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MultiMedia group at LIP6/DAPA/MALIRE

People
1 LIP6 lab in Paris

∼ 150 permanent researchers, ∼ 250 Phd students

2 DAPA department: Databases and Machine learning

∼ 35 permanent researchers, ∼ 50 Phd students

3 MLIA team: MAchine Learning and Information Acess (P. Gallinari)

∼ 10 permanent researchers, ∼ 20 Phd students

4 MultiMedia group: Matthieu Cord

2 permanent researchers (M. Cord, N.Thome), ∼ 10 Phd/Post-docs
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Context

Context

Semantic annotation of visual data

Holy Grail of computer vision

Filling the semantic gap: extremely challenging
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Context

Semantic annotation

Handcrafted features

Last decade : supremacy of robust local features: SIFT, STIP, etc

Edge-based features

Embedded into a coding/pooling framework: BoW model
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Context

Semantic annotation

Deep Learning: Learning Representations from data

Image/Video : Convolutionnal Neural Networks (CNN)

Used since the 80’s

⊕ deep models

	 difficult to train

Many parameters,
requires lots of data
Overfitting

2012:Big data (106 images, 103 classes)

Computational resources (GPU)
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Context

Representation Learning

Importance of learning representation from data (transfer learning)

Supervised vs unsupervised learning

big data: huge number of unlabeled data, many (but fewer) labeled
data
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Unsupervised Learning of Motion Features
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Unsupervised Learning of Motion Features

Dynamic Scene Classification

Context

Recognition of complex dynamic
natural scenes Computer vision descriptors

such as HOF [MLS09], LDS
[DCW+03] not adapated to
such context [DLD+12]

HOF: Constant
illumination constraints
LDS: 1st order markovian
assumption

Our idea: unsupervised
learning of motion
descriptors
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Unsupervised Learning of Motion Features

Dynamic Scene Classification

Unsupervised learning of motion descriptors

Manifold Untangling
Contributions:

Using Slow Feature Analysis
(SFA) for learning stable motion
descriptors

Compact description (low
dimensional space)

Embedded into a
coding/pooling architecture

Outperforming state-of-the-art
performances in 2 challenging
dynamic scenes databases
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Unsupervised Learning of Motion Features

Slow Feature Analysis

Intuition

Measurements are noisy/chaotic, perceptions are stable [WS02,
BW05]

Source : http://www.scholarpedia.org/article/Slow feature analysis

Idea: learning data
representations that ”slow
down” the signal

Goal: slow component
capture relevant motion
features

[WS02] L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural ComputI, 2002.
[BW05] P.Berkes and L. Wiskott . Slow feature analysis yields a rich repertoire of complex cell properties J.Vision, 2005.
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Unsupervised Learning of Motion Features

Slow Feature Analysis

Formulation

Input : D-dimensional temporal signal v(t) = [v1(t)v2(t)...vD(t)]T

Output : M-dimensional temporal signal y(t) = [y1(t)y2(t)..yM(t)]T

Linear model yj(t) = Sjv(t), ∀t et S ∈ RD×M
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Unsupervised Learning of Motion Features

Slow Feature Analysis

Formulation

yj(t) = Sjv(t), ∀t et S ∈ RD×M . Let us define:

〈y〉t temporal average of y
ẏ temporal derivative of y

SFA objective function:
min
Sj
〈ẏj2〉t (1)

Under the constraints:
1 〈yj〉t = 0 (zero mean)

2 〈y2
j 〉t = 1 (unit variance)

3 ∀j < j ′ : 〈yj , yj′〉t = 0 (decorrelation)

Can be rewritten as:

〈v̇v̇T 〉tSj = λjSj (2)
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Unsupervised Learning of Motion Features

Slow Feature Analysis

Formulation

Can be rewritten as: 〈v̇v̇T 〉tSj = λjSj

v̇v̇T diagonalization

Keeping M eigenvectors associated with the smallest eigenvalues
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Unsupervised Learning of Motion Features

Global Video Representation

SFA embedded into a coding/pooling scheme
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Unsupervised Learning of Motion Features

Slow Feature Analysis

Connection SFA ↔ LDA

Small variations ignored

Dominant/stable components of the motion encoded

[KM09] Klampfl S, Maass W. Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks,
Advances in Neural Information Processing Systems 22, 988-996, 2010. MIT Pres.
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Unsupervised Learning of Motion Features

Experiments

Classification results

Table: Recognition Rate (%) on dynamic scene datasets

HOF GIST Chaos SOE Ours
Maryland 17 38 36 41 60
Yupenn 59 56 20 74 85.5

Based on V1 features

Both SFA learning and
coding/pooling scheme
improve performances

Very competitive wrt
state-of-the-art methods
(mono-feature results)
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Supervised Metric Learning
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Supervised Metric Learning

Metric Learning

Context

Learning a metric: important for many applications

Difference wrt standard classification contexts:

Notion of similar/dissimilar 6= class labels
Large scale:

Adding new classes does not require to retrain the whole model
Zero-shot learning
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Supervised Metric Learning

Metric Learning

Context

Mahalanobis-like Metric Parametrization (matrix M SDP):
D2

M(Ii , Ij) = (xi − xj)
>M (xi − xj) = 〈M, xijx

>
ij 〉 = 〈M,Cij〉

Supervised metric learning: training set A with elements e

min
M
µR(M) +

∑
e∈A

`(M, e) (3)

R regularization term, `(M, e) data-dependent, e.g. based on:
Pairs: e = (Ii , Ij ). e similar ⇒ D2

M(Ii , Ij ) < u, e dissimilar ⇒ D2
M(Ii , Ij ) > l

Triplets: e = (Ii , I+
i , I

−
i ), e.g. LMNN [WS09]: DM(Ii , I+

i ) < DM(Ii , I−i ) + 1

[WS09] Weinberger, K. Q.; Saul L. K. Distance Metric Learning for Large Margin
Classification. Journal of Machine Learning Research 10: 207244, 2009.
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Supervised Metric Learning

Quadruplet-wise Metric Learning

Quadruplets

Constraints involving up to 4 images: e = (Ii , Ij , Ik , Il)
D2

M(Ik , Il) ≥ D2
M(Ii , Ij) + δ

Any pair or triplet constraint can be expressed with quadruplets

However, converse not true ⇒ only relative distances with
quadruplets

More general/flexible constraints, useful in various applicative contexts

Optimization Scheme

Objective function:

min
M∈Sd+

R(M) + Cq

∑
q∈A

ξq

s.t.∀q ∈ A : D2
M(Ik , Il ) ≥ D2

M(Ii , Ij ) + δq − ξq
ξq ≥ 0

(4)

Eq. 4 with full matrix M: solved
using projected (PSD cone)
gradient descent

Simplification for diagonal
matrices (∼ ranking SVM)
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Application: Relative Attributes

Attributes: Mid-level concepts (higher
than low-level features, lower than
high-level categories)

RA datasets: annotation provided at
the class level

Relative Attributes (RA) [PG11]:
Ranking two images wrt attributes
easier than binary labeling

[PG11] Devi Parikh, Kristen Grauman. Relative attributes, ICCV, pp.503-510, 2011.
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

QWise constraints for learning Relative Attributes

QWise constraints more robust to noise in
the labeling: second row, ranking should
rather be (g) ≺ (f) ∼ (h)

Learning M= LTL: each row of L is a
parameter vector for learning RA’s

Experiments on OSR and PubFig datasets

QWise outperforms baseline [PG11]
based on pairs
Complementary to class labels used in
LMNN
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Hierarchical classification

Qwise to learn taxonomy:

Rich annotations using a semantic taxonomy structure
How to exploit complex relations from a class hierarchy as proposed in
[Verma12]: Learn a metric such that images from close (sibling) classes
with respect to the class semantic hierarchy are more similar than
images from more distant classe

Learning a full matrix M

Improved classification
performances

[Verma12] N. Verma, D. Mahajan, S. Sellamanickam, and V. Nair. Learning hierarchical similarity metrics. In CVPR, 2012.
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Web archiving: change detection

Web crawling: useful to understand the change
behavior of websites over time

Significant changes between successive
versions of a same webpage ⇒ revisit the page

Focus on news websites

Advertisements or menus not significant

News content significant

Qwise Constraints:

Fully unsupervised,
but temporal
information available
Comparing
screenshots of
successive versions
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Web archiving: change detection

Evaluation: 50 days on CNN, NPR, BBC, NYT

GT annotation for change detection (news
updates) on 5 days

Features: GIST on a 10x10 grid

Metric: MAP on succ. Web pages
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Supervised Metric Learning

Conclusion

Representation Learning

Two Methods for learning representations:

An unsupervised method for learning motion descriptors (SFA)
A supervised metric learning scheme that can encompass exotic
(beyond binary labels) annotations and tackles various applications

Extension of our metric learning work on the regularization side ⇒
explicit control over the rank of the learned matrix

Joint work with C. Thériault, M.T. Law, M. Cord and P. Pérez.

Publications

Slow Feature Analysis
C. Thériault, N. Thome and M. Cord, P. Pérez. Perceptual principles for video classification with Slow Feature Analysis, IEEE
Journal of Selected Topics in Signal Processing, p. 1-10, vol 99, April 2014
C. Thériault, N. Thome and M. Cord. Dynamic Scene Classification: Learning Motion Descriptors with Slow Features Analysis,
CVPR 2013

Metric learning
M.T. Law, N. Thome and M. Cord. Fantope Regularization in Metric Learning, CVPR 2014
M.T. Law, N. Thome and M. Cord. Quadruplet-wise Image Similarity Learning, ICCV 2013
M.T. Law, N. Thome, S. Gancarski and M. Cord. Structural and Visual Comparisons for Web Page Archiving, DocEng, 2012
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Supervised Metric Learning

Conclusion

Projects

ANR

Finished: ASAP (deep learning), ITOWNS, GeoPeuple
VISIIR started on oct. 2013 on interative learning with eye-tracker

European SCAPE Project

Bilateral franco-brazilian CAPES-COFECUB. Collaborations::
UNICAMP: E. Valle, R. Torres, J. Stolfi

R. Minetto Phd Thesis

UFMG: A. de Albuquerque, S. Jamil,

S. Avila Phd Thesis

Questions ?
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