b_{j} x_{i}\right)=0$.
This a linear combination of the p rows of A.
$\operatorname{rank}(A)=p \Rightarrow \sum_{k=1}^{n} A_{j k} X_{k i}-b_{j} x_{i}=0 \forall j$ and $\forall i$.

$$
\begin{aligned}
& \mathfrak{P}=\left\{x_{i} a_{j}^{t} x-b_{j} x_{i}: \forall i \in\{1, \ldots, n\} \forall j \in\{1, \ldots, p\}\right\} \\
& \mathfrak{C}=\left\{(A x-b)^{t}(A x-b)\right\}
\end{aligned}
$$

\longleftrightarrow Equivalent programs
\longrightarrow Less or equal to
$<>$ Equivalent if superconsistant

Conclusion

\diamond A complete characterization of constant quadratic functions over $\left\{x \in \Re^{n}: A x=b\right\}$.
\diamond For general quadratic programs we have $(S D P)_{\mathfrak{P}}=(D T)_{\mathfrak{P}}=(D P)$.
\diamond For Boolean problems (DT) $)_{\mathfrak{C}}=(D P)$ but the supremum is not always reached: consequences for some SDP solvers.
\diamond Better design of semidefinite relaxations of quadratic programs.
\diamond Among the $p \times n$ constraints of (SDP) $\mathfrak{P}_{\mathfrak{P}}$, some may be not active, and thus it would be interesting to foresee which constraints are useful for a given problem.

