Reflexivity/irreflexivity

"A binary relation R over a set X is reflexive if every element of X is related to itself. Formally, this may be written $\forall x \in X: x R x{ }^{" 1}$. A binary relation is called irreflexive if it doesn't relate any element to itself ${ }^{1}$.

Let $\mathrm{I}=\left[\mathrm{I}^{-}, \mathrm{I}^{+}\right]$be imprecise time intervals. Based on the definitions of our proposed temporal relations, it holds that:

$$
\begin{align*}
& \operatorname{Before}(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)=0 \tag{1}\\
& \operatorname{After}(\mathrm{I}, \mathrm{I})=\operatorname{Before}(\mathrm{I}, \mathrm{I})=0 \tag{2}\\
& \operatorname{Meets}(\mathrm{I}, \mathrm{I})=\operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{-(\mathrm{B})}\right)=0 \tag{3}\\
& \operatorname{Met}-\mathrm{by}(\mathrm{I}, \mathrm{I})=\operatorname{Meets}(\mathrm{I}, \mathrm{I})=0 \tag{4}\\
& \text { Overlaps }(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{\left.+^{(\mathrm{E}}\right)}, \mathrm{I}^{+(1)}\right)=0 \tag{5}\\
& \text { Overlapped-by }(\mathrm{I}, \mathrm{I})=\operatorname{Overlaps}(\mathrm{I}, \mathrm{I})=0 \tag{6}\\
& \operatorname{Starts}(\mathrm{I}, \mathrm{I})=\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)=0 \tag{7}\\
& \operatorname{Started}-b y(I, I)=\operatorname{Starts}(I, I)=0 \tag{8}\\
& \operatorname{During}(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{\mathrm{I}^{(1)}}\right)=0 \tag{9}\\
& \operatorname{Contains}(\mathrm{I}, \mathrm{I}))=\operatorname{During}(\mathrm{I}, \mathrm{I})=0 \tag{10}\\
& \operatorname{Ends}(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{I}^{\left.\mathrm{I}^{(1)}\right)} \wedge \operatorname{Same}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{+(\mathrm{E})}\right)=0\right. \tag{11}\\
& \operatorname{Ended}-b y(I, I)=\operatorname{Ends}(I, I)=0 \tag{12}\\
& \operatorname{Before}_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)=0 \tag{13}\\
& \operatorname{After}_{(k)}^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Before}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=0 \tag{14}\\
& \operatorname{Overlaps}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})^{(\alpha, \beta)}}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)=0 \tag{15}\\
& \text { Overlapped-by }_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\text { Overlaps }_{(k)^{(\alpha, \beta)}}(\mathrm{I}, \mathrm{I})=0 \tag{16}\\
& \operatorname{Starts}(\mathrm{k})^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)=0 \tag{17}\\
& \text { Started-by }_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Starts}_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=0 \tag{18}\\
& \operatorname{During}_{(k)}^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)=0 \tag{19}\\
& \operatorname{Contains}_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{During}_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=0 \tag{20}\\
& \operatorname{Ends}(k)^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{I}^{\left.+^{(1)}\right)} \wedge \operatorname{Same}\left(\mathrm{I}^{\mathrm{I}^{(\mathrm{E})}}, \mathrm{I}^{+(\mathrm{E})}\right)=0\right. \tag{21}\\
& \text { Ended-by }_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=\operatorname{Ends}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{I})=0 \tag{22}
\end{align*}
$$

[^0]From the equations $\{(1) \ldots .(23)\}$, we deduce that the temporal relations \{"Before", "After", "Meets", "Met-by", "Overlaps", "Overlapped-by", "Starts", "Started-by", "During", "Contains", "Ends", "Ended-by", "Before(k) (α, $\beta)$ ", "After(k) (α, β) ", "Overlaps $(k)(\alpha, \beta)$ ", "Overlapped-by $(k)(\alpha, \beta) ", " S t a r t s(k)(\alpha, \beta) ", " S t a r t e d-b y(k)(\alpha, \beta) "$, "During $(\mathrm{k})(\alpha, \beta)$ ", "Contains(k) $(\alpha, \beta) ", " E n d s(k)(\alpha, \beta) "$ and "Ended-by $(k)(\alpha, \beta) "\}$ are irreflexive.

We have also:

$$
\begin{equation*}
\operatorname{Equals}(\mathrm{I}, \mathrm{I})=\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{I}^{+(\mathrm{E})}\right)=1 \tag{23}
\end{equation*}
$$

From the equation (23), we deduce that the relation "Equals" is reflexive.

Symmetry/asymmetry

Let $\mathrm{I}=\left[\mathrm{I}^{-}, \mathrm{I}^{+}\right]$and $\mathrm{J}=\left[\mathrm{J}^{-}, \mathrm{J}^{+}\right]$be imprecise time intervals. Based on the definitions of our proposed temporal relations, it holds that:

Before (I, J) and Before $(\mathrm{J}, \mathrm{I})=>\operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)$ and Precedes $\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)=>\mathrm{I}=\mathrm{J}$
After (I, J) and $\operatorname{After}(\mathrm{J}, \mathrm{I})=>\operatorname{Precedes}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)$ and Precedes $\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)=>\mathrm{I}=\mathrm{J}$
$\operatorname{Meets}(\mathrm{I}, \mathrm{J})$ and Meets $(\mathrm{J}, \mathrm{I})=>\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{J}^{-(1)}\right) \wedge\right.$ Same $\left.\left(\mathrm{I}^{\left.\mathrm{I}^{(\mathrm{E}}\right)}, \mathrm{J}^{-(\mathrm{B})}\right)\right)$ and Min(Same $\left(\mathrm{J}^{+(1)}, \mathrm{I}^{-(1)}\right) \wedge$
Same ($\left.\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(\mathrm{B})}\right)$) $=>\mathrm{I}=\mathrm{J}$
$\operatorname{Met}-\mathrm{by}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Met-by}(\mathrm{J}, \mathrm{I})=>\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{J}^{+(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(\mathrm{B})}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{J}^{-(1)}\right) \wedge\right.$
Same ($\left.\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{-(\mathrm{B})}\right)$) $=>\mathrm{I}=\mathrm{J}$
Overlaps(I, J) and Overlaps $(\mathrm{J}, \mathrm{I}) \Rightarrow$ Min (Precedes $\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge$ Precedes $\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{+(1)}\right) \wedge$ Precedes $\left(\mathrm{I}^{+(\mathrm{E})}\right.$,
$\left.J^{+(1)}\right)$) and Min (Precedes $\left(J^{-(B)}, I^{-(1)}\right) \wedge \operatorname{Precedes}\left(I^{-(B)}, J^{+(1)}\right) \wedge$ Precedes $\left.\left(J^{+(E)}, I^{+(1)}\right)\right) \Rightarrow I=J$
Overlapped-by (I, J) and Overlapped-by $(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge\right.$ Precedes $\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{+(1)}\right) \wedge$
Precedes $\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)$) and Min (Precedes $\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge$ Precedes $\left(\mathrm{J}^{(\mathrm{B})}, \mathrm{I}^{+(1)}\right) \wedge$ Precedes $\left.\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)=>\mathrm{I}=$ J
$\operatorname{Starts}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Starts}(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(\mathrm{I})}\right)\right)$ and Min
(Same $\left.\left(\mathrm{J}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)=>\mathrm{I}=\mathrm{J}$
Started-by (I, J) and Started-by $(\mathrm{J}, \mathrm{I})=>\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{J}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)$
and $\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)=>\mathrm{I}=\mathrm{J}$
$\operatorname{During}(\mathrm{I}, \mathrm{J})$ and $\operatorname{During}(\mathrm{J}, \mathrm{I})=>\operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)$ and Min $\left(\operatorname{Precedes}\left(\mathrm{I}^{-}\right.\right.$
$\left.{ }^{(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge$ Precedes $\left.\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)=>\mathrm{I}=\mathrm{J}$
Contains (I, J) and Contains $(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge\right.$ Precedes $\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)$) and Min (Precedes
$\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge$ Precedes $\left.\left(\mathrm{I}^{\left.\mathrm{I}^{(\mathrm{E}}\right)}, \mathrm{J}^{+(1)}\right)\right)=>\mathrm{I}=\mathrm{J}$
$\operatorname{Ends}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Ends}(\mathrm{J}, \mathrm{I})=>\operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{J}^{(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{J}^{+(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{\left.\mathrm{J}^{(\mathrm{E})}\right)}\right)\right.$ and Min
(Precedes $\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge$ Same $\left(\mathrm{J}^{+(1)}, \mathrm{I}^{+(1)}\right) \wedge$ Same $\left.\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(\mathrm{E})}\right)\right) \Rightarrow \mathrm{I}=\mathrm{J}$
Ended-by (I, J) and Ended-by $(\mathrm{J}, \mathrm{I})=>\operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge\right.$ Same $\left.\left(\mathrm{J}^{+(1)}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(\mathrm{E})}\right)\right)$ and Min $\left(\operatorname{Precedes}\left(J^{-(B)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{J}^{\mathrm{J}^{+(1)}}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(\mathrm{E})}\right)\right)=>\mathrm{I}=\mathrm{J}$
$\operatorname{Before}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Before}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I})=>\operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)$ and $\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)=>$ $\mathrm{I}=\mathrm{J}$
$\operatorname{After}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Before}(\mathrm{J}, \mathrm{I})=>\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)$ and $\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)=>\mathrm{I}=\mathrm{J}$

```
Overlaps \((\mathrm{k})^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})\) and Overlaps \((\mathrm{k}){ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}\right.\right.\),
\(\left.\mathrm{I}^{+(1)}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{\left.\mathrm{J}^{(1)}\right)}\right)\) and \(\operatorname{Min}\left(\operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{+(1)}\right) \wedge\right.\)
\(\left.\operatorname{PrecedeS}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)=>\mathrm{I}=\mathrm{J}\)
Overlapped-by \({ }_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})\) and Overlapped-by \({ }_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\right.\) Precedes \(^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge\) Precedes \(^{(\alpha,}\)
\({ }^{\beta)}\left(I^{-(\mathrm{B})}, \mathrm{J}^{\left.+^{(1)}\right)} \wedge \operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)\) and \(\operatorname{Min}\left(\operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{+(1)}\right)\right.\)
\(\left.\wedge \operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right) \Rightarrow \mathrm{I}=\mathrm{J}\)
\(\operatorname{Starts}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})\) and \(\operatorname{Starts}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\right.\)
\(\left.\left(\mathrm{I}^{\mathrm{I}^{(\mathrm{E})}}, \mathrm{J}^{+(1)}\right)\right)\) and \(\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{J}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{\left.\mathrm{I}^{(1)}\right)}\right)=>\mathrm{I}=\mathrm{J}\right.\)
```


$\left.{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)=>\mathrm{I}=\mathrm{J}$
$\operatorname{During}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{During}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I})=>\operatorname{Min}\left(\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{\left.\mathrm{J}^{+(1)}\right)}\right)\right.$
and $\operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{\left.\mathrm{I}^{(1)}\right)}\right)=>\mathrm{I}=\mathrm{J}\right.$
$\operatorname{Contains}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and Contains $(\mathrm{k}){ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I}) \Longrightarrow \operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}\right.\right.$,
$\left.\mathrm{I}^{+(1)}\right)$) and $\operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{\left.\mathrm{J}^{+(1)}\right)}\right)=>\mathrm{I}=\mathrm{J}\right.$
$\operatorname{Ends}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Ends}(\mathrm{k}){ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge\right.$ Same $\left(\mathrm{I}^{+(1)}, \mathrm{J}^{+(1)}\right) \wedge$ Same $\left(\mathrm{I}^{+(\mathrm{E})}\right.$
,$\left.J^{+(\mathrm{E})}\right)$) and $\operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(1)}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(\mathrm{E})}\right)\right)=>\mathrm{I}=\mathbf{J}$
Ended-by(k) ${ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and Ended-by ${ }_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{I}) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(1)}, \mathrm{I}^{\mathrm{I}^{+(1)}}\right) \wedge\right.$
Same ($\left.\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(\mathrm{E})}\right)$) and $\operatorname{Min}\left(\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{J}^{+(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(\mathrm{E})}\right)\right)=>\mathrm{I}=\mathrm{J}$

From the equations $\{(1) \ldots .(22)\}$, we conclude that the temporal relations \{"Before", "After", "Meets", "Met-by", "Overlaps", "Overlapped-by", "Starts", "Started-by", "During", "Contains", "Ends", "Ended-by", "Before $(k){ }^{(\alpha, \beta)}$)",
 "Contains $(k){ }^{(\alpha, \beta) ",}$ " $\operatorname{Ends}_{(k)}(\alpha, \beta) "$ and "Ended-by $\left.{ }_{(k)}(\alpha, \beta) "\right\}$ are asymmetric.

We have also:
$\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{J}^{+(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(\mathrm{E})}\right)\right)=\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{J}^{-(1)}, \mathrm{I}^{-}\right.\right.$
$\left.{ }^{(1)}\right) \wedge$ Same $\left.\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{(\mathrm{B})}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(1)}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(\mathrm{E})}\right)\right) \Rightarrow$ Equals $(\mathrm{I}, \mathrm{J})=$ Equals (J, I)

From the equation (23), we deduce that the relation "Equals" is symmetric.

$\underline{\text { Transitivity }}$

Let $\mathrm{I}=\left[\mathrm{I}^{-}, \mathrm{I}^{+}\right], \mathrm{J}=\left[\mathrm{J}^{-}, \mathrm{J}^{+}\right]$and $\mathrm{K}=\left[\mathrm{K}^{-}, \mathrm{K}^{+}\right]$be imprecise time intervals. Based on the definitions of our proposed temporal relations, it holds that:

```
Before \((\mathrm{I}, \mathrm{J})\) and Before \((\mathrm{J}, \mathrm{K})=>\) Precedes \(\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)\) and Precedes \(\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{K}^{-(1)}\right)=>\operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{-(1)}\right)\)
=> Before(I, K)
After \((\mathrm{I}, \mathrm{J})\) and After \((\mathrm{J}, \mathrm{K})=>\) Precedes \(\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)\) and Precedes \(\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)=>\) Precedes \(\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)=>\)
After(I, K)
```

Overlaps (I, J) and Overlaps $(\mathrm{J}, \mathrm{K}) \Rightarrow$ Min $\left(\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}\right.\right.$, $\left.\mathrm{J}^{+(1)}\right)$) and Min (Precedes $\left.\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{\mathrm{J}^{(1)}}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right) \Rightarrow$ Min $($ Precedes $\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{K}^{-(1)}\right) \wedge$ Precedes $\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{+(1)}\right) \wedge$ Precedes $\left.\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right)=>$ Overlaps (I, K)

Overlapped-by (I, J) and Overlapped-by $(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{+(1)}\right) \wedge\right.$ Precedes $\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)$) and Min $\left(\operatorname{Precedes}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{(\mathrm{B})}, \mathrm{K}^{+(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right) \Rightarrow$ Min (Precedes $\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge$ Precedes $\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{K}^{+(1)}\right) \wedge$ Precedes $\left.\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)=>$ Overlapped-by (I, K)
$\operatorname{Starts}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Starts}(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)$ and Min $\left(\right.$ Same $\left.\left(J^{-(1)}, K^{-(1)}\right) \wedge \operatorname{Same}\left(J^{-(B)}\right), K^{-(B)}\right) \wedge$ Precedes $\left.\left(J^{+(E)}, K^{+(1)}\right)\right)=>\operatorname{Min}\left(\right.$ Same $\left(I^{-(1)}, K^{-(1)}\right) \wedge$ Same $\left(I^{-(B)}\right.$, $\left.\left.\mathrm{K}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right)=>\operatorname{Starts}(\mathrm{I}, \mathrm{K})$

Started-by (I, J) and Started-by $(\mathrm{J}, \mathrm{K})=>\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{J}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{K}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)=>\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{K}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge\right.$ Same $\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge$ Precedes $\left.\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)=>$ Started-by (I, K)
$\operatorname{During}(\mathrm{I}, \mathrm{J})$ and $\operatorname{During}(\mathrm{J}, \mathrm{K}) \Rightarrow>\operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right.$) and Min (Precedes $\left.\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right) \Rightarrow$ Min $\left(\operatorname{Precedes}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right) \Rightarrow$ During $(\mathrm{I}$, K)

Contains (I, J) and Contains $(\mathrm{J}, \mathrm{K})=>\operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right.$) and Min (Precedes $\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{K}^{-(1)}\right) \wedge$ Precedes $\left.\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)=>\operatorname{Min}\left(\operatorname{Precedes}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Precedes}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)=>$ Contains $(\mathrm{I}$, K)

Equals (I, J) and Equals $(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge\right.$ Same $\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge$ Same $\left(\mathrm{I}^{+(1)}, \mathrm{J}^{+(1)}\right) \wedge$ Same $\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(\mathrm{E})}\right)$) and $\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{J}^{-(1)}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{K}^{-(\mathrm{B})}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{+(1)}, \mathrm{K}^{+(1)}\right) \wedge\right.$ Same $\left.\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{K}^{+(\mathrm{E})}\right)\right)$
$\Rightarrow \operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{K}^{-(\mathrm{B})}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{+(1)}, \mathrm{K}^{+(1)}\right) \wedge\right.$ Same $\left.\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{+(\mathrm{E})}\right)\right)=>$ Equals $(\mathrm{I}$, K)
$\operatorname{Before}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Before}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K})=>\operatorname{Precedes}_{(\mathrm{k})}^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)$ and $\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathbf{J}^{+(\mathrm{E})}, \mathrm{K}^{-(1)}\right)$
\Rightarrow Precedes $_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{-(1)}\right)=>\operatorname{Before}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{K})$
$\operatorname{After}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{After}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)$ and $\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{J}^{-(1)}\right)=>$ Precedes $(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{-(1)}\right)=>\operatorname{After}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{K})$

Overlaps(k) ${ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and Overlaps $(\mathrm{k}){ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Min}\left(\right.$ Precedes ${ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge$ Precedes $^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}\right.$, $\left.\left.\mathrm{I}^{+(1)}\right) \wedge \operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{\left.\mathrm{J}^{(1)}\right)} \wedge\right.\right.$ $\left.\operatorname{Precedes}_{(k)}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{+(1)}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}\right.$ $\left.{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right)=>\operatorname{Overlaps}(\mathrm{k})^{(\alpha, \beta)}(\mathrm{I}, \mathrm{K})$

Overlapped-by $_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and Overlapped-by $(\mathrm{k}){ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K})=>\operatorname{Min}\left(\right.$ Precedes $\left.^{(\alpha, \beta)}{ }^{\left(\mathrm{J}^{-(\mathrm{B})}\right.}, \mathrm{I}^{-(1)}\right) \wedge$ Precedes $\left.{ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{+(1)}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}\right.\right.$, $\left.\left.\mathrm{K}^{+(1)}\right) \wedge \operatorname{Precedes}_{(\mathrm{K})}{ }^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{(\mathrm{B})}, \mathrm{K}^{+(1)}\right) \wedge\right.$ Precedes $\left._{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right) \Longrightarrow$ Overlapped-by $_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{K})$
$\operatorname{Starts}_{(\mathrm{k})^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J}) \text { and } \operatorname{Starts}(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Min}\left(\operatorname{Same}\left(\mathrm{I}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\right.$ $\left.\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{J}^{-(1)}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{K}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right)=>\operatorname{Min}($ Same $\left.\left(\mathrm{I}^{-(1)}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{K}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right) \Longrightarrow \operatorname{Starts}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{K})$
Started-by ${ }_{(k)}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and Started-by ${ }_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Min}\left(\right.$ Same $\left(\mathrm{J}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge$ $\left.\operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Same}\left(\mathrm{K}^{-(1)}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}\right.\right.$, $\left.\left.\mathrm{J}^{+(1)}\right)\right) \Rightarrow \operatorname{Min}\left(\operatorname{Same}\left(\mathrm{K}^{-(1)}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Same}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{-(\mathrm{B})}\right) \wedge \operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right)=>\operatorname{Started}-\mathrm{by}_{(\mathrm{k})}{ }^{(\alpha,}$ ${ }^{\beta}(\mathrm{I}, \mathrm{K})$
$\operatorname{During}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{During}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K}) \Rightarrow \operatorname{Min}\left(\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{J}^{\left.\mathrm{J}^{(1)}\right)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k}){ }^{(\alpha, \beta)}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right)=>\operatorname{Min}\left(\operatorname{Precedes}(\mathrm{k})^{(\alpha, \beta)}\left(\mathrm{K}^{-(\mathrm{B})}, \mathrm{I}^{-(1)}\right) \wedge\right.$ Precedes $\left.{ }^{(\alpha, \beta)}\left(\mathrm{I}^{+(\mathrm{E})}, \mathrm{K}^{+(1)}\right)\right)=>\operatorname{During}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{K})$
$\operatorname{Contains}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{I}, \mathrm{J})$ and $\operatorname{Contains}_{(\mathrm{k})}{ }^{(\alpha, \beta)}(\mathrm{J}, \mathrm{K})=>\operatorname{Min}\left(\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{-(\mathrm{B})}, \mathrm{J}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{J}^{+(\mathrm{E})}\right.\right.$, $\left.\left.\mathrm{I}^{+(1)}\right)\right)$ and $\operatorname{Min}\left(\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{J}^{(\mathrm{B})}, \mathrm{K}^{-(1)}\right) \wedge \operatorname{Precedes}^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{J}^{+(1)}\right)\right)=>\operatorname{Min}\left(\operatorname{Precedes}_{(\mathrm{k})}{ }^{(\alpha, \beta)}\left(\mathrm{I}^{(\mathrm{B})}, \mathrm{K}^{-}\right.\right.$ $\left.{ }^{(1)}\right) \wedge$ Precedes $\left.{ }^{(\alpha, \beta)}\left(\mathrm{K}^{+(\mathrm{E})}, \mathrm{I}^{+(1)}\right)\right) \Rightarrow$ Contains $(\mathrm{k})^{(\alpha, \beta)}(\mathrm{I}, \mathrm{K})$

From the equations $\{(1) \ldots . .(17)\}$, we conclude that the temporal relations \{"Before", "After", "Overlaps", "Overlapped-by", "Starts", "Started-by", "During", "Contains", "Equals", "Before ${ }_{(k)}{ }^{(\alpha, \beta) ",}{ }^{\prime} \operatorname{After}_{(k)}{ }^{(\alpha, \beta) ",}$
 β)" $\}$ are transitive.

[^0]: ${ }^{1} \mathrm{https}: / /$ en.wikipedia.org/wiki/Reflexive relation

