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This paper deals with image categorization from weak
supervision, e.g. global image labels. We propose to improve
the region selection performed in latent variable models such
as Latent Support Vector Machine (LSVM) by leveraging
human eye movement features collected from an eye-tracker
device. We introduce a new model, Gaze Latent Support
Vector Machine (G-LSVM), whose region selection during
training is biased toward regions with a large gaze density
ratio. On this purpose, the training objective is enriched with
a gaze loss, from which we derive a convex upper bound,
leading to a Concave-Convex Procedure (CCCP) optimiza-
tion scheme. Experiments show that G-LSVM significantly
outperforms LSVM in both object detection and action recog-
nition problems on PASCAL VOC 2012. We also show that
our G-LSVM is even slightly better than a model trained
from bounding box annotations, while gaze labels are much
cheaper to collect.

Index Terms— weakly supervised learning, latent SVM,
eye-tracking, gaze features, CCCP

1. INTRODUCTION

In the era of statistical machine learning, an overwhelm-
ing amount of images is available. For example, Ima-
geNet [1] contains more than 10 million labeled images.
The number of images also grows rapidly as multimedia
communications and mobile devices become essential in our
decades. Ever since 2013, 350 million new photos are posted
on Facebook everyday 1. We may never be able to label all
images in a reasonable time by human labor.

The success of deep learning in computer vision largely
improved the image classification accuracy on ImageNet [2].
Also, the deep models trained on large scale datasets were
found to adapt well to other specific vision tasks [3, 4]. How-
ever, the problem is exacerbated when detailed annotations
are used, e.g. bounding-boxes or pixel-wise labels, which are
much onerous and expensive to collect than image-level an-
notations [5]. Additionally, using such accurate annotations
during training can significantly boost categorization perfor-
mances [6].

One option to get the best of both worlds is to develop

1http://www.businessinsider.com/facebook-350-million-photos-each-
day-2013-9?IR=T

weakly supervised learning (WSL) frameworks. Basically,
WSL consists in designing accurate models able to pre-
dict detailed annotations, e.g. region localization, while
being trained from coarse labels, e.g. global image labels.
In machine learning, the Latent Support Vector Machine
(LSVM) [7] introduces a theoretically sound formalism for
WSL. Several attempts have been devoted to applying LSVM
for weakly supervised object detection and scene recogni-
tion [8, 9, 10, 11, 12, 13]. One challenge with LSVM is due
to the introduction of latent variables, which makes the result-
ing optimization problem non-convex. To improve training
performances, different solutions have recently been explored
to apply the curriculum learning idea, i.e. how to find easy
samples to incrementally train the model [14, 10, 11]. When
using sliding window approaches, the size of the latent space
becomes huge. To overcome this issue, incremental explo-
ration strategies have been proposed in [15, 10, 11]. Finally,
recent works focus on enriching the prediction function, by
using several (top) instance scores instead of using a single
max [16], or by incorporating negative evidence [17, 18].

In this paper, we propose to incorporate gaze features ex-
tracted from an eye-tracker device, to improve the training of
LSVM models. Gaze features are appealing since they can be
generated by humans at almost zero-cost when performing a
recognition task. Collecting gazes is more user-friendly and
less time-consuming than collecting traditional annotations:
it takes about 1 second to collect gazes for one image [19],
comparing to 26s for drawing a bounding-box [20] and 15-
60 min for labeling the segmentation mask for an image [21].
For different purposes, people design different collection pro-
tocols to acquire gazes [22, 19, 23, 24]. The collection pro-
tocols can be grouped into two main groups: task-driven and
free-viewing. Task-driven means the annotators are given a
specific semantic to look at, e.g. dog or a group of actions.
Free-viewing means the annotators view the image freely. In
this paper, we use two task-driven datasets [19, 23]. Re-
cently, attempts have been devoted to incorporating gazes as
weak supervision signals [25, 19, 26] for improving the per-
formance of classification or segmentation systems. In [19],
objects detectors are trained from gaze features instead of ac-
curate bounding boxes, showing promising results.

This paper introduces G(aze)-LSVM, a new weakly su-
pervised learning model for image classification. G-LSVM
generalizes latent SVM (LSVM) by exploiting human gazes



for localizing objects. Fig. 1 illustrates the rationale of our
model, where latent variables correspond to all possible re-
gions in the image. The goal of LSVM is to select semanti-
cally meaningful regions, e.g. those containing the target ob-
ject class (region Z in Fig. 1a). To improve the quality of the
region selection, G-LSVM supports regions with high den-
sity of gazes (region Z in Fig. 1b) with respect to the region
with the highest density of gazes (region Zi in Fig. 1b), by
assuming that gaze features are related to regions relevant for
the recognition task. Unlike [27, 25], G-LSVM only exploits
gazes during training phase, and uses the pure visual informa-
tion at test time without gazes. While [19, 28] focuses respec-
tively on object detection and action recognition in the video,
our targeted goal is to improve classification performances in
the still images by using improved predicted latent regions.

In section 2, we formally define G-LSVM and its training
procedure. Experiments conducted in section 3 show that
G-LSVM significantly outperforms LSVM on both object
dataset and action dataset of PASCAL VOC 2012.

2. GAZE-LSVM (G-LSVM) MODEL

We consider the problem of learning with weak supervision
in a binary classification context.

(a) LSVM (b) G(aze)-LSVM

Fig. 1: Gazes bias the selection of latent regions for LSVM.
The interpretation is in the section 1.

Our prediction function f : X → Y takes as input an
image x, and outputs a binary y ∈ {+1,−1}. Each image x
is associated to latent variables z ∈ Z(x), which corresponds
to sub-regions, as illustrated in Figure 1. For each region z in
image x, we extract a feature vector Φ(x, z) ∈ Rd. Our model
is linear with respect to Φ, i.e. each region z is assigned the
score 〈w,Φ(x, z)〉. The problem is weakly supervised since
the region-specific labels are unknown during training. Our
prediction takes the maximum score over latent variables:

fw(x) = max
z∈Z(x)

〈w,Φ(x, z)〉 (1)

Note that our prediction function in Eq. (1) is the same as
in LSVM [8], such that the label prediction at test time does
not need gaze information.

2.1. G-LSVM Training

Our training scheme, however, penalizes the selection of la-
tent regions based on gaze information. The general expres-

sion of G-LSVM training objective is as follows:

LG(w) =
1

2
‖w‖2 +

n∑
i=1

∆c(ŷi, yi) + γ ·∆g(ẑi, zi) (2)

where yi is the true label of image xi, zi is the region with
the maximum number of gazes, ŷi = sgn (fw(xi)) is the la-
bel predicted by our model, ẑi = arg max

z∈Z(xi)

〈w,Φ(xi, z)〉 is

the selected region, and 1
2‖w‖

2 is the standard max margin
regularization term. For each training example, Eq. (2) in-
cludes a classification loss ∆c, and a gaze loss ∆g , with a
trade-off parameter γ. A standard classification metric is the
0/1 loss, which is, however, difficult to optimize. As in SVM,
we use the hinge loss as upper-bound, so that ∆c(ŷi, yi) =
max(0, 1− yifw(xi)).

The novelty in our training scheme is the introduction of
a gaze loss. Its preliminary definition is δg:

δg(ẑi, zi) = 1− g(xi, ẑi)

g(xi, zi)
(3)

where g(xi, z) is the number of gazes in the region z for
image xi. Fig. 1b illustrates the proposed gaze loss, with blue
circles representing gaze annotations, and zi is shown in red.
In this example the region z contains 18 gazes out of 20 for
zi, so that the gaze loss is 0.1, leading to a small penalization.

δg(ẑi, zi) in Eq. (3) is difficult to optimize, because the
dependency on w is complex and non-smooth. To overcome
this issue, we derive a convex upper-bound ∆g , inspired from
margin-rescaling [29]:

∆g(ẑi, zi)= max
z∈Z(xi)

[δg(z, zi) + 〈w,Φ(xi, z)〉]− 〈w,Φ(xi, zi)〉 (4)

Our training objective in Eq. (2) is thus biased by the gaze
loss ∆g , so that G-LSVM learns different w parameters com-
pared to LSVM.

2.2. Optimization

To minimize our training objective function, we first show
that Eq. (2) can be rewritten as a difference of convex func-
tions, i.e. u(w) − v(w), where v(w) = C

∑np

ip=1 fw(xip),
u(w) = 1

2‖w‖
2 + C

∑np

ip=1[γ∆g(ẑi, zi) + max(1, fw(xip))]

+C
∑nn

in=1 max(0, 1+fw(xin)), where np (nn) is the number
of positive (negative) examples. Note that in the previous de-
composition, the non-convex classification loss of every posi-
tive example is first decomposed into a difference of two con-
vex functions: max(0, 1− fw(x)) = max(1, fw(x))− fw(x).

We then optimize u(w) − v(w) by CCCP (algo.1). The
CCCP algorithm is guaranteed to decrease the objective func-
tion at every iteration and to converge to a local minimum or
saddle point [30]. In algo 1 the line 3 involves linearizing
the concave part −v(w). We calculate the supergradient vt of
−v(w) at the point wt, where vt = −

∑np

ip=1 Φ(xi, ẑi). At
line 4, the problem becomes convex, we can use any convex
optimization tool for solving this problem, e.g. SGD.



Algorithm 1: Concave-Convex Procedure
Output: w∗

1 Set t = 0, stopping criterion ε and initialize w by w0

2 repeat
3 Find hyperplane vt to linearize −v(w):

−v(w) ≤ −v(wt) + (w− wt) · vt,
4 Solve wt+1 = argminwu(w) + w · vt,
5 Set t = t+1,
6 until [u(wt)− v(wt)]− [u(wt−1)− v(wt−1))] < ε;

3. EXPERIMENTAL RESULTS

Two datasets, PASCAL VOC 2012 action and object, are used
for evaluation. For both datasets, [23, 19] collected gaze an-
notations in task-driven manners.

3.1. Statistical consistency of gaze information

Before evaluating G-LSVM, we first provide a detailed analy-
sis of the gaze data consistency. We compute statistics for the
proportion of gazes falling into or outside the bounding boxes
and compare it to the proportion of image pixels (Fig. 2). Sta-
tistically, for action dataset, 68.8% of the gazes fall into the
ground-truth bounding-box, while the score of pixels is only
30.6%. Similarly, the scores of object dataset is 77.3% vs
36.9%. This preliminary study provides a quantitative valida-
tion that human gazes are highly related to object localization,
and convey relevant features for classification.

(a) gaze proportion of action (b) pixel proportion of action

(c) gaze proportion of object (d) pixel proportion of object

Fig. 2: Proportions of gazes and pixel numbers in (outside)
the ground-truth bounding boxes.

3.2. Experimental results

Setup: In this paper, latent regions correspond to square im-
age regions extracted with a multi-scale sliding window strat-
egy. Region sizes vary from 90% to 30% of the whole image
area, with a stride of 10%. Each region is described by the
state-of-the-art deep features extracted from the pre-trained
imagenet-vgg-m-2048 deep model2, which are subsequently
L2-normalized.

2http://www.vlfeat.org/matconvnet/pretrained/

Performance comparison: We compare G-LSVM to the
baseline LSVM, with C = 104 for both models, and γ = 0.2
for G-LSVM. G-LSVM and LSVM are trained independently
for each scale. We perform scale combination using a simple
object bank representation [31], leading to a 8-dimensional
vector for each image. We also report performances of a SVM
classifier trained on deep features computed on the whole im-
age, denoted as wSVM.

The results are gathered in Table. 1, using 5 random folds
on the train+val sets [32], and evaluating performances
with the standard mAP metric. We show that G-LSVM
outperforms LSVM by a margin of 2.1% for action (resp.
0.4% for object). Paired T-tests reveal that the improvement
is statistically significant for a risk of less than 0.5% for ac-
tion (resp. 2% for object). Both methods largely outperform
wSVM, which clearly validate that training WSL models is
able to capture local information.

G-LSVM LSVM wSVM
action 70.5± 0.8 68.4± 1.0 60.8± 1.2
object 92.4± 1.0 92.0± 1.1 88.2± 1.2

Table 1: mAP(%) of combination multi-scale model.

Fig. 3 shows the performance evolution for LSVM and
G-LSVM when varying the region scale s. We observe that
the improvement of G-LSVM is more pronounced at small
scales. This is expected: for large scales, all regions are infor-
mative, whereas at smaller scales, the model has to focus on
relevant localized features. Note that s =100% corresponds
to wSVM, for which the mAP for action and object is 60.8%
and 88.2% . G-LSVM thus outperforms SVM at all scales of
action dataset, as well for scales in [50, 90] on object dataset.

(a) action dataset (b) object dataset

Fig. 3: mAP(%) at different scales.
Table. 2 gives per-class performances at the smallest scale

30%. G-LSVM outperforms LSVM by a margin of 3.1% and
0.8% for respectively action dataset and object dataset. Paired
T-tests show that G-LSVM is significant than LSVM for a
risk less than 0.5% and 1% for action and object datasets. For
action dataset, the performance gain of G-LSVM is especially
large for the categories phoning, reading, walking. We note
that these actions are usually associated with tiny objects, i.e.
cellphone, book and small person (e.g Fig. 5b). For object
dataset, G-LSVM performs well at cow and motorbike and
improves over LSVM for most categories.

Further analysis: The impact of the parameter γ in
Eq. (2) is shown in Fig. 4 for scale 50%. We can see that

http://www.vlfeat.org/matconvnet/pretrained/


Action Dataset mAP jump phone instru’ read bike horse run photo comp’ walk
G-LSVM 61.29 69.20 50.51 79.49 50.57 78.86 83.88 53.62 38.64 72.08 36.03

LSVM-Standard 58.17 68.93 41.95 79.21 39.11 79.26 84.20 55.11 36.74 73.69 23.52
Object Dataset mAP aeroplane cow dog cat motor boat horse sofa din’table bike

G-LSVM 85.39 96.76 76.78 91.71 90.77 88.15 88.08 82.82 71.14 82.08 85.59
LSVM 84.59 96.72 71.97 91.27 90.03 86.30 87.84 84.05 71.19 81.83 84.75

Table 2: AP(%) at scale 30%

performances of LSVM, corresponding to γ = 0, can be im-
proved for most values in γ ∈ ]0, 1.0]. It is worth noticing
that the performances in Fig. 4 are shown on average for all
classes. We can further substantially boost the performances
by cross-validating γ. For example, on the action dataset, a
class-wise cross validation (γ ∈ [0, 1; 0.1]) at scale 50% leads
to nearly 1% improvement compared to γ = 0.2.

(a) action dataset (b) object dataset

Fig. 4: For scale = 50%, the effect of parameter γ.

We show in Fig. 5 the predicted regions for G-LSVM and
LSVM. Results for training images are shown on the first row:

(a) dog (object) (b) walking (action)

(c) dog (object) (d) walking (action)

Fig. 5: Localization results. (a)(b): training results, (c)(d):
test results. red: LSVM, blue: G-LSVM, yellow: ground-
truth bounding-box. cyan: gazes.

we show that G-LSVM selects areas with more gaze features
than LSVM. On the second row, we present results for test
images, for which gaze features are not available. Interest-

ingly, we can see that G-LSVM extracts regions which are
more semantic than LSVM for the classification task.

We validate this idea by measuring the detection perfor-
mances of G-LSVM vs LSVM by computing the Intersection
over Union (IoU) metric between the predicted region and the
ground-truth bounding boxes. The results in Table. 3 at every
scale show that G-LSVM always outperforms LSVM.

action 30 40 50 60 70 80 90
G-LSVM 21.4 25.8 27.6 28.3 29.0 29.3 28.1

LSVM 14.5 20.4 24.3 26.7 27.9 28.9 28.0
object 30 40 50 60 70 80 90

G-LSVM 22.4 29.4 34.0 37.1 40.1 41.8 42.2
LSVM 20.1 27.1 32.6 36.4 39.2 41.5 42.0

Table 3: IoU (%) between predicted region and ground-truth
bounding boxes.

Finally, we perform the last experiment using bounding
box annotations during training, leading to a model denoted
as G-LSVM*. We replace the gaze loss in Eq. (3) by a
ground-truth loss computed as 1 − IoU(z, zgt), where zgt is
the ground-truth region in the dataset. The experiment reveal
that G-LSVM is even slightly better than G-LSVM* (↑ 0.4 %
(0.2%) mAP for the action (object) dataset). This shows that
gaze features contain as relevant information as bounding box
annotations, while being much cheaper to collect.

4. CONCLUSION

In this paper, we introduce G-LSVM, a new latent variable
model which leverages human gaze features during training.
We derive a concave-convex upper bound of the non-convex
problem and solve it by the CCCP. When gaze annotations
are scarce, an appealing feature of G-LSVM is that the model
only uses the gazes for training, whereas only visual informa-
tion is used for prediction. Experimental results show that G-
LSVM significantly outperforms LSVM on classification and
localization tasks, and that the model achieves similar per-
formances as a model trained with expensive bounding box
annotations. In the future, we plan to research gazes as time-
series for mining more information.



5. REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in
CVPR, 2009.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, “Ima-
genet classification with deep convolutional neural networks,”
in NIPS. 2012.

[3] Xin Wang, D. Kumar, N. Thome, M. Cord, and F. Precioso,
“Recipe recognition with large multimodal food dataset,” in
ICME workshop, 2015.

[4] Marion Chevalier, Nicolas Thome, Matthieu Cord, Jérôme
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