Robust deep learning in real world

Nicolas Thome - Prof. at Cnam Paris **CEDRIC Lab, MSDMA Team**

Artificial Intelligence Seminar Mathematics and Computer Science (MICS) Lab Centrale Supélec Paris Saclay

January 27, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deep Learning Success since 2010

> 90's / 2000's: difficult to train large deep models on existing databases

- ILSVRC'12: the deep revolution
 - ⇒ outstanding success of ConvNets [Krizhevsky et al., 2012]

Rank	Name	Error rate	Description
1	U. Toronto	0.15315	Deep learning
2	U. Tokyo	0.26172	Hand-crafted
3	U. Oxford	0.26979	features and
4	Xerox/INRIA	0.27058	Bottleneck.

nicolas.thome@cnam.fr - Robust deep learning in real world

(日)(4月)(4日)(4日)(5)

Deep Learning everywhere since 2012

- Image classification, speech recognition
- chatbots, translation,
- Games, robotics

Neural Networks (NN)

The formal Neuron

x_i: inputs w_i, b: weights f: activation function y: output of the neuron

$$y = f(w^{\mathsf{T}}x + b)$$

• <u>Neural Networks</u>: Stacking several formal neurons \Rightarrow **Perceptron**

$$\hat{y}_k = f(s_k) = \frac{e^{s_k}}{\sum\limits_{k'=1}^{K} e^{s_{k'}}}$$

 \Rightarrow Logistic Regression (LR) Model !

イロト イロト イヨト イヨト 三日

nicolas.thome@cnam.fr - Robust deep learning in real world

ŷ,

X₁

x_m

Deep Neural Networks (DNN)

- Multi-Layer Perceptron (MLP): Stacking layers of neural networks
 - More complex and rich functions / Logistic Regression (LR)
 - Neural network with one single hidden layer ⇒ universal approximator [Cybenko, 1989]

- Basis of the "deep learning" field
 - Hidden layers: intermediate representations from data
 - Can be learned with Backpropagation algorithm [Lecun, 1985, Rumelhart et al., 1986] (chain rule)

Convolutional Neural Networks (ConvNets)

ConvNets: sparse connectivity + shared weights

25600 + 100 + 2600 + 26 = 28326

Deep Learning in Computer Vision

[Krizhevsky, 2012] mite container ship motor scoote mite container shi motor scooter black widow go-kart iagua cockroact mopeo tick per ca w leopar golfcar

[Girshick et al. Fast R-CNN, 2015]

ImageNet Classification Error (Top 5)

[Kendall et al. SegNet, 2015]

Brought significant improvements in multiple vision tasks

Recurrent Neural Networks (RNNs)

 $\blacktriangleright \text{ RNN Cell: } \mathbf{h}_t = \phi(\mathbf{x}_t, \mathbf{h}_{t-1}) = f(\mathbf{U}\mathbf{x}_t + \mathbf{W}\mathbf{h}_{t-1} + \mathbf{b}_h) \text{ [Elman, 1990]}$

• h_t : network memory up to time $t \Rightarrow$ Sequence processing

 Specific architectures for vanishing gradients: LSTM [Hochreiter and Schmidhuber, 1997], GRU [Cho et al., 2014]

Deep Learning for Sequence Processing

- RNNs SOTA for many sequential decision making tasks: speech, translation, text/music generation, times series, etc
- Ex: forecasting future frames for energy regulation (EDF)

Deep Learning Robustness

Deep Learning: huge gain in average performance, *e.g.* precision for classification, ℓ_2 loss for regression

- In several contexts, need to optimize domain-specific metrics ⇒ new DILATE loss for deep time series forecasting
- ► Need for performance certification in safety-critical applications: robustness ⇒ new confidence / uncertainty measure for deep models

[Evtimov et al., 2017]

2 ConfidNet for confidence estimation

Context

Goal: Time series forecasting

- multi-step setting
- non stationary time series, that can present abrupt changes

Why ?: Important in many contexts, e.g. electricity (anticipate future drops of production), etc...

nicolas.thome@cnam.fr - Robust deep learning in real world

イロト イポト イヨト イヨト

10/46

Related work

Time series forecasting

Traditional methods:

- Auto-Regressive models (ARMA, ARIMA,...) [Box et al., 2015]
- State Space Models (Exponential smoothing, ...) [Hyndman et al., 2008]
- Assumption: stationary time series

Deep learning models:

- Seq2Seq Recurrent Neural Networks [Yu et al., 2017b]
- Complex architectures for multivariate forecasting: attention mechanisms, tensor factorizations [Yu et al., 2016]
- Deep State Space Models for modeling uncertainty [Rangapuram et al., 2018]

... but all models are trained with the Mean Squared Error (MSE) !

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Motivation: MSE Loss Limitation

 MSE loss typically used for training forecasting problems not adapted to judge the quality of a forecast.

nicolas.thome@cnam.fr - Robust deep learning in real world

э

Specific Metric for time series forecasting

Proposal: Distortion Loss with shApe and TimE (DILATE)

- Training dataset: *N* input time series $\mathcal{A} = {\mathbf{x}_i}_{i \in \{1:N\}}$
 - $\mathbf{x}_i = (\mathbf{x}_i^1, ..., \mathbf{x}_i^n) \in \mathbb{R}^{p \times n}$ input of length n

 - Y_i = (^{*}_y¹, ..., ^{*}_y^k) GT output of length k
 $\hat{\mathbf{y}}_i = (\hat{\mathbf{y}}_i^1, ..., \hat{\mathbf{y}}_i^k) \in \mathbb{R}^{d \times k}$ predicted output of length k (deep forecasting model)

$$\mathcal{L}_{DILATE}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) = \alpha \ \mathcal{L}_{shape}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) + (1 - \alpha) \ \mathcal{L}_{temporal}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i})$$
(1)

14/46

nicolas.thome@cnam.fr - Robust deep learning in real world

Training deep forecasting models with DILATE

• \mathcal{L}_{shape} and $\mathcal{L}_{temporal}$ based on Dynamic Time Warping [Sakoe and Chiba, 1990]

• \mathcal{L}_{shape} and $\mathcal{L}_{temporal}$ differentiable wrt network parameters

nicolas.thome@cnam.fr - Robust deep learning in real world

・ロト ・ ア・ ・ ア・ ・ ア・・

3

Dynamic Time Warping (DTW) [Sakoe and Chiba, 1990]

- ► DTW: alignment between 2 time series: $DTW(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i) = \min_{\mathbf{A} \in \mathcal{A}_{k,k}} \langle \mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i) \rangle$
- ▶ $\mathcal{A}_{k,k} \subset \{0,1\}^{k \times k}$: alignment paths (binary matrices), authorized moves $\rightarrow, \downarrow, \searrow$
- $\Delta(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i) \coloneqq [\delta(\hat{\mathbf{y}}_i^h, \overset{*}{\mathbf{y}}_i^j)]_{h,j}$ pairwise cost matrix, *e.g.* $\delta(\hat{\mathbf{y}}_i^h, \overset{*}{\mathbf{y}}_i^j) = (\hat{\mathbf{y}}_i^h \overset{*}{\mathbf{y}}_i^j)^2$

MSE vs DTW loss

Pairwise cost matrix and optimal alignment

イロト イロト イヨト イヨト 三日

- $\blacktriangleright \oplus$ DTW good candidate for a shape loss
- \ominus Not differentiable wrt Δ ...

Shape term \mathcal{L}_{shape} and Temporal term $\mathcal{L}_{temporal}$

- ► Soft min operator: $\min_{\gamma}(a_1, ..., a_n) = -\gamma \log(\sum_{i=1}^n \exp(-\frac{a_i}{\gamma})), \gamma > 0$
- Soft-DTW [Cuturi and Blondel, 2017] for shape term:

$$\mathcal{L}_{shape}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) = DTW_{\gamma}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \coloneqq -\gamma \log \left(\sum_{\mathbf{A} \in \mathcal{A}_{k,k}} \exp \left(-\frac{\left\langle \mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \right\rangle}{\gamma} \right) \right)$$
(2)

- Temporal term: based on DTW optimal path $\mathbf{A}^* = \underset{A \in \mathcal{A}_{k,k}}{\operatorname{argmin}} \left\langle \mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_i, \overset{*}{\mathbf{y}}_i) \right\rangle$:
 - A^* along the main diagonal \Rightarrow no temporal distortion
 - A^* departs from the diagonal \Rightarrow presence of temporal distortion

Temporal term $\mathcal{L}_{temporal}$

Generalized Time Distortion Index (TDI) [Frías-Paredes et al., 2017]

$$TDI(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) = \langle \mathbf{A}^{*}, \mathbf{\Omega} \rangle = \left(\arg\min_{\mathbf{A} \in \mathcal{A}_{k,k}} \left(\mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \right), \mathbf{\Omega} \right)$$
(3)

イロト 不良 とうほう 不良 とうほ

- Ω : penalizing matrix of size $k \times k$, e.g. $\Omega(h,j) = \frac{1}{k^2}(h-j)^2$
- $\mathbf{A}^* = \nabla_{\mathbf{A}} \mathsf{DTW}(\hat{\mathbf{y}}_i, \hat{\mathbf{y}}_i)$ not differentiable
- $\mathbf{A}^{*} \approx \mathbf{A}_{\gamma}^{*} = \nabla_{\Delta} DTW_{\gamma}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) = 1/Z \sum_{\mathbf{A} \in \mathcal{A}_{L,L}} \mathbf{A} \exp^{-\frac{\left(\mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i})\right)}{\gamma}}$
- Smooth temporal loss: L_{temporal}

$$\mathcal{L}_{temporal}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \coloneqq \left\langle \mathbf{A}_{\gamma}^{*}, \mathbf{\Omega} \right\rangle = \frac{1}{Z} \sum_{\mathbf{A} \in \mathcal{A}_{k,k}} \left\langle \mathbf{A}, \mathbf{\Omega} \right\rangle \exp^{-\frac{\left\langle \mathbf{A}, \mathbf{\Delta}(\hat{y}_{i}, \overset{*}{\mathbf{y}}_{i}) \right\rangle}{\gamma}} \quad (4)$$

Training deep forecasting models with DILATE

- Direct computation of \mathcal{L}_{shape} and $\mathcal{L}_{temporal}$ intractable $(|\mathcal{A}_{k,k}| = O(exp(k^2)))$
- Solution: dynamic programming \Rightarrow custom forward/backward implementation

Variants of DILATE

DILATE-t: "tangled" variant of DILATE

$$\begin{array}{c|c} \mathsf{DILATE} & \min_{\gamma} \langle \mathbf{A}, \mathbf{\Delta} \rangle + \langle A^*, \mathbf{\Omega} \rangle \\ \\ A \\ \mathsf{DILATE-t} & \min_{\gamma} \langle \mathbf{A}, \mathbf{\Delta} + \mathbf{\Omega} \rangle \end{array}$$

- DILATE-t: penalization matrix Ω inside the minimization of DTW
 - Shape and temporal term mixed during minimization
- > DILATE-t subsumes well-known temporally-constrained DTW methods:

Sakoe-Chiba hard band constraint $\Omega(h,j) = +\infty$ if |h-j| > T, 0 otherwiseWeighted DTW $\Omega(h,j) = f(|i-j|)$, f increasing function

Experimental setup: evaluate the k-step future trajectories

3 non stationary datasets from various domains:

- Synthetic
- ECG5000
- Traffic

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Qualitative forecasting results

Quantitative results

Training with DILATE vs MSE leads to:

- Equivalent results evaluated on MSE
- Better results evaluated on shape (DTW)
- Better results evaluated on timing (TDI)

		Fully connected network (MLP)			Recurrent neural network (Seq2Seq)		
Dataset	Eval	MSE	DTW_{γ}	DILATE (ours)	MSE	DTW_{γ}	DILATE (ours)
	MSE	1.65 ± 0.14	4.82 ± 0.40	1.67 ± 0.184	1.10 ± 0.17	2.31 ± 0.45	1.21 ± 0.13
Synth	DTW	38.6 ± 1.28	27.3 ± 1.37	32.1 ± 5.33	24.6 ± 1.20	$\textbf{22.7} \pm \textbf{3.55}$	23.1 ± 2.44
	TDI	15.3 ± 1.39	26.9 ± 4.16	$13.8~\pm~0.712$	17.2 ± 1.22	20.0 ± 3.72	$14.8~\pm~1.29$
ECG	MSE	31.5 ± 1.39	70.9 ± 37.2	37.2 ± 3.59	21.2 ± 2.24	75.1 ± 6.30	30.3 ± 4.10
	DTW	19.5 ± 0.159	18.4 ± 0.749	17.7 ± 0.427	17.8 ± 1.62	17.1 ± 0.650	16.1 ± 0.156
	TDI	7.58 ± 0.192	38.9 ± 8.76	$7.21~\pm~0.886$	8.27 ± 1.03)	27.2 ± 11.1	$\textbf{6.59}~\pm~\textbf{0.786}$
Traffic	MSE	0.620 ± 0.010	2.52 ± 0.230	1.93 ± 0.080	0.890 ± 0.11	2.22 ± 0.26	1.00 ± 0.260
	DTW	24.6 ± 0.180	$\textbf{23.4} \pm \textbf{5.40}$	$23.1~\pm~0.41$	24.6 ± 1.85	22.6 ± 1.34	23.0 ± 1.62
	TDI	$16.8\ \pm\ 0.799$	27.4 ± 5.01	$16.7\ \pm\ 0.508$	15.4 ± 2.25	22.3 ± 3.66	$14.4 \pm \ 1.58$

Table: Forecasting results evaluated with MSE, Shape and Time metrics, averaged over 10 runs (mean \pm standard deviation). For each experiment, best method(s) (Student t-test) in bold.

nicolas.thome@cnam.fr - Robust deep learning in real world

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Evaluation with external metrics

- Shape: ramp score [Vallance et al., 2017]
- Time: Hausdorff distance between 2 sets of change points

		MSE	DTW_{γ}	DILATE (ours)
	Hausdorff	2.87 ± 0.127	3.45 ± 0.318	$\textbf{2.70}~\pm~\textbf{0.166}$
Synthetic	Ramp score (×10)	5.80 ± 0.104	$\textbf{4.27}~\pm~\textbf{0.800}$	$4.99 \ \pm \ 0.460$
	Hausdorff	4.32 ± 0.505	6.16 ± 0.854	$\textbf{4.23}~\pm~\textbf{0.414}$
ECG5000	Ramp score	$\textbf{4.84} \pm \textbf{0.240}$	$\textbf{4.79}~\pm~\textbf{0.365}$	$\textbf{4.80}~\pm~\textbf{0.249}$
	Hausdorff	$\textbf{2.16} \pm \textbf{0.378}$	$\textbf{2.29}~\pm~\textbf{0.329}$	$\textbf{2.13}~\pm~\textbf{0.514}$
Traffic	Ramp score (×10)	6.29 ± 0.319	$\textbf{5.78}~\pm~\textbf{0.404}$	$\textbf{5.93}~\pm~\textbf{0.235}$

Table: Forecasting results of Seq2Seq evaluated with Hausdorff and Ramp Score, averaged over 10 runs (mean \pm standard deviation). For each experiment, best method(s) (Student t-test) in bold.

nicolas.thome@cnam.fr - Robust deep learning in real world

Comparison to tangled variants of DILATE

Eval loss		DILATE (ours)	DILATE ^t -Weighted	DILATE ^t -Band Constraint
Euclidian	MSE (×100)	$1.21~\pm~0.130$	1.36 ± 0.107	1.83 ± 0.163
Shape	DTW (x100)	$23.1~\pm~2.44$	$\textbf{20.5}~\pm~\textbf{2.49}$	21.6 ± 1.74
	Ramp	$\textbf{4.99}~\pm~\textbf{0.460}$	$5.56~\pm~0.87$	5.23 ±0.439
Time	TDI (x10)	$14.8~\pm~1.29$	17.8 ± 1.72	19.6 ± 1.72
	Hausdorff	$\textbf{2.70}~\pm~\textbf{0.166}$	$\textbf{2.85}~\pm~\textbf{0.210}$	3.30 ± 0.273

Table: Comparison to the tangled variants of DILATE for the Seq2Seq model on the Synthetic dataset, averaged over 10 runs (mean \pm standard deviation).

nicolas.thome@cnam.fr - Robust deep learning in real world

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

State of the art comparison

Baselines:

- LSTNet [Lai et al., 2018]: mono-step model, applied recursively for multi-step
- ▶ Deep AR [Laptev et al., 2017]: trained with MSE
- ▶ TT-RNN [Yu et al., 2017a]: SOTA Seq2Seq model

Eval loss		LSTNet-rec (MSE)	TT-RNN (MSE)	Deep AR (MSE)	Seq2Seq (DILATE)	TT-RNN (DILATE)
Euclidian	MSE	1.74 ± 0.11	$0.840 \ \pm \ 0.106$	0.966 ± 0.068	1.00 ± 0.260	0.930 ± 0.09
Shape	DTW	42.0 ± 2.2	25.9 ± 1.99	27.8 ± 1.55	23.0 ± 1.62	21.4 ± 0.79
	Ramp	9.00 ± 0.577	6.71 ± 0.546	7.56 ± 0.42	5.93 ± 0.235	5.27 ± 0.27
Time	TDI	25.7 ± 4.75	17.8 ± 1.73	14.6 ± 0.94	14.4 ± 1.58	15.7 ± 1.02
	Hausdorff	2.34 ± 1.41	2.19 ± 0.12	2.04 ± 0.11	2.13 ± 0.514	1.88 ± 0.153

 \Rightarrow DILATE can improve the performance of SOTA multi-step architecture on shape and time metrics, and equivalent on MSE

nicolas.thome@cnam.fr - Robust deep learning in real world

2 ConfidNet for confidence estimation

Robustness issues

Tesla's car crash back in 2016, due to a confusion between white side of trailer and brightly lit sky

イロト イポト イヨト イヨト

⇒ Are neural network's predictions reliable? How much is the model certain about our output? How do we account for uncertainty?

Confidence Estimation in Deep Learning

Classification framework

 $\mathcal{D} = \{ (\mathbf{x}_i, y_i^*) \}_{i=1}^N \text{ with } \mathbf{x}_i \in \mathbb{R}^D \text{ and } y_i^* \in \mathcal{Y} = \{1, ..., K\}.$ One can infer predicted class $\hat{y} = \operatorname{argmax}_{k \in \mathcal{Y}} p(Y = k | \mathbf{w}, \mathbf{x}).$

Maximum Class Probability [Hendrycks and Gimpel, 2017]
 A confidence measure baseline for deep neural networks:

$$MCP(\mathbf{x}) = \max_{k \in \mathcal{Y}} p(Y = k | \mathbf{w}, \mathbf{x})$$

Failure Prediction

Goal

Provide **reliable confidence measures** over model's predictions whose ranking among samples enables to **distinguish correct from erroneous predictions**.

MCP, a sub-optimal ranking confidence measure

$$MCP(\mathbf{x}) = \max_{k \in \mathcal{Y}} p(Y = k | \mathbf{w}, \mathbf{x})$$

overlapping distributions between successes vs. errors
 ⇒ hard to distinguish

nicolas.thome@cnam.fr - Robust deep learning in real world

3

Beyond MCP: Related Works

- Bayesian deep learning, e.g. MC-Dropout [Gal and Ghahramani, 2016]
- Specific confidence criterion for failure prediction, *e.g.* Trust Score [Jiang et al., 2018]
- Calibration related to overconfident prediction [Guo et al., 2017, Neumann et al., 2018]

MCP, a sub-optimal ranking confidence measure

$$MCP(\mathbf{x}) = \max_{k \in \mathcal{Y}} p(Y = k | \mathbf{w}, \mathbf{x})$$

- Overconfident prediction values
 ⇒ calibration [Guo et al., 2017, Neumann et al., 2018]
- BUT: calibration does not change error/correct prediction rankings

Our Approach: True Class Probability

When missclassifying, MCP \Leftrightarrow probability of the wrong class. \Rightarrow what if we had taken the probability of the true class?

True Class Probability

Given a sample (\mathbf{x}, y^*) and a model parametrized by \mathbf{w} , *True Class Probability* writes as:

$$\mathrm{TCP}(\mathbf{x}, y^*) = p(Y = y^* | \mathbf{w}, \mathbf{x})$$

Theoretical guarantees:

- $TCP(\mathbf{x}, y^*) > 1/2 \Rightarrow \hat{y} = y^*$
- $\operatorname{TCP}(\mathbf{x}, y^*) < 1/K \Rightarrow \hat{y} \neq y^*$

N.B: a normalized variant present stronger guarantees:

$$TCP^{r}(\mathbf{x}, y^{*}) = \frac{p(Y = y^{*} | \mathbf{w}, \mathbf{x})}{p(Y = \hat{y} | \mathbf{w}, \mathbf{x})}$$

nicolas.thome@cnam.fr - Robust deep learning in real world

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

TCP, a reliable confidence criterion

VGG16 on CIFAR-10

nicolas.thome@cnam.fr - Robust deep learning in real world

TCP, a reliable confidence criterion

SegNet on CamVid

nicolas.thome@cnam.fr - Robust deep learning in real world

イロト イポト イヨト イヨト

æ

35/46

ConfidNet: Learning TCP Model Confidence

However, $TCP(\mathbf{x}, y^*)$ is **unknown** at test time.

As $TCP(\mathbf{x}, y^*) \in [0, 1]$, we propose ℓ_2 loss to train ConfidNet:

$$\mathcal{L}_{\text{conf}}(\theta; \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{c}(\mathbf{x}_i, \theta) - c^*(\mathbf{x}_i, y_i^*))^2$$

N.**B**:
$$c^*(x, y^*) = TCP(x, y^*)$$
 (or $TCP^r(x, y^*)$)

nicolas.thome@cnam.fr - Robust deep learning in real world

э

36/46

ConfidNet learning scheme

nicolas.thome@cnam.fr - Robust deep learning in real world

イロト イポト イヨト イヨト 一日

ConfidNet learning scheme

nicolas.thome@cnam.fr - Robust deep learning in real world

Efficient ConfidNet learning scheme (1/2)

nicolas.thome@cnam.fr - Robust deep learning in real world

Efficient ConfidNet learning scheme (2/2)

nicolas.thome@cnam.fr - Robust deep learning in real world

Experiments

Traditional public **image classification** and **semantic segmentation** datasets

- MNIST: 32x32 BW, 10 classes, 60K training + 10K test
- SVHN: 32x32 RGB , 10 classes, 73K training + 26K test
- CIFAR-10 & CIFAR-100: 32x32 RGB, 10 / 100 classes, 50K training + 10K test
- CamVid: semantic segmentation, 360x480, 11 classes

Quantitative results

Dataset	Model	FPR-95%-TPR	AUPR-Error	AUPR-Success	AUC
MNIST	Baseline (MCP)	14.87	37.70	99.94	97.13
	MCDropout	15.15	38.22	99.94	97.15
MLP	TrustScore	12.31	52.18	99.95	97.52
	ConfidNet (Ours)	11.79	57.37	99.95	97.83
	Baseline (MCP)	5.56	35.05	99.99	98.63
MNIST	MCDropout	5.26	38.50	99.99	98.65
Small ConvNet	TrustScore	10.00	35.88	99.98	98.20
	ConfidNet (Ours)	3.33	45.89	99.99	98.82
-	Baseline (MCP)	31.28	48.18	99.54	93.20
SVHN	MCDropout	36.60	43.87	99.52	92.85
Small ConvNet	TrustScore	34.74	43.32	99.48	92.16
	ConfidNet (Ours)	28.58	50.72	99.55	93.44
	Baseline (MCP)	47.50	45.36	99.19	91.53
CIFAR-10	MCDropout	49.02	46.40	99.27	92.08
VGG16	TrustScore	55.70	38.10	98.76	88.47
	ConfidNet (Ours)	44.94	49.94	99.24	92.12
	Baseline (MCP)	67.86	71.99	92.49	85.67
CIFAR-100	MCDropout	64.68	72.59	92.96	86.09
VGG16	TrustScore	71.74	66.82	91.58	84.17
	ConfidNet (Ours)	62.96	73.68	92.68	86.28
CamVid SegNet	Baseline (MCP)	63.87	48.53	96.37	84.42
	MCDropout	62.95	49.35	96.40	84.58
	TrustScore		20.42	92.72	68.33
	ConfidNet (Ours)	61.52	50.51	96.58	85.02
			Image: Control of the second secon		► < Ξ >

nicolas.thome@cnam.fr - Robust deep learning in real world

- n c c

æ

42/46

Qualitative results

Failure detection for semantic segmentation on CamVid dataset

(a) Input Image

(b) Ground truth

(c) Prediction

(d) Model Errors

(e) ConfidNet

(f) MCP

э

イロト イポト イヨト イヨト

Qualitative results

Entropy as a confident estimate, such as in MC-Dropout [Gal and Ghahramani, 2016], may not always be adequate

(a) MCP=0.596, MCDropout=-0.787, ConfidNet=0.449

(c) MCP=0.696, MCDropout=-0.726, ConfidNet=0.436

(b) MCP=0.816, MCDropout=-0.786, ConfidNet=0.894

(d) MCP=0.814, MCDropout=-0.725, ConfidNet=0.886

(日) (四) (王) (王) (王) (王)

Conclusion

- DILATE & ConfidNet: new loss & confidence for deep neural networks
 - Agnostic to model archi, data and tasks
- ConfidNet perspectives:
 - Application to Unsupervised Domain Adaptation (UDA)
 - Relative vs absolute confidence, out-of-distributions
- DILATE perspectives:
 - Deep archi with physical priors
 - Weakly-supervised predictions

Thank your for your attention!

- DILATE: Vincent Le Guen, Nicolas Thome
 - NeurIPS'19 paper: Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models
 - > GitHub code: https://github.com/vincent-leguen/DILATE
- <u>ConfidNet</u>: Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, Patrick Pérez
 - NeurIPS'19 paper: Addressing Failure Prediction by Learning Model Confidence
 - GitHub code: https://github.com/valeoai/ConfidNet

nicolas.thome@cnam.fr - Robust deep learning in real world

(日) (周) (王) (王) (王)

References I

[Box et al., 2015] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

[Chang et al., 2019] Chang, W.-C., Li, C.-L., Yang, Y., and Póczos, B. (2019). Kernel change-point detection with auxiliary deep generative models. In International Conference on Learning Representations (ICLR).

[Cho et al., 2014] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. cite arxiv:1406.1078Comment: EMNLP 2014.

[Cuturi and Blondel, 2017] Cuturi, M. and Blondel, M. (2017). Soft-dtw: a differentiable loss function for time-series. In International Conference on Machine Learning (ICML), pages 894–903.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303-314.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. COGNITIVE SCIENCE, 14(2):179–211.

[Florita et al., 2013] Florita, A., Hodge, B.-M., and Orwig, K. (2013). Identifying wind and solar ramping events. In 2013 IEEE Green Technologies Conference (GreenTech), pages 147–152. IEEE.

[Frias-Paredes et al., 2017] Frias-Paredes, L., Mallor, F., Gastón-Romeo, M., and León, T. (2017). Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors. Energy Conversion and Management, 142:533–546.

イロト イヨト イヨト イヨト ヨー のくで

References II

[Gal and Ghahramani, 2016] Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning -Volume 48, ICML'16, pages 1050–1059. JMLR.org.

[Garreau et al., 2018] Garreau, D., Arlot, S., et al. (2018). Consistent change-point detection with kernels. Electronic Journal of Statistics, 12(2):4440–4486.

[Guo et al., 2017] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural networks. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 1321–1330.

[Hendrycks and Gimpel, 2017] Hendrycks, D. and Gimpel, K. (2017). A baseline for detecting misclassified and out-of-distribution examples in neural networks. Proceedings of International Conference on Learning Representations.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput., 9(8):1735–1780.

[Hyndman et al., 2008] Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media.

[Jiang et al., 2018] Jiang, H., Kim, B., Guan, M., and Gupta, M. (2018). To trust or not to trust a classifier. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages 5541–5552. Curran Associates, Inc.

イロト 不同下 不同下 不同下 一回 うろくや

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks.

In Advances in neural information processing systems, pages 1097–1105.

References III

[Lai et al., 2018] Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). Modeling long-and short-term temporal patterns with deep neural networks. In ACM SIGIR Conference on Research & Development in Information Retrieval, pages 95–104. ACM.

[Laptev et al., 2017] Laptev, N., Yosinski, J., Li, L. E., and Smyl, S. (2017). Time-series extreme event forecasting with neural networks at Uber. In International Conference on Machine Learning (ICML), number 34, pages 1–5.

[Lecun, 1985] Lecun, Y. (1985).

Une procedure d'apprentissage pour reseau a seuil asymmetrique (A learning scheme for asymmetric threshold networks), pages 599–604.

イロト 不同下 不同下 不同下 一回 うろくや

- [Li et al., 2015] Li, S., Xie, Y., Dai, H., and Song, L. (2015). M-statistic for kernel change-point detection. In Advances in Neural Information Processing Systems (NIPS), pages 3366-3374.
- [Neumann et al., 2018] Neumann, L., Zisserman, A., and Vedaldi, A. (2018). Relaxed softmax: Efficient confidence auto-calibration for safe pedestrian detection. In Machine Learning for Intelligent Transportation Systems Workshop, NIPS.
- [Rangapuram et al., 2018] Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., and Januschowski, T. (2018). Deep state space models for time series forecasting. In Advances in Neural Information Processing Systems (NeurIPS), pages 7785–7794.
- [Rumelhart et al., 1986] Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by back-propagating errors. Nature, 323:533-536.
- [Sakoe and Chiba, 1990] Sakoe, H. and Chiba, S. (1990). Dynamic programming algorithm optimization for spoken word recognition. Readings in speech recognition, 159:224.

[Truong et al., 2019] Truong, C., Oudre, L., and Vayatis, N. (2019). Supervised kernel change point detection with partial annotations. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3147–3151. IEEE.

[Vallance et al., 2017] Vallance, L., Charbonnier, B., Paul, N., Dubost, S., and Blanc, P. (2017). Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric. Solar Energy, 150:408–422.

[Yu et al., 2016] Yu, H.-F., Rao, N., and Dhillon, I. S. (2016). Temporal regularized matrix factorization for high-dimensional time series prediction. In Advances in neural information processing systems (NIPS), pages 847–855.

[Yu et al., 2017a] Yu, R., Zheng, S., Anandkumar, A., and Yue, Y. (2017a). Long-term forecasting using tensor-train RNNs. arXiv preprint arXiv:1711.00073.

[Yu et al., 2017b] Yu, R., Zheng, S., and Liu, Y. (2017b). Learning chaotic dynamics using tensor recurrent neural networks. In *ICML Workshop on Deep Structured Prediction*, volume 17.