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Deep Learning

Outline

© Neural Networks and Deep Learning
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Deep Learning

The origins

The formal neuron, basis of the neural networks
e 1943: The formal neuron [MP43]
X;: inputs
w;, b: weights
f: activation function
y: output of the neuron

y=f(w'x+b)
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Figure: The formal neuron - credits: R. Herault
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Deep Learning

The Multi-Layer Perceptron (MLP) & Deep Learning

Figure: Perceptron with 1 hidden
layer - Credits: R. Herault

toward “deep learning” - credits: M.

Nielsen
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Basis of the “deep learning” field

Principle: Stacking layers of neural
networks to allow more complex and rich
functions

Not limited to linear prediction

With a hidden layer, can approximate any
function given enough hidden units
[Cyb89]

Can be seen as different levels of
abstraction from low-level features to the
high-level ones
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Deep Learning

Recognition of low-level signals

Challenge: filling the semantic gap

What we perceive vs
What a computer sees

lllumination variations
View-point variations
Deformable objects

intra-class variance

etc

intermediate representation ?
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Deep Learning

History: Trends and methods in the last four decades

e 80's: training Convolutionnal Neural Networks (CNN) with
back-propagation = postal code reading [LBD*89]
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e 90's: golden age of kernel methods, NN = black box
e 2000's: BoW + SVM : state-of-the-art CV
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Deep Learning

History: Trends and methods in the last four decades

e Deep learning revival: unsupervised learning (DBN) [HOTO06]

Neural network Deep belief net
Back propagation Science Speech - I
s - IMAGE 3
ature Microsoft
1986 2006 2011 2012

e 2012: CNN outstanding success in ImageNet [KSH12]

U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted
3 U. Oxford 0.26979 featuresand

learning models.

4 Xerox/INRIA 0.27058 Bottleneck.

o Huge number of labeled images (10° images)
e GPU implementation for training
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Deep Learning

Deep Learning (DL) & Recognition of low-level signals

e DL: breakthrough for the recognition of low-level signal data
e Before DL: handcrafted intermediate representations for each task

e © Needs expertise (PhD level) in each field
o © Weak level of semantics in the representation

VISION
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Deep Learning

Deep Learning (DL) & Recognition of low-level signals

e DL: breakthrough for the recognition of low-level signal data
e Since DL: automatically learning intermediate representations

o @& Outstanding experimental performances >> handcrafted features
o @ Able to learn high level intermediate representations
o ® Common learning methodology = field independent, no expertise

VISION

SPEECH

“W”' o X,

nicolas.thome@cnam.fr

1 2
oL S LN e
max (0, x) (0,W k') W'h
@Kokkinos
1 2
1y h 2,1 h 3.2 v
max (0, x) x(0,W°h') > W'k ——

Dropout as Bayesian Appoximation 9/ 30


mailto:nicolas.thome@cnam.fr

Outline

© Dropout for Deep Learning
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Dropout

Deep Learning Modules

Training: droupout

e Randomly omit each hidden unit with probability 0.5
¢ Regularization technique, limits over-fitting (better generalization)

e Pulls the weights towards what other models want, useful to prevent co-adaptation
(feature only helpful when other specific features present)

e May be viewed as averaging over many NN

o Slower convergence

[ ]

[O®000RR0 |

Standard Neural Net After applying dropout.

Credits: Geoffrey E. Hinton, NIPS 2012
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Dropout

Deep Learning Modules

Training: droupout

e What to do at test time ?
e Sample many different architectures and take the geometric mean of their output
distributions
o Faster alternative: use all hidden units (but after halving their outgoing weights)
e Equivalent to the geometric mean in case of single hidden layer
e Pretty good approximation for multiple layers

Standard Neural Net After applying dropout.

Credits: Geoffrey E. Hinton, NIPS 2012
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Deep Uncertainty

Outline

© Modeling Uncertainty in Deep Learning
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Deep Uncertainty

Deep Learning (DL) & Uncertainty

Problem

o Deep Models not necessarily robust to input variations
o Deep Models do not naturally capture uncertainty

e Ex: Adversarial Examples

correct +distort ostrich correct ‘ +distort ostrich

nicolas.thome@cnam.fr Dropout as Bayesian Appoximation


mailto:nicolas.thome@cnam.fr

Deep Uncertainty

Deep Learning (DL) & Uncertainty: Problem

Softmax output in neural network # confidence (uncertainty) measure !

T T
e x input, f(x) neural net function (left), o(f(x)) softmax output (right)
e Solid black line : model pointwise function estimate
e Training data : between dashed gray lines
¢ Red dashed line: test point x* (far from training)
e Shaded gray area: uncertainty

e Conclusions:
o Model o(f(x)): extrapolations with unjustified high confidence for points
far from the training data (probability of 1 to x*).
o However, passing the distribution through a softmax (shaded area 1b)
better reflects classification uncertainty far from the training data.
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Deep Uncertainty

Uncertainty Modeling

Modeling uncertainty is crucial in many contexts:

e When error in prediction can have a huge impact, e.g.

o Diagnostic: pass input to an expert
o Autonomous driving

e Training from few data, e.g. active learning (must select informative
samples for annotation, e.g. based on uncertainty)

e Reinforcement Learning: uncertainty helps in improving the exploitation /
exploration tradeoff
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Deep Uncertainty

Bayesian Models

e Observed inputs X = {x,} _,and outputs Y = {y; }

Prior p(w), likelihood p(Y/w,X)

e Posterior: Bayes = p(w/X,Y) = W o< p(Y/w, X)p(w)
Predictive distribution given new input x*

P /X WY, X) = [ p(y’ /5 w)p(w/X, Y )dw

This is what we want !

e Prob distribution of outputs
o Naturally gives a measure of uncertainty
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Deep Uncertainty

Bayesian Models and Variational Inference (VI)

e BUT... Posterior p(w/X,Y) quickly becomes intractable

o Closed form solution for very simple models, i.e. Bayesian linear regression
(or when likelihood conjugate to prior)

o For moderately complex models: no closed form (e.g. a neural network with
a single hidden unit)

e Popular solution: approximate p(w/X,Y) by go(w)

o Find parameters 0 st Kullback-Leibler divergence KL(go(w), p(w/X,Y)) is
minimized

e Minimizing KL(go(w), p(w/X,Y)) equivalent to maximizing the log
evidence lower bound (ELBO):

Loi(6) = /e;r.-{w] log p(Y| X, w)dw — KL{gs(w)||p(ew)} < logp(Y|X) = log evidence,

e Resulting in the approximate predictive distribution:

Py [ w. Y. X) ~ [ ply*/xw) o (w)dw
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Deep Uncertainty

Bayesian Deep Learning

e Bayesian deep neural networks:

T
ik Wi

e Prior on neural network weight, e.g. p(wijy) o< e 3w
] yA,' = fw(x,') = WLO'(...Wzo'(Wlx))
o p(yi/xi,w) = softmax(fw (x;))

ik Y layer i neuron k

e BUT evaluate posterior p(w/X,Y) challenging ...
e Recall: Variational Inference (VI)

N
Lo(®) = =3 [ ao(e) log ol [ e + KL(go(w) [p())

*
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Deep Uncertainty

Bayesian Deep Learning Variational Inference (VI)

e Modern solutions: approximate integral with MC integration W ~ gg(w)

Algorithm 1 Minimise divergence between gg(w) and p(w|X,Y)

1. Given dataset X,Y,

2: Define learning rate schedule 7,
3: Initialise parameters # randomly.
4

]

: repeat
Sample M random variables € ~ p(e), S a random subset of {1,.., N'} of size M.
6. Calculate stochastic derivative estimator w.r.t. 6:

N

Ad dJ < 17
- — log 9(0.€;) v
Al M ; ag log p(yi|f ()] + agKL((fﬁ("")H!’(L‘-’))-

7. Update 6: N
0+ 6+ nAb.
& until # has converged.

© Prohibitive computational cost. To represent uncertainty, the number of
parameters in these models is doubled for the same network size.

e © Requires more time to converge and do not improve on existing
techniques.
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Deep Uncertainty

Dropout and Bayesian Deep Learning Variational Inference (VI)

e Now let us specify some specific go(w)
» Given variational parameters 6 = {m,-k}f.k:
qs(w H qs(W
er H Q'mk W:k

Om (Wik) = Pfiu{wfk) + (1 = P)om, (Wik)

- k’th column of the i'th layer is a mixture of two components

» Or, in a more compact way:

z;. ~ Bernoulli(p;) for each layer j and column k
W; = M; - diag([z rk]k 1)

with z;, Bernoulli r.v.s.
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Deep Uncertainty

Dropout and Bayesian Deep Learning Variational Inference (VI)

The big result

Sounds familiar?

= loss =Lpreg

L£(8) = —log p(Y|X, &) +KL(qy(w) || p(w))

Implementing VI with g,(-) above = implementing dropout in
deep network v,
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Deep Uncertainty

Dropout and Bayesian Deep Learning Variational Inference (VI)

The big result

e Dropout applied before every weight layer equivalent to variational
inference in Bayesian NNs !

e Can be used to get uncertainty estimates in the network !

We fit a distribution...
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Deep Uncertainty

Dropout and Uncertainty Estimates

We fit a distribution...
» Use first moment for predictions:

with y; ~ DropoutNetwork(x*).

» Use second moment for uncertainty (in regression):

;
Var(y Zv Vi —E(y)TE(y) + 71

-4 \

with y; ~ DropoutNetwork(x*).

e Drop units at test time and look at mean and sample variance

Ty = T[]

2 |[for _ in xrange(10):

3 v.append (model . output (x, dropout=True))
4 |v_mean = numpy.mean (y)

5

y_WVar = numpy.var(y)
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Applications

Outline

@ Applications
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Model Uncertainty in Regression Tasks

-1 0 1
(b) Gaussian process with SE covariance function

-1 0 1 2
(c) MC dropout with ReLU non-linearities

-1 0 1
(d) MC dropout with TanH non-linearities
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Model Uncertainty in Classification Tasks
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(a) Softmax input scatter (b) Softmax output scatter

Figure 4. A scatter of 100 forward passes of the softmax input and output for dropout LeNet. On the X axis is a rotated image of
the digit 1. The input is classified as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed in colour).
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Predictive Performance

Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors

Dataset VI PBP Dropout VI PBP Dropout

Boston Housing 432+£029 3.01 £0.18 2.97 £0.85 -2.90 £0.07 -2.57 £0.09 -2.46 £0.25
Concrete Strength 7.19 £0.12 5.67 £0.09 5.23 +£0.53  -3.39 £0.02 -3.16 £0.02 -3.04 +0.09
Energy Efficiency 2.65 +£0.08 1.80 £0.05 1.66 +0.19 -2.39 +0.03 -2.04 £0.02 -1.99 +0.09
Kin8nm 0.10 +£0.00 0.10 +£0.00 0.10 £0.00  0.90 £0.01 0.90 £0.01  0.95 £0.03
Naval Propulsion 0.01 +£0.00 0.01 +£0.00 0.01 £0.00  3.73+0.12 3.73 £0.01 3.80 £0.05
Power Plant 4.334+0.04 4.12+0.03 4.02+£0.18 -2.89 +£0.01 -2.84 £0.01 -2.80 £0.05
Protein Structure 4.84+£0.03 4.73 £0.01 4.36 £0.04 -2.99 +0.01 -2.97 £0.00 -2.89 +0.01
‘Wine Quality Red 0.65 £0.01 0.64 £0.01 0.62 +£0.04 -0.98 +0.01 -0.97 £0.01 -0.93 +0.06
Yacht Hydrodynamics ~ 6.89 £0.67 1.02 +0.05 1.11 £0.38 -3.43 40.16 -1.63 +£0.02 -1.55 +0.12
Year Prediction MSD ~ 9.034 +NA 8.879 £NA 8.849 +NA -3.622 +NA -3.603 £NA -3.588 +NA

Table 1. Average test performance in RMSE and predictive log likelihood for a popular variational inference method (VI, Graves
(2011)), Probabilistic back-propagation (PBP, Herndndez-Lobato & Adams (2015)), and dropout uncertainty (Dropout). ¥
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Conclusion

e Best of both worlds
o Deep learning:
o ® Complex and powerful model for prediction

e @ Dropout scales well to big data
o © No uncertainty measure

e Bayesian Deep Learning:

o @ Uncertainty Measure
e © Computation issues, does not scale well and is practice is not used with
deep learning
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