## Representation Learning for Image/Video Understanding

Nicolas Thome



Université Pierre et Marie Curie Laboratoire d'Informatique de Paris 6



12 Septembre 2014



Web Science Workshop GDRI



< ロト < 同ト < ヨト < ヨト

## MultiMedia group at LIP6/DAPA/MALIRE

#### People

- LIP6 lab in Paris
  - $\bullet~\sim$  150 permanent researchers,  $\sim$  250 Phd students
- Ø DAPA department: Databases and Machine learning
  - $\bullet~\sim$  35 permanent researchers,  $\sim$  50 Phd students
- MLIA team: MAchine Learning and Information Acess (P. Gallinari)
  - $\bullet~\sim$  10 permanent researchers,  $\sim$  20 Phd students
- MultiMedia group: Matthieu Cord
  - ullet 2 permanent researchers (M. Cord, N.Thome),  $\sim$  10 Phd/Post-docs

## Outline



- 2 Unsupervised Learning of Motion Features
- 3 Supervised Metric Learning

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

#### Context

## Context

#### Semantic annotation of visual data

- Holy Grail of computer vision
- Filling the semantic gap: extremely challenging



## Semantic annotation

#### Handcrafted features

- Last decade : supremacy of robust local features: SIFT, STIP, etc
- Edge-based features
- Embedded into a coding/pooling framework: BoW model



## Semantic annotation

#### Deep Learning: Learning Representations from data

#### • Image/Video : Convolutionnal Neural Networks (CNN)



Used since the 80's

- $\oplus$  deep models
- ullet  $\ominus$  difficult to train
  - Many parameters, requires lots of data
  - Overfitting



- 2012:Big data (10<sup>6</sup> images, 10<sup>3</sup> classes)
- Computational resources (GPU)

#### GDRI 2014

#### Context

#### **Representation Learning**

- Importance of learning representation from data (transfer learning)
- Supervised vs unsupervised learning
- big data: huge number of unlabeled data, many (but fewer) labeled data



## Outline



#### 2 Unsupervised Learning of Motion Features



3

## Dynamic Scene Classification

#### Context

• Recognition of complex dynamic natural scenes

# Maryland 'in-the-wild'



**Stabilized Yupenn** 

- Computer vision descriptors such as HOF [MLS09], LDS [DCW+03] not adapated to such context [DLD+12]
  - HOF: Constant illumination constraints
  - LDS: 1st order markovian assumption
- Our idea: unsupervised learning of motion descriptors

イロト イポト イヨト イヨト

# Dynamic Scene Classification

#### Unsupervised learning of motion descriptors

#### • Manifold Untangling



#### Contributions:

- Using Slow Feature Analysis (SFA) for learning stable motion descriptors
  - Compact description (low dimensional space)
- Embedded into a coding/pooling architecture
- Outperforming state-of-the-art performances in 2 challenging dynamic scenes databases

#### Intuition

• Measurements are noisy/chaotic, perceptions are stable [WS02, BW05]



- Idea: learning data representations that "slow down" the signal
- Goal: slow component capture relevant motion features

Source : http://www.scholarpedia.org/article/Slow\_feature\_analysis

[WS02] L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Computl, 2002. [BW05] P.Berkes and L. Wiskott . Slow feature analysis yields a rich repertoire of complex cell properties J.Vision, 2005.

#### Formulation

- Input : *D*-dimensional temporal signal  $\mathbf{v}(t) = [v_1(t)v_2(t)...v_D(t)]^T$
- Output : *M*-dimensional temporal signal  $\mathbf{y}(t) = [y_1(t)y_2(t)..y_M(t)]^T$



• Linear model  $y_j(t) = S_j v(t)$ ,  $\forall t$  et  $\mathbf{S} \in \mathbb{R}^{D imes M}$ 

イロト イポト イヨト イヨト

#### Formulation

• 
$$y_j(t) = S_j v(t)$$
,  $\forall t$  et  $\mathbf{S} \in \mathbb{R}^{D \times M}$ . Let us define:

- $\langle y \rangle_t$  temporal average of y
- $\dot{y}$  temporal derivative of y
- SFA objective function:

$$\min_{S_i} \langle \dot{y_j}^2 \rangle_t$$

Under the constraints:

$$(y_j)_t = 0 \text{ (zero mean)}$$

2  $\langle y_i^2 \rangle_t = 1$  (unit variance)

- Can be rewritten as:

$$\langle \dot{\mathbf{v}}\dot{\mathbf{v}}^{\mathsf{T}} \rangle_t S_j = \lambda_j S_j$$

(2)

(1)

#### Formulation



- Can be rewritten as:  $\langle \dot{\mathbf{v}}\dot{\mathbf{v}}^{\mathcal{T}}
  angle_{t}S_{j}=\lambda_{j}S_{j}$
- $\dot{\mathbf{v}}\dot{\mathbf{v}}^{\mathcal{T}}$  diagonalization
- Keeping M eigenvectors associated with the smallest eigenvalues

## Global Video Representation

#### SFA embedded into a coding/pooling scheme



#### Connection SFA $\leftrightarrow$ LDA



- Small variations ignored
- Dominant/stable components of the motion encoded

[KM09] Klampfl S, Maass W. Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks, Advances in Neural Information Processing Systems 22, 988-996, 2010. MIT Pres.

nicolas.thome@lip6.fr

イロト イポト イヨト イヨト

#### Experiments

#### **Classification results**

Maryland 'in-the-wild'



Stabilized Yupenn

Table: Recognition Rate (%) on dynamic scene datasets

|          | HOF | GIST | Chaos | SOE | Ours |
|----------|-----|------|-------|-----|------|
| Maryland | 17  | 38   | 36    | 41  | 60   |
| Yupenn   | 59  | 56   | 20    | 74  | 85.5 |



- Based on V1 features
- Both SFA learning and coding/pooling scheme improve performances
- Very competitive wrt state-of-the-art methods (mono-feature results)

nicolas.thome@lip6.fr

## Outline



- 2 Unsupervised Learning of Motion Features
- Supervised Metric Learning

3

## Metric Learning

#### Context



- Learning a metric: important for many applications
- Difference wrt standard classification contexts:
  - Notion of similar/dissimilar  $\neq$  class labels
  - Large scale:
    - Adding new classes does not require to retrain the whole model
    - Zero-shot learning

## Metric Learning

#### Context

- Mahalanobis-like Metric Parametrization (matrix **M** SDP):  $D_{\mathbf{M}}^{2}(\mathcal{I}_{i},\mathcal{I}_{j}) = (\mathbf{x}_{i} - \mathbf{x}_{j})^{\top}\mathbf{M} (\mathbf{x}_{i} - \mathbf{x}_{j}) = \langle \mathbf{M}, \mathbf{x}_{ij}\mathbf{x}_{ij}^{\top} \rangle = \langle \mathbf{M}, \mathbf{C}_{ij} \rangle$
- Supervised metric learning: training set  $\mathcal{A}$  with elements e

$$\min_{\mathbf{M}} \mu R(\mathbf{M}) + \sum_{e \in \mathcal{A}} \ell(\mathbf{M}, e)$$
(3)

- R regularization term,  $\ell(M, e)$  data-dependent, e.g. based on:
  - Pairs:  $e = (\mathcal{I}_i, \mathcal{I}_j)$ . e similar  $\Rightarrow D^2_{\mathsf{M}}(\mathcal{I}_i, \mathcal{I}_j) < u$ , e dissimilar  $\Rightarrow D^2_{\mathsf{M}}(\mathcal{I}_i, \mathcal{I}_j) > l$ • Triplets:  $e = (\mathcal{I}_i, \mathcal{I}_i^+, \mathcal{I}_i^-)$ , e.g. LMNN [WS09]:  $D_{\mathsf{M}}(\mathcal{I}_i, \mathcal{I}_i^+) < D_{\mathsf{M}}(\mathcal{I}_i, \mathcal{I}_i^-) + 1$



[WS09] Weinberger, K. Q.; Saul L. K. Distance Metric Learning for Large Margin Classification. Journal of Machine Learning Research 10: 207244, 2009.

GDRI 2014

## Quadruplet-wise Metric Learning

#### Quadruplets

- Constraints involving up to 4 images:  $e = (I_i, I_j, I_k, I_l)$
- $D^2_{\mathsf{M}}(\mathcal{I}_k, \mathcal{I}_l) \geq D^2_{\mathsf{M}}(\mathcal{I}_i, \mathcal{I}_j) + \delta$
- Any pair or triplet constraint can be expressed with quadruplets
- $\bullet\,$  However, converse not true  $\Rightarrow\,$  only relative distances with quadruplets
  - More general/flexible constraints, useful in various applicative contexts

#### **Optimization Scheme**

Objective function:

$$\begin{split} \min_{\boldsymbol{A} \in \mathbb{S}_{+}^{d}} \boldsymbol{R}(\boldsymbol{\mathsf{M}}) + C_{q} \sum_{q \in \mathcal{A}} \xi_{q} \\ \text{s.t.} \forall q \in \mathcal{A} : D_{\boldsymbol{\mathsf{M}}}^{2}(\mathcal{I}_{k}, \mathcal{I}_{l}) \geq D_{\boldsymbol{\mathsf{M}}}^{2}(\mathcal{I}_{i}, \mathcal{I}_{j}) + \delta_{q} - \xi_{q} \\ \xi_{q} \geq 0 \end{split}$$

$$(4)$$

- Eq. 4 with full matrix M: solved using projected (PSD cone) gradient descent
- Simplification for diagonal matrices (~ ranking SVM)

#### **Application: Relative Attributes**

 Attributes: Mid-level concepts (higher than low-level features, lower than high-level categories)



• RA datasets: annotation provided at the class level

[PG11] Devi Parikh, Kristen Grauman. Relative attributes, ICCV, pp.503-510, 2011.

nicolas.thome@lip6.fr



 Relative Attributes (RA) [PG11]: Ranking two images wrt attributes easier than binary labeling





#### **QWise constraints for learning Relative Attributes**



|                | OSR                                | Pubfig                             |
|----------------|------------------------------------|------------------------------------|
| Parikh's code  | $71.3 \pm 1.9\%$                   | $71.3\pm2.0\%$                     |
| LMNN-G         | $70.7 \pm 1.9\%$                   | $69.9 \pm 2.0\%$                   |
| LMNN           | $71.2 \pm 2.0\%$                   | $71.5\pm1.6\%$                     |
| RA + LMNN      | $71.8 \pm 1.7\%$                   | $74.2 \pm 1.9\%$                   |
| Qwise          | $74.1 \pm 2.1\%$                   | $74.5 \pm 1.3\%$                   |
| Qwise + LMNN-G | $\textbf{74.6} \pm \textbf{1.7}\%$ | $76.5 \pm 1.2\%$                   |
| Qwise + LMNN   | $74.3 \pm 1.9\%$                   | $\textbf{77.6} \pm \textbf{2.0}\%$ |

- QWise constraints more robust to noise in the labeling: second row, ranking should rather be (g)  $\prec$  (f)  $\sim$  (h)
- Learning M= L<sup>T</sup>L: each row of L is a parameter vector for learning RA's
- Experiments on OSR and PubFig datasets
  - QWise outperforms baseline [PG11] based on pairs
  - Complementary to class labels used in LMNN



#### **Hierarchical classification**

- Qwise to learn taxonomy:
  - Rich annotations using a semantic taxonomy structure
  - How to exploit complex relations from a class hierarchy as proposed in [Verma12]: Learn a metric such that images from close (sibling) classes with respect to the class semantic hierarchy are more similar than images from more distant classe



- Learning a full matrix **M**
- Improved classification performances

[Verma12] N. Verma, D. Mahajan, S. Sellamanickam, and V. Nair. Learning hierarchical similarity metrics. In CVPR, 2012.

#### **GDRI 2014**

#### Web archiving: change detection

- Web crawling: useful to understand the change behavior of websites over time
  - Significant changes between successive versions of a same webpage  $\Rightarrow$  revisit the page
- Focus on news websites
  - Advertisements or menus not significant
  - News content significant



#### • Qwise Constraints:

- Fully unsupervised, but temporal information available
- Comparing screenshots of successive versions



#### Web archiving: change detection

- Evaluation: 50 days on CNN, NPR, BBC, NYT
- GT annotation for change detection (news updates) on 5 days
- Features: GIST on a 10×10 grid
- Metric: MAP on succ. Web pages

| Sito  |                                                                                                                                | CNN                                                                                    |                                                                                               |                                                                              | NPD                                                                    |                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Site  |                                                                                                                                |                                                                                        |                                                                                               | INFIG                                                                        |                                                                        |                                                                                                                     |
| Eval. | $AP_S$                                                                                                                         | $AP_D$                                                                                 | MAP                                                                                           | $AP_S$                                                                       | $AP_D$                                                                 | MAP                                                                                                                 |
| Eucl. | 68.1                                                                                                                           | 85.9                                                                                   | 77.0                                                                                          | 96.3                                                                         | 89.5                                                                   | 92.9                                                                                                                |
| Dist. | $\pm 0.6$                                                                                                                      | $\pm 0.6$                                                                              | $\pm 0.5$                                                                                     | $\pm 0.2$                                                                    | $\pm 0.5$                                                              | $\pm 0.3$                                                                                                           |
| LMNN  | 78.8                                                                                                                           | 91.7                                                                                   | 85.2                                                                                          | 98.0                                                                         | 92.5                                                                   | 95.2                                                                                                                |
|       | $\pm 1.9$                                                                                                                      | $\pm 1.7$                                                                              | ±1.8                                                                                          | ±0.6                                                                         | ±1.1                                                                   | $\pm 0.9$                                                                                                           |
| Qwise | 82.7                                                                                                                           | 94.6                                                                                   | 88.6                                                                                          | 98.6                                                                         | 94.3                                                                   | 96.5                                                                                                                |
|       | $\pm 4.1$                                                                                                                      | $\pm 1.8$                                                                              | $\pm 2.9$                                                                                     | ±0.2                                                                         | $\pm 0.6$                                                              | $\pm 0.4$                                                                                                           |
|       | New York Times                                                                                                                 |                                                                                        |                                                                                               | BBC                                                                          |                                                                        |                                                                                                                     |
|       | New                                                                                                                            | York T                                                                                 | imes                                                                                          |                                                                              | BBC                                                                    |                                                                                                                     |
|       | New<br>AP <sub>S</sub>                                                                                                         | York T<br>AP <sub>D</sub>                                                              | imes<br>MAP                                                                                   | AP <sub>S</sub>                                                              | BBC<br>$AP_D$                                                          | MAP                                                                                                                 |
|       | New<br>AP <sub>S</sub><br>69.8                                                                                                 | York T<br>AP <sub>D</sub><br>79.5                                                      | imes<br>MAP<br>74.6                                                                           | AP <sub>S</sub><br>91.1                                                      | BBC<br>AP <sub>D</sub><br>76.7                                         | MAP<br>83.9                                                                                                         |
|       | New<br>AP <sub>S</sub><br>69.8<br>$\pm 0.9$                                                                                    | York T<br>AP <sub>D</sub><br>79.5<br>$\pm 0.4$                                         | imes<br>MAP<br>74.6<br>±0.5                                                                   | $AP_S$<br>91.1<br>$\pm 0.3$                                                  | BBC<br>AP <sub>D</sub><br>76.7<br>±0.6                                 | MAP<br>83.9<br>±0.4                                                                                                 |
|       | New<br>AP <sub>S</sub><br>69.8<br>$\pm 0.9$<br>83.2                                                                            | York T<br>AP <sub>D</sub><br>79.5<br>$\pm 0.4$<br>89.1                                 | imes<br>MAP<br>74.6<br>±0.5<br>86.1                                                           | AP <sub>S</sub><br>91.1<br>±0.3<br>92.5                                      | $BBC \\ AP_D \\ 76.7 \\ \pm 0.6 \\ 80.1$                               | MAP<br>83.9<br>±0.4<br>86.3                                                                                         |
|       | New<br>AP <sub>S</sub><br>69.8<br>$\pm 0.9$<br>83.2<br>$\pm 1.4$                                                               | York T<br>$AP_D$<br>79.5<br>$\pm 0.4$<br>89.1<br>$\pm 2.7$                             | imes<br>MAP<br>74.6<br>±0.5<br>86.1<br>±2.0                                                   | $AP_S$<br>91.1<br>$\pm 0.3$<br>92.5<br>$\pm 0.4$                             | $BBC = AP_D$<br>$76.7 \pm 0.6$<br>$80.1 \pm 1.0$                       | MAP<br>83.9<br>±0.4<br>86.3<br>±0.6                                                                                 |
|       | New<br>AP <sub>S</sub><br>69.8<br>±0.9<br>83.2<br>±1.4<br>85.5                                                                 | York T<br>$AP_D$<br>79.5<br>$\pm 0.4$<br>89.1<br>$\pm 2.7$<br>92.3                     | imes<br>MAP<br>74.6<br>±0.5<br>86.1<br>±2.0<br>88.9                                           | $AP_S$<br>91.1<br>$\pm 0.3$<br>92.5<br>$\pm 0.4$<br>92.8                     | BBC<br>$AP_D$<br>76.7<br>$\pm 0.6$<br><b>80.1</b><br>$\pm 1.0$<br>79.3 | MAP<br>83.9<br>±0.4<br><b>86.3</b><br>±0.6<br>86.1                                                                  |
|       | $\begin{array}{r} {\rm New} \\ {\rm AP}_S \\ 69.8 \\ \pm 0.9 \\ 83.2 \\ \pm 1.4 \\ {\color{red}{85.5}} \\ \pm 5.4 \end{array}$ | York T<br>$AP_D$<br>79.5<br>$\pm 0.4$<br>89.1<br>$\pm 2.7$<br><b>92.3</b><br>$\pm 4.1$ | MAP           74.6           ±0.5           86.1           ±2.0           88.9           ±4.6 | $AP_S$<br>91.1<br>$\pm 0.3$<br>92.5<br>$\pm 0.4$<br><b>92.8</b><br>$\pm 0.4$ | $BBC = AP_D$<br>$76.7 \pm 0.6$<br>$80.1 \pm 1.0$<br>$79.3 \pm 1.3$     | $\begin{array}{r} {\rm MAP} \\ 83.9 \\ \pm 0.4 \\ \textbf{86.3} \\ \pm \textbf{0.6} \\ 86.1 \\ \pm 0.8 \end{array}$ |



nicolas.thome@lip6.fr

## Conclusion

#### **Representation Learning**

- Two Methods for learning representations:
  - An unsupervised method for learning motion descriptors (SFA)
  - A supervised metric learning scheme that can encompass exotic (beyond binary labels) annotations and tackles various applications
- Extension of our metric learning work on the regularization side  $\Rightarrow$  explicit control over the rank of the learned matrix
- Joint work with C. Thériault, M.T. Law, M. Cord and P. Pérez.

#### Publications

#### • Slow Feature Analysis

C. Thériault, N. Thome and M. Cord, P. Pérez. Perceptual principles for video classification with Slow Feature Analysis, IEEE Journal of Selected Topics in Signal Processing, p. 1-10, vol 99, April 2014

C. Thériault, N. Thome and M. Cord. Dynamic Scene Classification: Learning Motion Descriptors with Slow Features Analysis, CVPR 2013

#### Metric learning

M.T. Law, N. Thome and M. Cord. Fantope Regularization in Metric Learning, CVPR 2014 M.T. Law, N. Thome and M. Cord. Quadruplet-wise Image Similarity Learning, ICCV 2013 M.T. Law, N. Thome, S. Gancarski and M. Cord. Structural and Visual Comparisons for Web Page Archiving, DocEng, 2012

## Conclusion

#### Projects

- ANR
  - Finished: ASAP (deep learning), ITOWNS, GeoPeuple
  - VISIIR started on oct. 2013 on interative learning with eye-tracker
- European SCAPE Project
- Bilateral franco-brazilian CAPES-COFECUB. Collaborations::
  - UNICAMP: E. Valle, R. Torres, J. Stolfi
    - R. Minetto Phd Thesis
  - UFMG: A. de Albuquerque, S. Jamil,
    - S. Avila Phd Thesis

# Questions ?

伺下 イヨト イヨト