
Reinforcement learning

A brief overview through the A3C paper
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Agent

Environment

action a
state   s
reward r
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5



Markov Decision Processes

6



Markov Decision Processes
set of actions a ∈ A

set of states  s ∈ S

transition function T(s, a, s’)

reward function R(s, a, s’)

start / terminal state
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Markov Decision Processes

Andrey Markov
1856 - 1922
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RL Framework
At each timestep t:

● The agent receives a state st from S
● The agent chooses action at from A, according to π
● The agent receives st+1 and a reward rt 

The process continues until the agent reaches a terminal state

The return is 

The goal of the agent is to maximize the expected return from 
each state st 
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Goal
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Value Methods
State value
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Value Methods
State value

Action value
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Value Methods
State value

Action value

Optimal value function
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Value Methods
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Approximate setting

r directly affects one Q(s,a)
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N-step Q-Learning
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N-step Q-Learning
Use n-step return instead!

r affects n Q(s,a)
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Policy Methods
REINFORCE update

Variance problem

Common baseline

Advantage

Sutton & Barto, 1998; Degris et al. 2012 45
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Mnih et al, 2016
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motivation
RL + function approximation = ?

Strongly correlated online RL updates

Experience replay

Off-policy only

Riedmiller, 2005; Schulman et al. 2015a Mnih et al., 2013; 2015; Van Hasselt et al. 2015 55
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Asynchronous RL
Multiple agents in parallel

Multiple instances of the environment

On-policy: Sarsa, n-step methods, actor-critic methods

GPU -> CPU
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Asynchronous RL framework
1 asynchronous actor-learner = 1 thread

1 asynchronous actor-learner = 1 different exploration policy

No replay memory
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Asynchronous one-step Q-learning
1 thread = 1 copy of the environment

At each step computes the gradient of the Q-learning loss

Accumulate gradients over multiple time steps
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Sarsa
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Asynchronous n-step Q-learning
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Asynchronous n-step Q-learning
Use forward view instead of backward view

Easier for training NNs with momentum

First select actions up to tmax or until terminal state
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Asynchronous n-step Q-learning

(s, a) (s, a) (s, a) (s, a) (s, a)

tmax
r r r r
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Asynchronous Advantage Actor Critic (A3C)
Maintains             and

Also operates in forward view (update after every tmax)   

Update

Advantage (k up to tmax)
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A3C details
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A3C details

  and    come from the same network with two heads
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A3C details

  and    come from the same network with two heads

Add entropy regularization term
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Results 3



Benchmarks
Arcade Learning Environment (Bellemare et al., 2012)

TORCS 3D Racing simulator (Wyman et al., 2013)

A3C only: MuJoCo (Todorov, 2015)
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ATARI 2600

DQN: Nvidia K40 GPU

Asynchronous: CPU (16 cores)
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ATARI 2600
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MuJoCo
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http://www.youtube.com/watch?v=Ajjc08-iPx8
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