
ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

Neurocomputing xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Distributed optimization for deep learning with gossip exchange 

Michael Blot a , 1 , ∗, David Picard 

b , a , Nicolas Thome 

a , c , Matthieu Cord 

a 

a UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Sorbonne Universités, 4 place Jussieu, Paris 75005, France 
b ETIS UMR 8051, Université Paris Seine, Université Cergy-Pontoise, ENSEA, CNRS, France 
c CEDRIC, Conservatoire National des Arts et Métiers, 292 Rue St Martin, Paris 75003, France 

a r t i c l e i n f o 

Article history: 

Received 1 February 2018 

Revised 3 October 2018 

Accepted 2 November 2018 

Available online xxx 

Communicated by Zechao Li 

Keywords: 

Optimization 

Distributed gradient descent 

Gossip 

Deep 

Learning 

Neural networks 

a b s t r a c t 

We address the issue of speeding up the training of convolutional neural networks by studying a dis- 

tributed method adapted to stochastic gradient descent. Our parallel optimization setup uses several 

threads, each applying individual gradient descents on a local variable. We propose a new way of sharing 

information between different threads based on gossip algorithms that show good consensus convergence 

properties. Our method called GoSGD has the advantage to be fully asynchronous and decentralized. 

© 2018 Published by Elsevier B.V. 

1

 

F  

m  

m  

f  

[  

w  

i  

(  

g

 

1  

t  

s  

t  

a

 

d  

b  

n

b  

e  

m  

c  

a  

o  

t  

c  

t

 

a  

c  

l  

f  

c  

p  

t  

t

 

p  

m  

h

0

. Introduction 

With deep convolutional neural networks (CNN) introduced by

ukushima [1] and LeCun et al. [2] , computer vision tasks and

ore specifically image classification have made huge improve-

ents in the years following [3] . CNN performances benefit a lot

rom big collections of annotated images like Russakovsky et al.

4] or Lin et al. [5] . They are trained by optimizing a loss function

ith gradient descents computed on random mini-batches accord-

ng to Bottou [6] . The method called stochastic gradient descent

SGD) has proved to be very efficient to train neural networks in

eneral. 

However current CNN structures are extremely deep like the

00 layers ResNet of He et al. [7] and contains a lot of parame-

ers (around 60 M for Alexnet [3] and 130 M for vgg [8] ). Those

tructures involve heavy gradient computation times making the

raining on big data-sets very slow. Computation on GPU acceler-

tes the training but requires huge local memory caches. 

Nevertheless the mini-batch optimization seems suitable for

istributing the training over several threads. Many methods have

een studied like Refs. [9,10] , which propose to distribute the
∗ Corresponding author. 

E-mail addresses: michael.blot@lip6.fr (M. Blot), picard@ensea.fr (D. Picard), 

icolas.thome@lip6.fr (N. Thome), matthieu.cord@lip6.fr (M. Cord). 
1 Thank DGA for financing my researches. 

d  

t  

b  

c  

i  

ttps://doi.org/10.1016/j.neucom.2018.11.002 

925-2312/© 2018 Published by Elsevier B.V. 

Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
atches over different threads called workers that periodically

xchange information via a central thread to synchronize their

odels. In [9] , when a worker exchanges information with the

entral node it updates its parameters variable with a weighted

veraging of its own parameters variable and the central node

nes. The master thread does the symmetrical update. In [10] ,

he workers accumulate in an additional buffer the gradients

omputed at the last steps, and applies this aggregated gradient to

he master thread parameters. 

The major issue of these methods is that they induce waits in

ll computing nodes due to the synchronization problems with the

ritical resource that is the central node. A popular way of tack-

ing this issue in distributed optimization involves exchanging in-

ormation in a peer to peer fashion. In this category, Gossip proto-

ols [11] have been successfully applied to many machine learning

roblems such as kernel methods [12] , PCA [13] and k-means clus-

ering [14,15] . We propose to combine Gossip protocols with SGD

o efficiently train deep CNN without the need of a central node. 

The contributions of this paper are the following. First, we pro-

ose a new framework for distributed SGD in which we can for-

ally analyze and compare the properties of existing distributed

eep learning training algorithms. Using this framework, we show

hat distributing the mini-batches is equivalent to use bigger

atches in non-distributed SGD, which has implications on the

onvergence speed of the algorithms. Finally, by carefully analyz-

ng the key aspects of our framework, we propose two distributed
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:michael.blot@lip6.fr
mailto:picard@ensea.fr
mailto:nicolas.thome@lip6.fr
mailto:matthieu.cord@lip6.fr
https://doi.org/10.1016/j.neucom.2018.11.002
https://doi.org/10.1016/j.neucom.2018.11.002


2 M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

a

2

 

S  

d  

s  

h  

h  

s  

[

 

t  

B  

t  

T  

g  

i  

i

 

i  

a  

i  

a  

e  

a  

c  

c  

t  

l  

l  

i  

c  

g

 

t  

W  

[  

c  

c  

T  

c  

i  

a

A

 

s  

m  

e  

c  

2 In [21] they use the sum instead of the averaging of the gradients but both are 

equivalent by adjusting the learning rate. 
SGD algorithms for training deep CNN. The first one, called PerSyn,

uses a central node in a very efficient way. The second one, called

GoSGD, is based on Gossip exchanges and can thus be scaled to an

arbitrarily large number of nodes, providing a significant speedup

to the training procedure. 

The remaining of this paper is as follows. In the next section,

we recall the principles of SGD applied to deep learning as well as

the relevant literature about distributing its computation. Next, in

Section 3 , we detail our formalization of distributed SGD which al-

lows use to compare existing algorithms and write our first propo-

sition PerSyn. In Section 4 , we present a decentralized alternative

based on Gossip algorithms, that we call GoSGD, which fits nicely

in our framework. Finally, we present experiments showing the ef-

ficiency of distributing SGD in Section 5 before we conclude. 

2. SGD and related work 

In image classification, training deep CNN follows the empirical

risk minimization (ERM) principle [16] : The objective is to mini-

mize 

L (x ) = E Y ∼I [ � (x, Y )] (1)

where Y is a pair variable consisting of an image and the asso-

ciated label following the natural image distribution I, x are the

CNN parameters and � the loss function quantifying the prediction

error made on Y . Despite the objective function usually being non

convex, gradient descent has been shown to be a successful op-

timization method for the problem. In gradient descent algorithm

[17] , the update operation 

x ← x − η∇L (x ) (2)

is sequentially applied to the optimized variables until a convinc-

ing local minimum for L is found or some stopping criteria are

reached. η is the gradient step size, called learning rate. In im-

age classification, it is not possible to compute the expected gradi-

ent ∇L ( x ) because the distribution I is unknown (and not properly

modeled). However it is possible to approximate it using a Monte

Carlo method: ∇L (x ) = ∇ x 

(
E Y [ � (x, Y )] 

)
= E Y [ ∇ x � (x, Y )] (the prop-

erties allowing to swap the derivative and the integral are sup-

posed to be respected). This last quantity is approximated by a

Monte Carlo estimator: 

̂ ∇ L (x ) = 

1 

N 

N ∑ 

i =1 

∇ x � (x, Y i ) 

The set (Y i ) i =1 ..N of independent samples drawn from I is called a

batch and N is the batch size. ̂ ∇ L (x ) is then the descent direction

used at each update. In practice, the images in a batch are drawn

randomly from the training set and are different for each gradient

step. 

Concerning the precision of the gradient indicator, we point out

that it is unbiased. It can also be shown that the approximation

with respect to true gradient depends on the batch size. In fact,

E ||∇L (x ) − ̂ ∇ L (x ) || 2 
2 

∝ 

1 
N tr(C ov Y [ ∇� (x, Y )]) where C ov Y [ ∇� (x, Y )]

is the covariance matrix of the gradient estimator and tr denotes

the trace of the matrix (see Appendix A ). Therefore the bigger the

batch size N , the more accurate the gradient estimator. Unfortu-

nately GPU memory is limited and bounds the number of images

that can be processed in a batch. For instance, a GPU card with

12 Go of memory cannot process batches bigger than 48 images

of 224 × 224 RGB pixels using Resnet [7] with 30 layers. Indeed, at

each update step, the GPU needs to host the whole model inter-

mediate computations for all images in the bat ch. As such, using
Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
 single GPU limits the precision of the stochastic gradient descent

nd thus hinders its converge nce. 

.1. Related work 

There are many ways to accelerate the convergence time of

GD, one of which is to optimize the learning rate η for each gra-

ient descent iteration as aimed at by second order gradient de-

cent methods [17] . For deep learning, the parameters space is of

igh dimension and second order methods are computationally too

eavy to be applied efficiently. Examples of first order gradient de-

cent that adapt the learning rate with success can be found in

18] and [19] . 

A second way to accelerate the gradient descent is to reduce

he computation time of ̂ ∇ L (x ) which is the purpose of this paper.

ased on the availability of several GPU cards, different methods

hat overcome the GPU batch size limitations have been proposed.

here are two main ways of distributing the computation of the

radient update, which are either splitting the model and distribut-

ng parts of it among the different GPUs, or splitting the batch of

mages in subsets and distributing them among the GPUs. 

A famous technique used by Krizhevsky et al. [3] for distribut-

ng the model consists in paralleling the forward/backward pass of

 batch over two GPU cards. The convolutional part of the network

s split into two independent parts that are only aggregated with

 fully connected layer at the top of the network. This conception

nables to load the two parallel parts on two different GPUs liber-

ting space for more images in batches. However the CNN models

laiming current state of the art performances in image classifi-

ation like He et al. [7] and Huang et al. [20] benefit a lot from

he inter-correlation between features of each layers and do not al-

ow independent partitioning within a layer. Thus if the network is

oaded in several GPU cards they would have to communicate dur-

ng the forward pass of a batch. The communications being time-

onsuming it is preferable to restrain the whole network on a sin-

le GPU card. 

The second approach, which consists in distributing subsets of

he batch to the different GPUs, is becoming increasingly popular.

e use the following notations to describe such methods: As in

9] the different threads that manage a neural network model are

alled workers. With M GPU cards, there are M workers and their

orresponding set of parameters is noted x m 

for each worker m .

he set of parameters used for inference is noted ˜ x and is specifi-

ally the model we want to optimize. The easiest way of distribut-

ng the batches is presented in [21] and consists in computing the

verage of all the workers models as in Algorithm 1 . 

lgorithm 1 Fully synchronous SGD: pseudo-code. 

1: Input: M: number of threads, η : learning rate 

2: Initialize: x is initialized randomly, x m 

= x 

3: repeat 

4: ∀ m , v m 

= 

̂ ∇ L m 

(x m 

) 

5: v = 

1 
M 

∑ M 

m =1 v m 

6: ∀ m, x m 

= x m 

− ηv 
7: until Maximum iteration reached 

8: return 

1 
M 

∑ M 

m =1 x m 

We stress the fact that after each iteration all workers host the

ame value of the variable ˜ x to optimize (i.e., ∀ m, x m 

= ˜ x ). This

ethod is equivalent to using M times bigger batches for the gradi-

nts computation. 2 It is then possible to alleviate the GPU memory

onstraint limiting the number of examples in a batch in order to
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002


M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 3 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

g  

s  

a

 

 

 

a  

t  

w  

i  

n  

w  

t  

m

 

a  

t  

b  

w  

i  

e  

t  

d  

t  

o  

l  

a  

o

 

l  

a

3

 

S  

d  

c  

a  

s  

t

 

E

x

W  

t

x

I  

c  

t  

d

x

s

W  

l

∀

 

m  

b  

t  

v  

o  

i

 

s  

c  

t

∀

 

p  

t  

c  

[  

g  

s  

e  

r

x

K  

t  

e  

i  

t  

O  

t  

m  

c  

g

 

d  

o  

w  

i

x

T

x

R  

d  
et more accurate gradients. However in comparison with the clas-

ical SGD there are three additional phases of communication and

ggregation that have incompressible time: 

1. The transmission to the master of the local gradient estimates

computed by the threads at line 4. 

2. The aggregation of the gradients at line 5. 

3. The transmission of the aggregated gradient ̂ ∇ L (x ) to all

threads before local updates at line 6. 

In large scale image classification, the communications involved

t lines 4 and 6 imply a CNN with millions of parameters and are

hus very costly. Moreover, to perform line 5, the master has to

ait for all workers to have completed line 4. The additional time

nvolved by communications and synchronizations can have a sig-

ificant impact on the global training time. This is even more true

hen the GPUs are not on the same server, where the communica-

ion delays are consequent. Thus, this easy synchronous distributed

ethod can be very inefficient. 

The focus of this paper is to reduce these communication and

ggregation costs. As with existing strategies such as Refs. [9,10] ,

he main idea is to control the amount of information exchanged

etween the nodes. This amount is a key factor in making all

orkers contribute to the optimization of the test model ˜ x . Indeed,

f no information is ever exchanged, the distributed system is

quivalent to training M independent models. As a consequence of

he symmetry property of CNN explained in [22] , these indepen-

ent models are likely to be very different and almost impossible

o combine. As such, the distributed training would not improve

ver using a single GPU with a reduced batch size. The main chal-

enge of this work is thus to allow as little information exchange

s possible to ensure reduced communication costs, while still

ptimizing the combined model ˜ x . 

In the next section, we introduce a matrix framework that al-

ows to explicitly control the amount of exchanged information,

nd thus to explore different optimization strategies. 

. Framework 

In this section, we propose a general framework for distributed

GD methods. We start from the centralized SGD update proce-

ure and we show the equivalent synchronous distributed pro-

edure. Then, we show that relaxing some equality constraints

mong workers is equivalent to consider different communication

trategies. We are thus able to write strategies found in the litera-

ure using a simple matrix expression. 

First, we unroll the recursion of the classic SGD update of

q. (2) to obtain the value of ˜ x after T + 1 gradient descent steps: 

˜ 
 

(T +1) = 

˜ x (0) − η
T ∑ 

t=0 

ˆ ∇ L 
(

˜ x (t) 
)

(3) 

ith ˜ x (t) being variable ˜ x a time t . The equivalent batch distribu-

ion method is the following: 

˜ 
 

(T +1) = 

˜ x (0) − η

M 

T ∑ 

t=0 

M ∑ 

m =1 

ˆ ∇ L m 

(
˜ x (t) 

)
n order to make the communication between the workers and the

entral model more visible, we can use the equivalent update rule

hat introduces local variables x m 

and consensus constraints. By

oing so, we obtain the standard distributed SGD method: 

˜ 
 

(T +1) = 

˜ x (0) − η

M 

T ∑ 

t=0 

M ∑ 

m =1 

ˆ ∇ L m 

(
x (t) 

m 

)
(4) 

.t. ∀ t, ∀ m, x (t) 
m 

= 

˜ x (t) (5) 
w  

Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
e can replace the consensus equality constraints (5) by equiva-

ent local update rules obtained from (4) : 

 r, x (T +1) 
r = 

˜ x (0) − η

M 

T ∑ 

t=0 

M ∑ 

s =1 

ˆ ∇ L s 
(
x (t) 

s 

)
This formulation is a first step towards decentralized and com-

unication efficient algorithms since it made the communications

etween workers visible. Indeed, at each step, each worker gathers

he gradients from all other workers and applies them to its local

ariable. The main drawback of this formulation is that the number

f messages exchanged by workers at each step is now M(M − 1)

nstead of 2 M in the classical version. 

To allow for more efficient communication, we relax the con-

ensus constraints by allowing local variables to differ slightly. This

an be done efficient by introducing non-uniform weights αr, s in

he combination of the local gradients: 

˜ x (T +1) = 

˜ x (0) − η
T ∑ 

t=0 

M ∑ 

m =1 

α0 ,m ̂

 ∇ L m 

(
x (t) 

m 

)
 r, x (T +1) 

r = 

˜ x (0) − η
T ∑ 

t=0 

M ∑ 

s =1 

αr,s ̂
 ∇ L s 

(
x (t) 

s 

)
s.t. ∀ r, 

M ∑ 

s =1 

αr,s = 1 

We introduce a matrix notation over αr, s to simplify the ex-

ression of these update rules. We note x (t) = [ ̃ x (t) , x (t) 
1 

, . . . , x (t) 
M 

]

he vector concatenating the central variable ˜ x (t) and all lo-

al variables x (t) 
m 

at time step t . Similarly, we note v =
0 , ˆ ∇ L 1 (x (t) 

1 
) , . . . , ˆ ∇ L M 

(x (t) 
M 

)] the vector concatenating all the local

radients ˆ ∇ L m 

(x (t) 
m 

) at time step t , with a leading 0 to have the

ame size as x . The weights αr, s of the gradient combinations are

nclosed in a matrix K , which leads to the following matrix update

ule : 

 

(T +1) = 

( 

T ∏ 

t=0 

K 

) 

x 

(0) − η
T ∑ 

t=0 

( 

T ∏ 

τ= t 
K 

) 

v (t) 

 is the communication matrix and is responsible for the mixing of

he local updates. Remark that its rows have to sum to 1 to avoid

xploding gradients. The sparser K is, the less workers exchange

nformation and thus the more efficient the algorithm is. However,

his comes at the price of less consensus among the local models.

n the extreme, if K is diagonal (no information exchanged be-

ween workers), these update rules are equivalent to M different

odel being independently trained. Hence, the choice of K is criti-

al to have a good trade-off between low communication costs and

ood information sharing between workers. 

To further allow for the optimization of K , we introduce time

ependent communication matrices K 

( t ) . This allows for the design

f very sparse communication matrices most of the time, balanced

ith the use of a dense K 

( t ) to enforce better consensus whenever

t is required. We note P T t = 

∏ T 
τ= t K 

(τ ) , and obtain: 

 

(T +1) = P T 0 x 

(0) − η
T ∑ 

t=0 

P T t v 
(t) 

his corresponds to the following recursion: 

 

(T +1) = K 

(T ) x 

(T ) − ηK 

(T ) v (T ) 

emark that since the update is linear, mixing the local gra-

ients and mixing the local variables are equivalent. As such,

e can define an intermediate variable x (t+ 1 
2 
) = x (t) − ηv (t) that
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002


4 M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E  

i

3

 

S  

l  

s

K

W

 

f  

a  

c  

t  

a  

t  

a  

i  

e  

p  

t  

t

3

 

c  

e  

i  

e  

v  

T  

w  

u  

e  

w

 

n  

T  

f  

i

K

w

 

t  

t  

a  

i  

g  

p  

e  

p  

i  

t

considers only the local updates and obtain the following update

rules: 

x 

(T + 1 2 ) = x 

(T ) − ηv (T ) (6)

x 

(T +1) = K 

(T ) x 

(T + 1 2 ) (7)

Since these rules make a clear distinction between local compu-

tation (step T + 

1 
2 ) and communication (step T + 1 ), they are the

ones we will use in the remaining of this article. 

In the following, we show how several existing distributed SGD

can be specified by their sequence of communication matrices K 

( t ) .

We first start with a naive yet communication efficient method

we call PerSyn (Periodically Synchronous) that considers exchang-

ing information only once every few steps. Then, we show how

EASGD [9] and DOWNPOUR [10] compare to PerSyn. 

3.1. PerSyn 

As a first illustration of our framework we introduce a new

communication and aggregation strategy for distributed SGD that

is very simple to implement and yet surprisingly effective. The

main idea is to relax the synchronization of all local variables with

the master variable to occur only once every τ steps. This is done

by defining the following time dependent communication matri-

ces: 

K 

(t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

( 

0 

1 
M 

1 
. . . I 

) 

, if t mod τ = 0 (
0 · · ·
1 0 

)
, if t mod τ = 1 ( 

0 · · ·
. . . I 

) 

, else 

I being the identity matrix of size M × M , and 1 the vector of size

M with 1 on every component. The corresponding algorithm is de-

scribed in Algorithm 2 . Remark it is very similar to the standard

Algorithm 2 PerSyn SGD: Pseudo-code. 

1: Input: M: number of threads, η : learning rate 

2: Initialize: x is initialized randomly, x m 

= x , t = 0 

3: repeat 

4: for all m , x 
(t+ 1 

2 
) 

m 

← x (t) 
m 

− η̂ ∇ L m 

N 
(x (t) 

m 

) 

5: t = t + 1 

6: if t mod τ = 0 then 

7: ˜ x (t+1) = 

1 
M 

∑ M 

m =1 x 
(t+ 1 

2 
) 

m 

8: ∀ m , x (t+1) 
m 

← 

1 
M 

∑ M 

m =1 x 
(t+ 1 

2 
) 

m 

9: else 

10: ∀ m , x (t+1) 
m 

← x 
(t+ 1 

2 
) 

m 

11: end if 

12: until Maximum iteration reached 

13: return 

1 
M 

∑ M 

m =1 x m 

distributed SGD (1) and thus can be very easily implemented. 

As we can see, PerSyn involves no communication at all τ−1 
τ

percent of the time. However, during that time, models are driven

by their local gradients only and can thus diverge from one an-

other leading to incoherent distributed optimization. The trade-off

with PerSyn is then to choose τ such as to minimize the communi-

cation costs while forbidding models to diverge from one another

during the time where no communication is made. 

One main limitation of PerSyn is that the communication ma-

trix is very dense when t mod τ = 0 . This is taken care of by
Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
ASGD [9] by considering a moving average of the local models

nstead of a strict average. 

.2. EASGD 

In EASGD, the local models are periodically averaged like in Per-

yn. However, the averaging is perform in an elastic way that al-

ows for reduced communication compared to PerSyn. The corre-

ponding matrix is then: 

 

(t) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

(
1 − Mα α1 

α1 (1 − α) I 

)
, if t mod τ = 0 ( 

0 . . . 

. . . I 

) 

, else 

ith α being a mixing weight. 

As we can see, most of the time, no communication is per-

ormed and the communication matrix is the identity. Every τ iter-

tions, an averaging synchronization is performed to keep the lo-

al models from diverging from one another. However, contrarily

o PerSyn which replaces all models (local and global) by the new

verage, this is done by computing a weighted average between

he previous model and the current average. By doing so, EASGD is

ble to exchange only 2 M messages every τ iteration, without hav-

ng to wait for the central node to compute the new average. How-

ver, a global synchronization is still required as the master has to

erform the weighted average of local models that are consistent,

hat is, local models that have been updated the same number of

ime. 

.3. Downpour SGD 

In Downpour SGD [10] , an asynchronous update scheme is dis-

ussed. By asynchronous, the authors mean that each worker is

ndowed with its own clock and process gradient at a rate that

s completely independent from the other workers. This can be

asily described in our matrix framework by considering a uni-

ersal clock that ticks each time one of the workers clock ticks.

his corresponds to considering the finest time resolution possible,

hen only one worker is awake at any given time step. In partic-

lar, this redefines v (t) = [0 , . . . , 0 , ˆ ∇ L m 

(x (t) 
m 

) , 0 , . . . ] to have zeros

verywhere but on the component corresponding to the awaken

orker m . 

Whenever they awake, each worker has the option to commu-

ication with the master while performing its gradient update.

hese communications can either be fetching the global model

rom the master or sending the current update to the master. This

s expressed by the following communication matrices: 

 

( send ) = 

(
1 e m 

0 I 

)
, K 

( receive ) = 

(
1 0 

e m 

I − e m 

e � m 

)
ith e m 

being the vector of zeros with a 1 on component m . 

When nodes are neither sending nor receiving, the communica-

ion matrix is simply the identity and thus the only ongoing opera-

ion is a computation which involves a single worker that performs

 local gradient update. The main drawback of Downpour is that it

nvolves a master that stores the most up-to-date model. This sin-

le entry point can be a source of weaknesses in the the training

rocess since it acts as the communication bottleneck (all work-

rs have to communicate with the master) and is also a critical

oint of failure. We intend to overcome this drawback by introduc-

ng new communication matrices that lead to fully decentralized

raining algorithms. 
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002


M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 5 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

4

 

c  

a  

v  

c  

i  

fi  

i  

m  

r

 

g  

a  

s  

s  

d  

b  

t  

h  

m  

a  

t  

p  

c  

e  

t

 

i  

c  

e  

m  

w  

i  

c  

e  

a  

b  

i  

t  

m  

w  

s  

x  

G

 

d  

t  

v  

b  

{  

t

K

I  

u

w

N  

a

a

 

g  

a  

c  

t  

a  

p  

a  

r  

a  

m  

c  

p

4

 

s

A

 

 

A

w  

r  

a  

c  

n

 

i  

r  

w  

d  

a  
. Gossip Stochastic Gradient Descent (GoSGD) 

To remove the burden of using a master, several key modifi-

ations to the communication process have to be made. First, the

bsence of a master means that each worker is expected to con-

erge to the same value ˜ x , which corresponds to ensuring a strict

onsensus among workers. Furthermore, this absence of a master

s reflected by the communication matrix having its first row and

rst column to be 0. Therefore, all communication are performed

n a peer to peer way, which is reflected in the communication

atrix where the columns are the senders and the rows are the

eceivers. 

Second, the absence of a master also implies the absence of a

lobal clock. This means that workers are performing their updates

t any time, independently of the others. To reflect this, we con-

ider the same clock model as with Downpour, where at each time

tep t , only a single worker s is awaken. Consequently, this also re-

efines v (t) = [0 , . . . , 0 , ˆ ∇ L s (x (t) 
s ) , 0 , . . . ] to have zeros everywhere

ut on the component corresponding to the awaken worker s . Fur-

hermore, since the active worker is random, the communications

ave to be randomized too, which leads to random communication

atrices K 

( t ) . These random peer to peer communication systems

re known as Randomized Gossip Protocols [11] , and are known

o converge to the consensus exponentially fast in the absence of

erturbations (which in our case corresponds to ∀ t, v (t) = 0 ). To

ontrol the communication cost, the frequency at which a worker

mits messages is set by using a random variable deciding whether

he awaken node shares its variables with neighbors. 

Finally, we want a communication protocol where no worker

s waiting for another, so as to maximize the time they spend at

omputing their local gradients. Waiting occurs when a worker is

xpecting a message from another worker and has to idle until this

essage arrives. This is the case in symmetrical communication

here workers expect replies to their messages. It is well known

n the Randomized Gossip literature that such local blocking waits

an cause global synchronization issues where most of the work-

rs spend their time waiting for the needed resources to be avail-

ble. To overcome this problem, asymmetric gossip protocols have

een developed such as in [23] . Asymmetric means that no worker

s both sending and receiving messages at the same time, which

ranslates in constraints on the non-zero coefficients of the com-

unication matrix K 

( t ) . To assure convergence to the consensus, a

eight w 

(t) 
m 

has to be associated with every variable x (t) 
m 

and is

hared by workers using the same communications as the variables

 

(t) 
m 

. These communication protocols are known as Sum-Weight

ossip protocols because of introduction of the weights w 

(t) 
m 

. 

Using these assumptions, we define the Gossip Stochastic Gra-

ient Descent (GoSGD) as follows: Let s be the worker awaken at

ime t , which is our potential sender. Let S ∼ B ( p ) be a random

ariable following a Bernoulli distribution of probability p . Let r

e a random variable sampled from the uniform distribution in

 1 , . . . , M} \ s . r represents our potential receiver. The communica-

ion matrix K 

( t ) is then: 

 

(t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

( 

0 . . . 

. . . I + 

w 

(t) 
s 

w 

(t) 
s + w 

(t) 
r 

e r e 
� 
s + 

(
w 

(t) 
s 

w 

(t) 
s + w 

(t) 
r 

− 1 

)
e s e 

� 
s 

) 

, if S ( 

0 . . . 

. . . I 

) 

, else 

(8) 

f S is successful, the weights of the sender s and the receiver r are

pdated as follows: 

 

(t+1) 
s = 

w 

(t) 
s 

, w 

(t+1) 
r = w 

(t) 
r + 

w 

(t) 
s (9) 
2 2 a  

Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
otice that this update involves a single message form s to r just

s for the update of x (t) 
r using K 

( t ) . In practice, both x (t) 
s and w 

(t) 
s 

re encapsulated in a single message and sent together. 

Remark also that contrarily to what is found in the sum-weight

ossip literature, we do not perform explicit ratio of the variables

nd their associated weights. Our implicit ratio is performed by in-

luding the weights in the communication matrix K 

( t ) . This leads

o more complicated matrices than what is common in the liter-

ture and hinders the theoretical analysis of the communication

rocess (since K 

( t ) are no longer i.i.d.). However, it also leads to

 much easier implementation when considering large deep neu-

al networks since the gradient is computed on the variable only

nd not on the ratio of variables and associated weights. Further-

ore, since the updates are equivalent, our proposed communi-

ation matrix keeps all the exponential convergence to consensus

roperties of standard sum-weights gossip protocols. 

.1. GoSGD algorithm 

The procedure run by each worker to perform GoSGD is de-

cribed in Algorithm 3 . Each worker is endowed with a queue q m 

lgorithm 3 GoSGD: worker Pseudo-code. 

1: Input: p: probability of exchange, M: number of workers, η :

learning rate, ∀ m, q m 

: message queue associated with worker

m , s current worker id. 

2: Initialize: x is initialized randomly, x s = x , w s = 

1 
M 

3: repeat 

4: processMessages ( q s ) 

5: x s ← x s − η(t) ˆ ∇ L (t) 
s 

6: if S ∼ B (p) then 

7: r = Random (M) 

8: pushMessage ( q r , x s , w s ) 

9: end if 

10: until Maximum iteration reached 

11: return x s 

lgorithm 4 Gossip update functions. 

1: function pushMessage (queue q r , x s , w s ) 

2: x s ← x s 
3: w s ← 

w s 
2 

4: q r .push(( x s , αs )) 

5: end function 

6: function processMessages (queue q r ) 

7: repeat 

8: (x s , w s ) ← q r .pop() 

9: x r ← 

w r 
w s + w r 

x r + 

w s 
w s + w r 

x s 
10: w r ← w r + w s 

11: until q r .empty() 

12: end function 

hich can be concurrently accessed by all workers. Each worker

epeats the same loop which consists in a sequence of 3 oper-

tions, namely processing incoming messages, performing a lo-

al gradient descent update and possibly sending a message to a

eighbor worker. 

Remark that all messages are processed in a delayed fashion

n the sense that several messages can be received and the cor-

esponding variables may have been updated by their respective

orkers before the receiving worker applies the reception proce-

ure. From this point of view, it seems the workers are taking into

ccount outdated information, which is even more the case with

 low communication frequency controlled by a low probability
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002


6 M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  500  1000  1500  2000  2500  3000

T
ra

in
 L

os
s

#Batches

PerSyn(p=0.400)
PerSyn(p=0.100)
PerSyn(p=0.010)
1 thread (bs=16)

(a) Training loss evolution for PerSyn

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  500  1000  1500  2000  2500  3000

T
ra

in
 L

os
s

#Batches

GoSGD(p=0.400)
GoSGD(p=0.100)
GoSGD(p=0.010)
1 thread (bs=16)

(b) Training Loss evolution for GoSGD
Fig. 1. Training loss evolution for PerSyn and GoSGD for different frequency/probability of exchange p . 

Please cite this article as: M. Blot, D. Picard and N. Thome et al., Distributed optimization for deep learning with gossip exchange, 

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 

https://doi.org/10.1016/j.neucom.2018.11.002


M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 7 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

Fig. 2. Convergence speed comparison between GoSGD and EASGD for similar frequency/probability of exchange p = 0 . 02 . 

p  

a  

p

4

 

a  

S  

i

x

A  

w

x

s

W  

c

x

T  

b  

w  

t  

t  

t

5

 

d  

[  

t  

o  

a  

e  

T  

f  

t  

i  

e  

c  

t  

o

5

 

t  

d  

r  

w

 

P  

o  

i  

e  

b  

S  

f  

a

 . However, as we show in the experiment, even very low prob-

bilities of communication ( p = 0 . 01 ) yield very good convergence

roperties and satisfying consensus. 

.2. Distributed optimization interpretation 

We now show that our proposed GoSGD solves a consensus

ugmented version of the distributed ERM principle. As shown in

ection 3 , the easiest way of tackling the distributed ERM principle

s to consider local variables constrained to be equal: 

min 

 1 , ... ,x M 

M ∑ 

m =1 

L (x m 

) 

s.t. ∀ m, x m 

= 

ˆ x 

ˆ x = 

1 

M 

M ∑ 

m =1 

x m 

s used in [9] and [24] , the consensus constraints can be relaxed

hich leads to the following augmented problem: 

min 

 1 , ... ,x M 

M ∑ 

m =1 

L (x m 

) + 

ρ

2 

‖ x m 

− ˆ x ‖ 

2 
2 (10) 

.t. ˆ x = 

1 

M 

M ∑ 

m =1 

x m 

(11) 

e can rewrite this loss in order to make the equivalent gossip

ommunications visible: 

min 

 1 , ... ,x M 

M ∑ 

s =1 

( 

L (x s ) + 

ρ

4 M 

M ∑ 

r=1 

‖ x s − x r ‖ 

2 
2 

) 

(12) 

he gradient of this objective function contains 2 terms, the first

eing related to the empirical risk and the second being the pair-

ise distance between local models. We prove in Appendix B that

he update rules of GoSGD are in expectation equivalent to this
Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
wo gradient terms and thus that GoSGD performs a stochastic al-

ernate gradient descent on this augmented problem. 

. Experiments 

We conducted experiment on the CIFAR-10 dataset (see [25] for

etailed presentation) using a CNN defined in [9] and described in

26] . In the first part, we test the convergence rate of different dis-

ributed algorithms, namely PerSyn, GoSGD and EASGD. The sec-

nd part of our experiments considers the consensus convergence

bility of the different communication strategies. For distributed

xperiments we always use M = 8 workers loaded on 8 different

esla K-20 GPU cards with 5 Go of RAM each. The deep learning

ramework that we used is Torch 7 [27] . For information, we ob-

ained with GoSGD in this framework, a time of 0.25 s per SGD

teration for a probability of exchange equal to 0.01. For all the

xperiments p represents the frequency/probability of communi-

ation per batch for one worker. In order to get a fair comparison

he methods are always compared at equal frequency/probability

f exchange. 

.1. Training speed and generalization performances 

In the following experiments we study the behaviour of the dis-

ributed algorithms during training on CIFAR-10. We use the same

ata augmentation strategy as in [9] . During training, the learning

ate is set to 0.1 and the weight decay is set to 10 −4 . We used eight

orkers. 

We show on Fig. 1 the evolution of the training loss for both

erSyn and GoSGD for different values of the frequency/probability

f exchange p . As we can see, PerSyn seems to be slightly faster

n terms of convergence speed (as measured by the number of it-

rations required to reach a specific loss value). However, remem-

er that even not taking into account synchronization issues, Per-

yn requires double the amount of message of GoSGD for the same

requency/probability since workers have to wait for the master to

nswer. 
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002


8 M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

Fig. 3. Validation accuracy evolution for PerSyn and GoSGD for different fre- 

quency/probability of exchange p . 

 

 

 

 

 

Fig. 4. Evolution of the consensus error ε( t ) against time for different communica- 

tion frequency/probability p for both GoSGD and PerSyn. 

o  

S  

o  

S  

a  

G  

w  

r

 

t  

t  

t  
Similarly, we compare the training loss of GoSGD with EASGD

on Fig. 2 using a real world clock. As we can see, GoSGD is signif-

icantly faster than EASGD, which can be explain by the non block-

ing updates of GoSGD as well as by the fact that GoSGD requires

less messages to keep the same consensus error. finally, we show
Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
n Fig. 3 the evolution of the validation accuracy for both Per-

yn and GoSGD for different values of the frequency/probability

f communication p . For low frequency p = 0 . 01 , despite Per-

yn being faster in terms on training loss decrease, both PerSyn

nd GoSGD models obtain equivalent validation accuracy. However,

oSGD is expected to be at least twice as fast in term of real

orld clock since it uses half the number of messages for the same

ate p . 

At higher exchange rate p = 0 . 4 , we can see that GoSGD ob-

ains better validation accuracy than PerSyn, despite having higher

raining loss, which means that GoSGD is in practice more robust

o overfitting. This can be explained by the randomized nature of
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002


M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 9 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

t  

p  

 

t  

f  

w  

s  

s  

a  

a  

c  

t  

s  

F

5

 

S  

t  

g  

p  

F  

q

ε

 

G  

q  

e  

t  

g  

w  

s  

t  

d

6

 

f  

c  

b  

u  

k  

s  

c  

t

 

f  

c  

p  

o

 

a  

m  

n  

F  

a  

n

A

 

d

P  

o

E

∇  

∇  

e  

E

A

 

e  

c

 

w  

p  

g  

d

 

c

x

T  

x

L

P  

n

A

T

A

U  

t

E

S  

t

E

S  

w

E

W

he gossip exchanges, which perform some kind of stochastic ex-

loration of the parameter space, similarly to what is done by [26] .

Remark that although the batch size is equal for each worker,

he implicit global batch size of the algorithms are not equivalent

or all curves. Indeed, the single thread run has a batch size of 16

hile each of the 8 workers of the distributed runs has a batch

ize of 16. Therefore the distributed runs have an equivalent batch

ize of 16 × 8 = 128 as calculated in Section 3 . These batch sizes

re chosen so has to have equal hardware requirements per avail-

ble machine, which we believe is the most fair and practical use

ase. In Section 2 , we recall that having a bigger batch size leads

o a much more accurate gradient updates which may significantly

peed up the convergence and this is indeed what we observe in

ig. 1 . 

.2. Consensus with random updates 

In this experiment, we assess the ability of GoSGD and Per-

yn to keep consensus. We consider a worst-case scenario where

he local updates are not correlated and as such, we replace the

radient term by a random variable sampled from N (0 , 1) , inde-

endently and identically distributed on each worker. We show on

ig. 4 the following consensus error for different values of the fre-

uency/probability of exchange p : 

(t) = 

M ∑ 

m =1 

∥∥x (t) 
m 

− ˜ x (t) 
∥∥2 

As we can see, at high frequency/probability of exchange,

oSGD and PerSyn are equivalent on average. For low fre-

uency/probability p = 0 . 01 , the Gossip strategy has a consensus

rror in the range of the higher values of PerSyn, as both share

he same magnitude. The main difference between the 2 strate-

ies is that PerSyn exhibits the expected periodicity in its behavior

hich leads to big variation of the consensus error, while GoSGD

eems to have much less variation. Overall, GoSGD is able to main-

ain consensus properties comparable to synchronous algorithms

espite its random nature. 

. Conclusion 

In this paper, we discussed the distributed computing strategies

or training deep convolutional neural networks. We show that the

lassical stochastic gradient descent can benefit from such distri-

ution since its accuracy depends on the size of the sample batch

sed at each iteration. We show that distributed SGD involve 2

ey operations, namely computation and communication. We also

how that there is a crucial trade-off between low communication

osts and sufficient communication to ensure that all workers con-

ribute to the same objective function. 

We develop the original distributed SGD algorithm into a novel

ramework that allows to design update strategies that precisely

ontrol the communication costs. From this framework, we pro-

ose 2 new algorithms PerSyn and GoSGD, the later being based

n Randomized Gossip protocols. 

In the experiments, we show that both PerSyn and GoSGD

re able to work under communication rates as low as 0.01

essage/update which renders the communication costs almost

egligible. We also show that GoSGD is faster than EASGD [9] .

urthermore, we show that the random communications of GoSGD

llows for better generalization capabilities when compared to

on-random communications. 

ppendix A. Estimator variance 

The error introduced by the Monte Carlo estimator of the gra-

ient is proportional to the batch size. 
Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
roof. The relation between the approximation error and the size

f the sample batch is given by: 

 ||∇L (x ) − ̂ ∇ L (x ) || 2 2 = E 

( 

dim (x ) ∑ 

i =1 

|∇L (x ) i − ̂ ∇ L (x ) i | 2 
) 

= 

dim (x ) ∑ 

i =1 

E |∇L (x ) i − ̂ ∇ L (x ) i | 2 

̂ 

 L (x ) i being an unbiased estimator of ∇L ( x ) i , E 

(̂ ∇ L (x ) i 
)

=
L (x ) i and E |∇L (x ) i − ̂ ∇ L (x ) i | 2 = V ar( ̂  ∇ L (x ) i ) . For Monte-Carlo

stimators we have that V ar( ̂  ∇ L (x ) i ) == V ar( 1 N 

∑ n 
k =1 ∇� (x, Y k ) i ) =

1 
N V ar(∇� (x, Y ) i ) , the Y k being iid . 

 ||∇L (x ) − ̂ ∇ L (x ) || 2 2 = 

dim (x ) ∑ 

i =1 

1 

N 

V ar(∇� (x, Y ) i ) 

= 

1 

N 

tr(C ov Y [ ∇� (x, Y )]) 

�
ppendix B. Alternate gradient 

The update rules of GoSGD are in expectation equivalent to the

mpirical risk and the consensus loss parts of the gradient of the

onsensus augmented distributed problem. 

For the empirical risk part, since at each time step t one of the

orkers performs a local stochastic gradient descent update with

robability 1/ M , it is in expectation equivalent to performing the

radient descent on the empirical risk part with a learning rate

ivided by M . 

For the consensus part, let us recall that the update for a re-

eiving worker is: 

 

(t+1) 
r = 

w r 

w s + w r 
x (t) 

r + 

w s 

w s + w r 
x (t+) 

s 

his update is occurring with probability p 
M (M −1) 

for all pairs ( x s ,

 r ) of workers. First we demonstrate the following lemma: 

emma 1. E 

[
w r 

w r + w s 

]
= 

1 
2 for all possible pairs ( w r , w s ) . 

roof. The weights update can be written with a random commu-

ication matrix A 

( t ) with the following definition: 

 

(t) = 

{
I, with probability p 

I − 1 
2 

e s e 
� 
s + 

1 
2 

e r e 
� 
s , with probability 1 − p 

he sequence of A 

( t ) are i.i.d. and we note E 

[
A 

(t) 
]

= A : 

 = pI + (1 − p) 
∑ 

s,r 
 = s 

1 

M(M − 1) 

(
I − 1 

2 

e s e 
� 
s + 

1 

2 

e r e 
� 
s 

)
= 

(
1 − 1 − p 

2 M 

)
I + 

1 − p 

2 M(M − 1) 
1 1 � 

sing A and denoting w 

( t ) the vector concatenating all weights at

ime t , we have the following recursion: 

 

[
w 

(t+1) | w 

(t) 
]

= E 

[
A 

(t) 
]
w 

(t) 

= Aw 

(t) 

ince all weights are initialized to 1, unrolling the recursion leads

o: 

 

[
w 

(t+1) 
]

= A 

t 1 

ince 1 is a right eigenvector of A (associated with eigenvalue λ),

e have: 

 

[
w 

(t+1) 
]

= λt 1 

hich means that all weights are equal in expectation. �
istributed optimization for deep learning with gossip exchange, 

https://doi.org/10.1016/j.neucom.2018.11.002


10 M. Blot, D. Picard and N. Thome et al. / Neurocomputing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; November 22, 2018;5:58 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

This lemma leads to the following expected update step: 

E 

[
x (t+1) 

r − x 
(t+ 1 2 ) 
r 

]
= 

p 

2 M(M − 1) 

(
x (t) 

s − x 
(t+ 1 2 ) 
r 

)
Which corresponds in expectation to a gradient descent performed

on the consensus part with a learning rate of p 
2 M (M −1) 

. 

References 

[1] K. Fukushima , Neocognitron: a self-organizing neural network for a mecha-

nism of pattern recognition unaffected by shift in position, Biol. Cybern. 36 (4)
(1980) 193–202 . 

[2] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 . 
[3] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep con-

volutional neural networks, in: Proceedings of the Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105 . 

[4] O. Russakovsky , J. Deng , H. Su , J. Krause , S. Satheesh , S. Ma , Z. Huang , A. Karpa-
thy , A. Khosla , M. Bernstein , A.C. Berg , L. Fei-Fei , ImageNet Large scale visual

recognition challenge, Int. J. Comput. Vis. (IJCV) 115 (3) (2015) 211–252 . 

[5] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ra-
manan, C.L. Zitnick, P. Dollr, Microsoft coco: common objects in context, arxiv

(2015). 
[6] L. Bottou , Large-scale machine learning with stochastic gradient descent, in:

Proceedings of the COMPSTAT’2010, Springer, 2010, pp. 177–186 . 
[7] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016, pp. 770–778 . 
[8] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, (2014). arXiv: 1409.1556 . 
[9] S. Zhang , A.E. Choromanska , Y. LeCun , Deep learning with elastic averaging

SGD, in: Proceedings of the Advances in Neural Information Processing Sys-
tems 28, 2015, pp. 685–693 . 

[10] J. Dean , G. Corrado , R. Monga , K. Chen , M. Devin , M. Mao , A. Senior , P. Tucker ,

K. Yang , Q.V. Le , et al. , Large scale distributed deep networks, in: Proceed-
ings of the Advances in Neural Information Processing Systems 25, 2012,

pp. 1223–1231 . 
[11] S. Boyd , A. Ghosh , B. Prabhakar , D. Shah , Randomized gossip algorithms, IEEE

Trans. Inf. Theory 52 (2006) . 
[12] I. Colin , A. Bellet , J. Salmon , S. Clémençon , Gossip dual averaging for decentral-

ized optimization of pairwise functions, in: M.F. Balcan, K.Q. Weinberger (Eds.),

Proceedings of the Thirty-Third International Conference on Machine Learn-
ing, Proceedings of Machine Learning Research, New York, NY, USA, 48, 2016,

pp. 1388–1396 . 
[13] J. Fellus , D. Picard , P.-H. Gosselin , Asynchronous gossip principal components

analysis, Neurocomputing 169 (2015) 262–271 . 
[14] G. Di Fatta , F. Blasa , S. Cafiero , G. Fortino , Epidemic k-means clustering, in: Pro-

ceedings of the IEEE Eleventh International Conference on Data Mining Work-
shops (ICDMW), IEEE, 2011, pp. 151–158 . 

[15] J. Fellus , D. Picard , P.-H. Gosselin , Decentralized k-means using randomized

gossip protocols for clustering large datasets, in: Proceedings of the IEEE
Thirteenth International Conference on Data Mining Workshops, IEEE, 2013,

pp. 599–606 . 
[16] V. Vapnik , The Nature of Statistical Learning Theory, Springer, 1995 . 

[17] D.G. Luenberger , Y. Ye , Linear and Nonlinear Programming, Springer, 2008 . 
[18] D.P. Kingma , J. Ba , Adam: a method for stochastic optimization, in: Proceedings

of the International Conference on Learning Representations, 2015 . 

[19] G. Hinton, Overview of mini-batch gradient descent, in: Neural Networks
for Machine Learning, Lecture 6a, 2013 https://www.cs.toronto.edu/ ∼tijmen/

csc321/slides/lecture _ slides _ lec6.pdf . 
[20] G. Huang , Z. Liu , L. van der Maaten , K.Q. Weinberger , Densely connected con-

volutional networks, in: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017, pp. 4700–4708 . 

[21] H. Ma , F. Mao , G.W. Taylor , Theano-MPI: a theano-based distributed training

framework, in: Proceedings of the European Conference on Parallel Processing,
Springer, 2016, pp. 800–813 . 

[22] A. Choromanska , M. Henaff, M. Mathieu , G.B. Arous , Y. LeCun , The loss surfaces
of multilayer networks, in: G. Lebanon, S.V.N. Vishwanathan (Eds.), Proceed-

ings of the Eighteenth International Conference on Artificial Intelligence and
Please cite this article as: M. Blot, D. Picard and N. Thome et al., D

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.002 
Statistics, Proceedings of Machine Learning Research, San Diego, CA, USA, 38,
2015, pp. 192–204 . 

23] D. Kempe , A. Dobra , J. Gehrke , Gossip-based computation of aggregate infor-
mation, in: Proceedings of the Forty-Fourth Annual IEEE Symposium on Foun-

dations of Computer Science, IEEE, 2003, pp. 4 82–4 91 . 
[24] S. Boyd , N. Parikh , E. Chu , B. Peleato , J. Eckstein , Distributed optimization and

statistical learning via the alternating direction method of multipliers, Found.
Trends Mach. Learn. 3 (1) (2011) 1–122 . 

25] A. Krizhevsky , Learning Multiple Layers of Features From Tiny Images, Com-

puter Science Department University of Toronto, 2009 Ph.D. thesis . 
26] L. Wan , M. Zeiler , S. Zhang , Y. Le Cun , R. Fergus , Regularization of neural net-

works using dropconnect, in: Proceedings of the International Conference on
Machine Learning, 2013, pp. 1058–1066 . 

[27] R. Collobert, C. Farabet, K. Kavukcuoglu, S. Chintala, Torch 7, ( http://torch.ch/ ). 

Michael Blot received a M.Sc in Mathematical Logic and

Computer Science Fundamentals from University Paris

Diderot in 2014 and a M.Sc in quantitative finance of
IAE of Grenoble in 2012 and he received the Engineering

Diploma in applied mathematics from Ensimag in 2012.
He is currently a Ph.D. student in the Machine Learn-

ing and Information Access of University Pierre et Marie
Curie, under the supervision of Matthieu Cord. His re-

search focuses on deep learning for image classification

and in particular on training methods of convolutional
neural networks. 

David Picard received the M.Sc. in Electrical Engineer-

ing in 2005, the Ph.D. in Image and Signal Processing in
2008 and the Habilitation in Computer Science in 2017.

He joined the ETIS laboratory at ENSEA Graduate School
(France) in 2010 as an associate professor. His research

interests include computer vision and machine learning,

with a focus on kernel methods, deep learning and dis-
tributed learning with applications to image indexing and

retrieval. 

Nicolas Thome is a full professor at Conservatoire Na-

tionnal des Arts et Metiers (Cnam Paris). He received the
Ph.D. degree in computer science from the University of

Lyon, France in 2007, and has been associate professor
at UPMC-Paris 6 from 2008 to 2016. His research inter-

ests include machine learning for computer vision, in-
cluding applications for semantic understanding of mul-

timedia data. He is involved in several French (ANR),

European and international (Canada, Singapore, Brazil)
research projects. He is being coordinator of an ANR

project on weakly supervised learning for image retrieval
in 2013–2018. 

Matthieu Cord is a full professor at Sorbonne Univer-

sity. He received the Ph.D. degree computer science from
the UCP, France, before working as postdoc at KU Leu-

ven, Belgium. His research interests include computer vi-

sion, deep learning and artificial intelligence. He devel-
oped several interactive learning-based approaches for

CBIR and many models for pattern recognition using deep
architectures. Recently, he focused on multimodal (vison

and language) understanding. M. Cord is (co-)author of
more than 100 international, peer-reviewed publications

among including two edited books. He is involved in sev-

eral French, European and international research projects.
In 2009, he was nominated to the prestigious IUF (French

esearch Institute). 
istributed optimization for deep learning with gossip exchange, 

http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0006
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0016
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31319-5/sbref0024
http://torch.ch/
https://doi.org/10.1016/j.neucom.2018.11.002

	Distributed optimization for deep learning with gossip exchange
	1 Introduction
	2 SGD and related work
	2.1 Related work

	3 Framework
	3.1 PerSyn
	3.2 EASGD
	3.3 Downpour SGD

	4 Gossip Stochastic Gradient Descent (GoSGD)
	4.1 GoSGD algorithm
	4.2 Distributed optimization interpretation

	5 Experiments
	5.1 Training speed and generalization performances
	5.2 Consensus with random updates

	6 Conclusion
	Appendix A Estimator variance
	Appendix B Alternate gradient
	References


