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Abstract

We present in this paper a Web page archiving approach
combining image and structural techniques. Our main goal
is to learn a similarity between Web pages in order to de-
tect whether successive versions of pages are similar or not.
Our system is based on a visual similarity measure designed
for Web pages. Combined with a structural analysis of Web
page source codes, a supervised feature selection method
adapted to Web archiving is proposed. Experiments on real
Web archives are reported including scalability issues.

1 Introduction

The Web has become the most important way to spread
information. Archiving the Web is thus crucial to preserve
some useful information for future generations of histori-
ans, researchers, writers, ..., or citizens. Most of the time,
Web archiving is performed by Web crawlers (bots) that
capture Web pages and the associated media (e.g. images,
videos...). To update archives, crawlers have to regularly re-
visit Web pages, but they generally do not know if or when
changes appeared.

Archivists are facing a great challenge to maintain the
quality of collected data (that should reflect the real Web):
optimizing the crawling so that new versions are captured
and/or kept only when changes are important while limiting
the loss of useful information. A way to optimize crawling
is to estimate the behaviour of a site in order to guess when
or with which frequency it must be visited, and thus to study
the importance of changes between successive versions [4].
For instance, the insertion of an advertisement link, illus-
trated in Fig 1(a) and Fig 1(b), is not related to the main
information shared by the Web page. In contrast, changes
in Fig 1(c) are significant. The crawling of the second ver-
sion was thus necessary. In this paper, similarity functions
for Web page comparison are investigated.

Most archivists only take into account the Web page

source code (code string, DOM tree...) [13] and not the vi-
sual rendering [4,5,14]. However, the code may not be suf-
ficient to describe the content of Web pages, e.g. images are
usually defined only by their URL addresses, or scripts may
be coded in different languages that make them hard to com-
pare. Ben Saad et al. [4] propose to use the tree obtained by
running the VIPS [5] algorithm on the rendered Web page.
They obtain a rich semantic segmentation into blocks and
then estimate a function of the importance of changes be-
tween page versions by comparing the different blocks. The
VIPS structure of a Web page is a segmentation tree based
on its DOM tree. It detects visual structures in the render-
ing of a page (e.g. tables) and tries to keep nodes (blocks) as
homogeneous as possible. Two successive paragraphs with-
out html tags will tend to be kept in the same node, whereas
table elements with different background colors will be sep-
arated in different nodes. Image processing methods have
been proposed for Web page segmentation. Cao et al. [6]
preprocess the rendering of Web pages by an edge detec-
tion algorithm, and iteratively divide zones until all blocks
are indivisible. They do not take the source code of pages
into account. In the context of phishing detection, Fu et
al. [9] compute similarities between Web pages using color
and spatial visual feature vectors. However, they are only
interested in the detection of exact copies.

We investigate in this paper structural and visual fea-
tures and similarities to carry out an efficient page compar-
ison system for Web archiving. To get a similarity close
to archivists’ attempts, both structural and visual informa-
tions are useful: structural to catch the dissimilarity if differ-
ent scripts have the same rendering or if the hyperlinks are
changed, visual if the codes of the versions of a Web page
are unchanged but a loaded image was updated. Addition-
ally, we propose a machine learning framework to set all the
similarity parameters and combination weights. Our contri-
bution is three-fold: (1) a complete hybrid Web page com-
parison framework combining computer vision and struc-
tural comparison methods, (2) a new measure dedicated to
Web archiving that only considers the visible part of pages



(a) Similar versions (b) zoom over the difference
between the versions of (a)

(c) Dissimilar versions

Figure 1. Similar and dissimilar versions of Web pages. The versions of (a) share the same informa-
tion, they do not need to be crawled twice. The versions of (c) have the same banner and menus but
the main information of the page is changed, a second crawling is then necessary.

without scrolling, (3) a machine learning based approach
for supervised feature selection to increase prediction accu-
racy by eliminating noisy features.

2 Web page comparison

Two versions of a Web page are considered similar if
the changes that occurred between them are not important
enough to archive both of them. They are dissimilar other-
wise (see Fig 1). To compare Web page versions, we first
extract features from them as described below.

2.1 Visual descriptors

Important changes between page versions will often pro-
duce differences between the visual rendering of those ver-
sions. We propose to quantify these differences by com-
puting and comparing the visual features in each page ver-
sion. Each version is described as an image of its rendering
capture (snapshot). We compute a visual signature on this

captured image for each page. Images are first described by
color descriptors, because they seem appropriate for Web
page changes and are already used in Phishing Web page
detection [9]. We also incorporate powerful edge-based de-
scriptors with SIFT descriptors [10] because they give state-
of-the-art performances in real image classification tasks.

For image representation, we follow the well-known Bag
of Words (BoWs) representation [11, 16]. The vector rep-
resentation of the rendered Web page is computed based on
a sampling of local descriptors, coding and pooling over a
visual dictionary. [7] Recent comparisons for image classi-
fication point out the outstanding performances of a regu-
lar dense sampling [2, 7]. We apply a first strategy called
whole Web page feature, that samples regularly the visual
representation of the whole page. However, the most sig-
nificant information is certainly not equally distributed over
the whole captured Web page. As noted in [17], the most
important information is generally located in the visible part
of pages without scrolling. A second strategy called Top of
Web page feature, provides a visual vector using only the



features located in the visible part of the page.
Since the visible part of a Web page depends on the size

of the browser window, we take a generic window height of
1,000 pixels, greater than 90% of users’ browser resolutions
to ensure we do not miss information directly visible by
most users. In the next sections, we will denote the visible
part of Web pages without scrolling, also known as above
the fold, by top of Web pages.

2.2 Structural descriptors

We extract various features directly from the code of
Web pages. For instance, we extract Jaccard indices, a simi-
larity value that indicates the preservation between versions
of hyperlinks and of URL addresses of images. We assume
that similar pages tend to keep the same hyperlinks and im-
ages.

We also extract some features from the difference tree
returned by the VI-DIFF algorithm [14] that detects some
operations between the VIPS structures of versions, e.g. in-
sertions, deletions or updates of VIPS blocks, or even a
boolean value returning whether two versions have the same
VIPS structure. The more operations are detected, the less
similar versions are assumed to be. We denote the features
extracted from the VI-DIFF algorithm by VI-DIFF features.

2.3 Similarity between versions

Let V A be the last archived version of a Web page and
V N the new version of the same Web page. We extract sev-
eral visual and structural descriptors (see sections 2.1 and
2.2), and use different metrics (Euclidian, χ2 distances, etc)
to compare them. Heuristics may be used to set them in-
dividually and to select the best similarity function with a
manually-tuned threshold to discriminate dissimilar pairs of
Web pages from the similar ones.

We propose here an alternate scheme embedding all the
similarity functions into a learning framework. Let the M
visual feature/metric associations and the N structural simi-
larities be aggregated in a vector x where:

x =



sim1
visual(V

A, V N )
...

simM
visual(V

A, V N )
sim1

struct(V
A, V N )

...
simN

struct(V
A, V N )


(1)

Combining both approaches seems appropriate to have a
better understanding of the changes as perceived by human
users. Learning combinations of complementary descrip-
tors also makes the categorization task more efficient [15].

We investigate in the next section a statistical learning strat-
egy based on a labeled dataset to classify the vectors x.

3 Supervised Feature Selection

There exist many families of distance learning methods
[19]. In the context of image classification, Frome et al. [8]
propose to learn a distance expressed as a linear combina-
tion of elementary distances: D(F , I) =

∑
j w

F
j d

F
j (I) =

〈wF ,dF (I)〉 where dFj (I) are patch-to-image distances
from a focal image F to a given image I.

In our context, we are also interested in learning dis-
tances between versions in a supervised framework to deter-
mine whether two versions are similar or not. However, it
is not a version classification problem as in [8]. Indeed, we
do not want to classify samples (versions) but similarities.
Moreover, our similarities are based on human judgement
and allow subtleties as shown in Fig 1.

We then propose to express the learning of the combi-
nation of similarities as a binary classification in similar-
ity space: for any couple of versions (V A, V N )i, let their
class yi = 1 iff V A and V N are similar, −1 otherwise.
Let xi be a vector derived from heterogeneous similarities
between V A and V N (as defined in subsection 2.3). We
train a linear Support Vector Machine (SVM) to determine
w =

∑
j αjyjxj such that 〈w, xi〉 =

∑
j αjyj〈xj , xi〉 gives

us the class of (V A, V N )i. The similarity vectors xj of
training couples (V A, V N )j are used to train an SVM. For
any test couple (V A, V N )i, the trained SVM returns (1)
whether yi = 1 or yi = −1, (2) whether V A and V N are
similar or dissimilar, (3) whether V N needs to be archived
or not, with V A already archived. Those three propositions
are equivalent.

To study the contributions of the different types of fea-
tures in the discrimination task, we first train a linear SVM
with all the features. Each element wk of w corresponds
to the weight associated to the k-th similarity feature of x.
Therefore, if the learnt wk are close or equal to 0, the k-th
similarity features of x are not determinant for categoriza-
tion. Such similarities are considered noisy, irrelevant (not
discriminant) in determining whether two versions are sim-
ilar or not. To go one step further, we also propose a more
explicit feature selection method based on the automatic
normal based feature selection [12] that uses the fact that a
feature k with the weight wk close to 0 has a smaller effect
on the prediction than features with large absolute values of
wk. Then features with small |wk| are good candidates for
removal. The number of selected features may be set based
on data storage and calculation constraints, or iteratively re-
duced using a validation set.



4 Experiments

A real corpus of data provided by the Internet Memory
Foundation1 is in our experiments. About 1000 pairs of
Web pages captured from many different governmental Web
sites from the United Kingdom about education, health,
sport, ..., have been labelled as similar or not. The iden-
tical couples of versions are removed. Finally, 202 pairs of
Web pages were extracted2: 147 and 55 (72.8% and 27.2%)
couples of similar and dissimilar versions, respectively.

To compute visual similarities, we use SIFT [10] and
color descriptors with visual codebooks of sizes 100 and
200. These are relatively small compared to the sizes used
on large image databases but consistent with the size of our
dataset. SIFT descriptors are calculated with the ColorDe-
scriptor [18] software on a regular grid with a step size of 6
pixels. We use our own implementation for color desciptors
extraction. We compute color histograms in the HSV space,
on local patches of size 12x12 pixels. The BoWs of page
versions are computed using the two strategies described in
section 2.1: (1) over the rendering of whole Web pages and
(2) the top of Web pages. Euclidian and χ2 distances are
then computed between the BoWs of successive page ver-
sions normalized usingL2-norm andL1-norm, respectively.
We also compute for each couple of page versions, the VIPS
structures [5] and the VI-DIFF difference trees [14] from
which we extract structural similarity values, e.g. the (sym-
metrized) ratio of identical nodes, boolean values on some
criteria such as an identical VIPS structure (Fig 2.b). In the
end, we have 16 visual and 25 structural features.

4.1 Similarities

We first report some similarity distributions for simi-
lar and dissimilar Web page couples in Fig 2. For visual
(Fig 2.a) and structural (Fig 2.b,c) similarities, similar sam-
ples tend to be close to each other, and dissimilar sam-
ples tend to be more distant, even with basic distances. In
Fig 2.d, structural and visual distances are drawn together.
We observe the same behaviour for all our similarity mea-
sures: none of them allows to clearly discriminate similar
from dissimilar samples. Instead of using them individu-
ally, we propose to combine those different similarities in
a binary classification scheme that returns whether a cou-
ple of versions are similar or not by using their vector of
similarity scores.

4.2 Binary classification

We use leave-one-out cross-validation to evaluate the
performance of our model. We compare our results to

1http://internetmemory.org/
2The corpus we used in this work can be provided on demand.

(a) (b)

(c) (d)

Figure 2. Distributions of Web page distances
or similarities: (a) decimal orders of magni-
tude of visual χ2-distances using top of Web
page SIFT features with 200 codewords, (b)
boolean similarity of VIPS tree structures be-
tween two versions, (c) Jaccard indices of hy-
perlinks, (d) Jaccard indices of hyperlinks as
a function of visual χ2-distances using top of
Web page SIFT features with 100 codewords.
The similar and dissimilar couples of ver-
sions are in red (circles) and black (crosses),
respectively.

the random classifier which automatically predicts the most
represented class in the dataset, yielding a baseline accuracy
of 72.8%.

4.2.1 Evaluation of visual features

We first use only the visual information of pages. Structural
variables of x are ignored. The prediction accuracies when
selecting different subsets of local descriptors (SIFT and
color) sampled on whole Web pages or top of Web pages
are presented in Table 1. SIFT and color descriptors achieve
good performances for Web page change detection. Using
the visible part of Web pages without scrolling (87.1%) is
also a lot more discriminant than using whole Web pages
(83.2%). Combining both of them gives even worse results
(85.1%) than using only the top of Web pages (87.1%). Im-
portant changes are more likely to be directly observable
whereas changes at the bottom of Web pages, often adver-
tisements, are more likely to be less important and noisy.
The accuracies obtained validate our approach.



Selected Visual Features Accuracy (%)
Whole Web page Top of Web page

None SIFT 84.2
None color 82.7
None SIFT + color 87.1
SIFT None 79.7
color None 80.7

SIFT + color None 83.2
SIFT + color SIFT + color 85.1

Table 1. Prediction results when using visual
features.

Selected Structural Features Accuracy (%)
Jaccard Indices VI-DIFF

Yes No 85.1
No Yes 76.7
Yes Yes 87.6

Table 2. Prediction results when using struc-
tural features.

4.2.2 Evaluation of structural features

We study in Table 2 the prediction accuracies when differ-
ent subsets of structural similarities only are used. Jaccard
Indices of links are the most discriminant structural features
(85.1%) but the other structural features extracted from VI-
DIFF are still informative.

4.2.3 Structural and visual feature combination evalu-
ation

We investigate the combination of structural and visual fea-
tures in Table 3. The accuracy when combining all of them
(90.1%) is better than when using only structural (87.6%)
or visual (87.1%) features. Visual and structural features
are then complementary.

Furthermore, we propose to combine in Table 3 the vi-
sual and structural features that gave the best accuracies in

Selected Feature similarities Acc. (%)
Structural Visual

All All 90.1
All Top of Web page 92.1

Jaccard indices All 91.6
Jaccard indices Top of Web page 93.1

Table 3. Prediction results when using struc-
tural and visual features.

Selected features 1 4 8 10 13
Accuracy (%) 84.7 88.1 91.1 91.6 92.6
Selected features 15 18 22 27 41
Accuracy (%) 92.6 91.1 90.6 90.1 90.1

Table 4. Accuracy as a function of the number
of selected features with the normal based
feature selection (highest absolute values).

previous sections. An exhaustive manual selection among
all the 41 structural and visual features to find the set that
maximizes prediction would be too time-consuming. The
accuracy is improved up to 93.1% when combining only
Jaccard indices of links and the top of page visual repre-
sentations. But the best choice in the context of archiving
is to minimize the number of pages actually dissimilar but
predicted similar. This happens when we select all the struc-
tural features and the visual features of the top of pages. We
then obtain an overall accuracy of 92.1% comparable to the
best accuracy obtained manually (93.1%), but only 12.7%
of dissimilar versions predicted similar instead of 14.5%.

We also investigate the automatic normal based feature
selection method described in section 3 in Table 4. The
best accuracy obtained with that automatic method is 92.6%
when the 13 to 15 features with the highest absolute values
in w are selected. It is comparable to our best accuracy of
93.1% (Table 3) with 10 features selected.

5 Scalability Issue

We are involved in the EU SCAPE project whose goal
is scalable digital data preservation. The scalability of Web
archiving technologies is hence decisive. Our first require-
ment is to perform the comparison of two page versions in
about one second on a standard PC with single CPU.

Whole Top of Total
Page Page time (s)

SIFT 7.25 5.06 12.31
color 0.61 0.38 0.99

SIFT BoWs 2.54 1.78 4.32
color BoWs 0.43 0.24 0.67
Distances 0.28

SVM 0.04
Total time (seconds) 11.15 7.78 18.61

Accuracy (%) 93.1

Table 5. Running time baseline (in seconds).

To evaluate our system, we compute on a single 3.47GHz
PC the average running times of comparison on our dataset



(Table 5). The captured images of Web pages have an aver-
age width and height of 929 (±251) and 1272 (±723) pix-
els, respectively. The brute force time of the whole process
is close to 20 seconds. The bottleneck is the SIFT computa-
tion and the assignment process of BoWs. We use ColorDe-
scriptor [18] to compute SIFT, which is quite slow com-
pared to other recent packages now available. Some other
descriptors like SURF [3] and CARD [1] could be tested to
speed up recognition, but their impact on recognition accu-
racy is yet to be determined.

Another way to speed up computation concerns the
method setting. First, we only consider the Top of Web
page component, second, we analyze the lost in accuracy as
the step size parameter increases. Table 6 shows the time
and accuracy performances. Both descriptor combinations
are tested. When using a large step, the computation time
significantly decreases while keeping a correct detection ac-
curacy. The prediction can be processed in less than two
seconds with an accuracy of 88%. Those results allow us to
respect the SCAPE Project requirements.

Step (pixels) 6 12 24 32
Time (seconds) 7.16 2.33 1.45 1.29

(SIFT)
Accuracy (%) 88.1 87.6 86.6 84.6

(SIFT)
Time (seconds) 7.78 2.65 1.77 1.61

(SIFT+color)
Accuracy (%) 93.1 88.1 88.1 85.6
(SIFT+color)

Table 6. Influence of the step parameter on
time and accuracy.

6 Conclusion

In this paper, a complete Web page comparison frame-
work for Web archiving is presented. Both structural and vi-
sual features are used to analyze pages of Web sites, and es-
timate when or with which frequency they must be visited.
We introduced a scheme to learn an optimal similarity com-
bination. Many features and similarities have been tested.
One of the main results is that important changes generally
appear at the visible part of pages without scrolling.

Experiments on real data have been presented. A large
set of couples of pages manually labelled by archivists has
been used for a quality evaluation of our visual and struc-
tural similarity method. They confirm that both structural
and visual informations are useful for change detection.
Web archiving and digital preservation are major challenges

for our digital societies. We are convinced that the Multi-
media Processing community will bring important support
and technical solutions to many of their issues.
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