Dropout as Bayesian Appoximation: Representing Model Uncertainty in Deep Learning - ICML 2016 Yarin Gal, Zoubin Ghahramani, University of Cambridge

> MSDMA Journal Club Nicolas Thome Prenom.Nom@cnam.fr http://cedric.cnam.fr/~thomen/

> > April, 28th 2017

<ロ> (四) (四) (王) (王) (王) (王)

Outline



- 2 Dropout for Deep Learning
- Modeling Uncertainty in Deep Learning
 - Applications

イロト 不良と 不良とう

æ

Dropout

The origins

The formal neuron, basis of the neural networks

- 1943: The formal neuron [MP43]
 - xi: inputs wi, b: weights f: activation function y: output of the neuron

$$y = f(w^{\mathsf{T}}x + b)$$

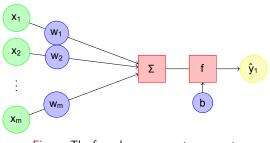
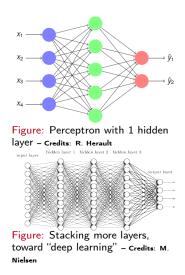


Figure: The formal neuron - Credits: R. Herault

The Multi-Layer Perceptron (MLP) & Deep Learning



- Basis of the "deep learning" field
- Principle: Stacking layers of neural networks to allow more complex and rich functions
- Not limited to linear prediction
- With a hidden layer, **can approximate any function** given enough hidden units [Cyb89]
- Can be seen as **different levels of abstraction** from low-level features to the high-level ones

Recognition of low-level signals

Challenge: filling the semantic gap

What we perceive vs What a computer sees

- Illumination variations
- View-point variations
- Deformable objects
- intra-class variance

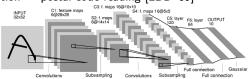
イロト 不得下 イヨト イヨト

etc

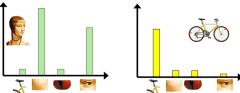
 \Rightarrow How to design "good" intermediate representation ?

History: Trends and methods in the last four decades

 80's: training Convolutionnal Neural Networks (CNN) with back-propagation ⇒ postal code reading [LBD⁺89]



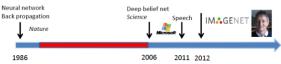
- 90's: golden age of kernel methods, NN = black box
- 2000's: BoW + SVM : state-of-the-art CV



イロト イポト イヨト イヨト

History: Trends and methods in the last four decades

• Deep learning revival: unsupervised learning (DBN) [HOT06]



• 2012: CNN outstanding success in ImageNet [KSH12]

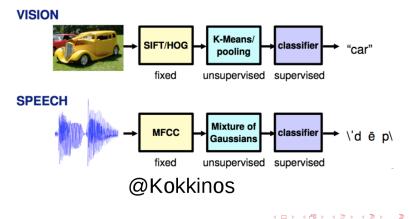
Rank	Name	Error rate	Description
1	U. Toronto	0.15315	Deep learning
2	U. Tokyo	0.26172	Hand-crafted
3	U. Oxford	0.26979	features and
4	Xerox/INRIA	0.27058	learning models. Bottleneck.

- Huge number of labeled images (10⁶ images)
- GPU implementation for training

イロト イポト イヨト イヨト

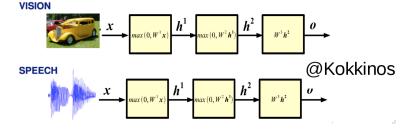
Deep Learning (DL) & Recognition of low-level signals

- DL: breakthrough for the recognition of low-level signal data
- Before DL: handcrafted intermediate representations for each task
 - \ominus Needs expertise (PhD level) in each field
 - $\bullet~\ominus$ Weak level of semantics in the representation



Deep Learning (DL) & Recognition of low-level signals

- DL: breakthrough for the recognition of low-level signal data
- Since DL: automatically learning intermediate representations
 - \oplus Outstanding experimental performances >> handcrafted features
 - $\bullet \oplus$ Able to learn high level intermediate representations
 - $\bullet~\oplus$ Common learning methodology \Rightarrow field independent, no expertise



イロト イポト イヨト イヨト

Outline

2 Dropout for Deep Learning

Modeling Uncertainty in Deep Learning

Applications

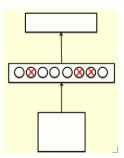
・ロト ・日下・ ・日下・ ・日下

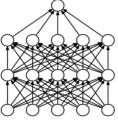
æ

Deep Learning Modules

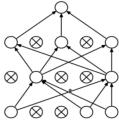
Training: droupout

- Randomly omit each hidden unit with probability 0.5
- Regularization technique, limits over-fitting (better generalization)
 - Pulls the weights towards what other models want, useful to prevent co-adaptation (feature only helpful when other specific features present)
 - May be viewed as averaging over many NN
 - Slower convergence





Standard Neural Net



After applying dropout.

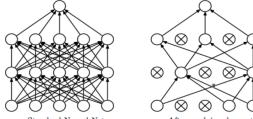
Credits: Geoffrey E. Hinton, NIPS 2012

(日) (周) (王) (王) (王)

Deep Learning Modules

Training: droupout

- What to do at test time ?
 - Sample many different architectures and take the geometric mean of their output distributions
 - Faster alternative: use all hidden units (but after halving their outgoing weights)
 - Equivalent to the geometric mean in case of single hidden layer
 - Pretty good approximation for multiple layers



Standard Neural Net

After applying dropout.

Credits: Geoffrey E. Hinton, NIPS 2012

イロト イロト イヨト イヨト

Outline

- 2 Dropout for Deep Learning
- Modeling Uncertainty in Deep Learning
 - 4 Applications

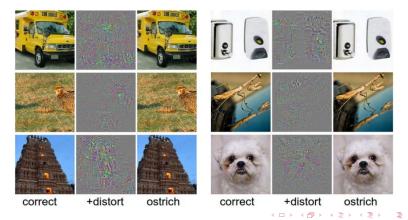
・ロト ・日本・ ・日本・

æ

Deep Learning (DL) & Uncertainty

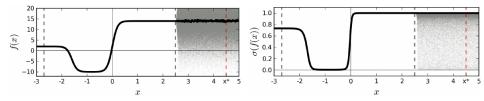
Problem

- Deep Models not necessarily robust to input variations
- Deep Models do not naturally capture uncertainty
- Ex: Adversarial Examples



Deep Learning (DL) & Uncertainty: Problem

Softmax output in neural network *≠* confidence (uncertainty) measure !



- x input, f(x) neural net function (left), $\sigma(f(x))$ softmax output (right)
- Solid black line : model pointwise function estimate
- Training data : between dashed gray lines
- Red dashed line: test point x^* (far from training)
- Shaded gray area: uncertainty
- Conclusions:
 - Model σ(f(x)): extrapolations with unjustified high confidence for points far from the training data (probability of 1 to x*).
 - However, passing the distribution through a softmax (shaded area 1b) better reflects classification uncertainty far from the training data.

Uncertainty Modeling

Modeling uncertainty is crucial in many contexts:

- When error in prediction can have a huge impact, e.g.
 - Diagnostic: pass input to an expert
 - Autonomous driving
- Training from few data, *e.g.* active learning (must select informative samples for annotation, *e.g.* based on uncertainty)
- Reinforcement Learning: uncertainty helps in improving the exploitation / exploration tradeoff

Bayesian Models

- Observed inputs $\mathbf{X} = {\mathbf{x}_i}_{i=1}^N$ and outputs $\mathbf{Y} = {\mathbf{y}_i}_{i=1}^N$
- Prior $p(\mathbf{w})$, likelihood $p(\mathbf{Y}/\mathbf{w}, \mathbf{X})$
- Posterior: Bayes $\Rightarrow p(w/X, Y) = \frac{p(Y/w, X)p(w)}{p(Y/X)} \propto p(Y/w, X)p(w)$
- Predictive distribution given new input x^{*}

$$p(\mathbf{y}^*/\mathbf{x}^*,\mathbf{w},\mathbf{Y},\mathbf{X}) = \int p(\mathbf{y}^*/\mathbf{x}^*,\mathbf{w})p(\mathbf{w}/\mathbf{X},\mathbf{Y})dw$$

- This is what we want !
 - Prob distribution of outputs
 - Naturally gives a measure of uncertainty

Bayesian Models and Variational Inference (VI)

- **BUT**... Posterior p(w|X, Y) quickly becomes intractable
 - Closed form solution for very simple models, *i.e.* Bayesian linear regression (or when likelihood conjugate to prior)
 - For moderately complex models: no closed form (e.g. a neural network with a single hidden unit)
- Popular solution: approximate $p(\mathbf{w}/\mathbf{X},\mathbf{Y})$ by $q_{\theta}(\mathbf{w})$
- Find parameters θ st Kullback-Leibler divergence KL(q_θ(w), p(w/X, Y)) is minimized
- Minimizing KL(q_θ(w), p(w/X, Y)) equivalent to maximizing the log evidence lower bound (ELBO):

$$\mathcal{L}_{\mathrm{VI}}(\theta) := \int q_{\theta}(\boldsymbol{\omega}) \log p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\omega}) \mathrm{d}\boldsymbol{\omega} - \mathrm{KL}(q_{\theta}(\boldsymbol{\omega})||p(\boldsymbol{\omega})) \leq \log p(\mathbf{Y}|\mathbf{X}) = \log \text{ evidence},$$

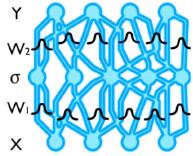
• Resulting in the approximate predictive distribution:

$$p(\mathbf{y}^*/\mathbf{x}^*, \mathbf{w}, \mathbf{Y}, \mathbf{X}) \approx \int p(\mathbf{y}^*/\mathbf{x}^*, \mathbf{w}) q_{\theta}(\mathbf{w}) dw$$

(日) (周) (王) (王) (王)

Bayesian Deep Learning

- Bayesian deep neural networks:
 - Prior on neural network weight, e.g. $p(\mathbf{w}_{ik}) \propto e^{-\frac{1}{2}\mathbf{w}_{ik}^T\mathbf{w}_{ik}} \forall$ layer *i* neuron *k*
 - $\hat{\mathbf{y}}_i = f_{\mathbf{W}}(\mathbf{x}_i) = \mathbf{W}_L \sigma(\dots \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x}))$
 - $p(\mathbf{y}_i / \mathbf{x}_i, \mathbf{w}) = softmax(f_{\mathbf{W}}(\mathbf{x}_i))$



- BUT evaluate posterior p(w/X, Y) challenging ...
- Recall: Variational Inference (VI)

$$\mathcal{L}_{\mathrm{VI}}(\theta) := -\sum_{i=1}^{N} \int q_{\theta}(\boldsymbol{\omega}) \log p(\mathbf{y}_{i} | \mathbf{f}^{\boldsymbol{\omega}}(\mathbf{x}_{i})) \mathrm{d}\boldsymbol{\omega} + \mathrm{KL}(q_{\theta}(\boldsymbol{\omega}) || p(\boldsymbol{\omega}))$$

nicolas.thome@cnam.fr

Dropout as Bayesian Appoximation

19/30

Bayesian Deep Learning Variational Inference (VI)

• Modern solutions: approximate integral with MC integration $\hat{\mathbf{w}} \sim q_{\theta}(\mathbf{w})$

Algorithm 1 Minimise divergence between $q_{\theta}(\boldsymbol{\omega})$ and $p(\boldsymbol{\omega}|X,Y)$

- 1: Given dataset $\mathbf{X}, \mathbf{Y},$
- 2: Define learning rate schedule $\eta,$
- 3: Initialise parameters θ randomly.
- 4: repeat
- 5: Sample *M* random variables $\hat{\epsilon}_i \sim p(\epsilon)$, *S* a random subset of $\{1, ..., N\}$ of size *M*.
- 6: Calculate stochastic derivative estimator w.r.t. θ :

$$\widehat{\Delta\theta} \leftarrow -\frac{N}{M} \sum_{i \in S} \frac{\partial}{\partial \theta} \log p(\mathbf{y}_i | \mathbf{f}^{g(\theta, \widehat{\boldsymbol{\epsilon}}_i)}(\mathbf{x}_i)) + \frac{\partial}{\partial \theta} \mathrm{KL}(q_{\theta}(\boldsymbol{\omega}) || p(\boldsymbol{\omega})).$$

7: Update θ : $\theta \leftarrow \theta + \eta \widehat{\Delta \theta}$.

8: until θ has converged.

- ⊖ Prohibitive computational cost. To represent uncertainty, the number of parameters in these models is doubled for the same network size.

Dropout and Bayesian Deep Learning Variational Inference (VI)

- Now let us specify some specific $q_{\theta}(\mathbf{w})$
 - Given variational parameters $\theta = {\{\mathbf{m}_{ik}\}}_{i,k}$:

$$\begin{split} q_{\theta}(\boldsymbol{\omega}) &= \prod_{i} q_{\theta}(\mathbf{W}_{i}) \\ q_{\theta}(\mathbf{W}_{i}) &= \prod_{k} q_{\mathbf{m}_{ik}}(\mathbf{w}_{ik}) \\ q_{\mathbf{m}_{ik}}(\mathbf{w}_{ik}) &= p\delta_{\mathbf{0}}(\mathbf{w}_{ik}) + (1-p)\delta_{\mathbf{m}_{ik}}(\mathbf{w}_{ik}) \end{split}$$

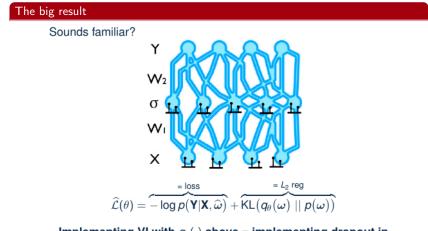
 \rightarrow k'th column of the *i*'th layer is a mixture of two components

Or, in a more compact way:

 $\mathbf{z}_{ik} \sim \text{Bernoulli}(p_i) \text{ for each layer } i \text{ and column } k$ $\mathbf{W}_i = \mathbf{M}_i \cdot \text{diag}([\mathbf{z}_{ik}]_{k=1}^K)$

with **z**_{ik} Bernoulli r.v.s.

Dropout and Bayesian Deep Learning Variational Inference (VI)



Implementing VI with $q_{\theta}(\cdot)$ above = implementing dropout in deep network

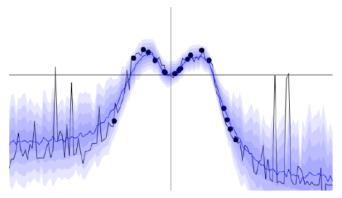
イロト イポト イヨト イヨト

Dropout and Bayesian Deep Learning Variational Inference (VI)

The big result

- Dropout applied before every weight layer equivalent to variational inference in Bayesian NNs !
- Can be used to get uncertainty estimates in the network !

We fit a distribution ...



Dropout and Uncertainty Estimates

We fit a distribution ...

Use first moment for predictions:

$$\mathbb{E}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^T \widehat{\mathbf{y}}_t$$

with $\widehat{\mathbf{y}}_t \sim \text{DropoutNetwork}(\mathbf{x}^*)$.

Use second moment for uncertainty (in regression):

$$\mathsf{Var}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}_t^T \widehat{\mathbf{y}}_t - \mathbb{E}(\mathbf{y}^*)^T \mathbb{E}(\mathbf{y}^*) + \tau^{-1} \mathbf{I}$$

with $\widehat{\mathbf{y}}_t \sim \text{DropoutNetwork}(\mathbf{x}^*)$.

• Drop units at test time and look at mean and sample variance

э

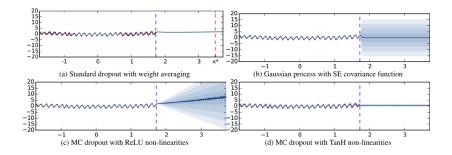
Outline

- 1 Neural Networks and Deep Learning
- 2 Dropout for Deep Learning
- Modeling Uncertainty in Deep Learning
- Applications

・ロト ・日下・ ・日下・ ・日下

æ

Model Uncertainty in Regression Tasks



イロト イポト イヨト イヨト

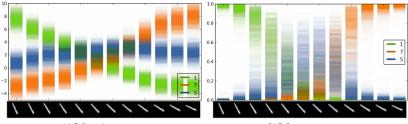
э

Dropout

Deep Uncertainty

Applications

Model Uncertainty in Classification Tasks



(a) Softmax input scatter

(b) Softmax output scatter

イロト イポト イヨト イヨト

Figure 4. A scatter of 100 forward passes of the softmax input and output for dropout LeNet. On the X axis is a rotated image of the digit 1. The input is classified as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed in colour).

Predictive Performance

	Avg. Test RMSE and Std. Errors			Avg. Test LL and Std. Errors		
Dataset	VI	PBP	Dropout	VI	PBP	Dropout
Boston Housing	4.32 ± 0.29	3.01 ± 0.18	2.97 ± 0.85	-2.90 ± 0.07	-2.57 ±0.09	-2.46 ± 0.25
Concrete Strength	7.19 ± 0.12	5.67 ± 0.09	5.23 ± 0.53	-3.39 ± 0.02	-3.16 ± 0.02	-3.04 ± 0.09
Energy Efficiency	2.65 ± 0.08	1.80 ± 0.05	1.66 ± 0.19	-2.39 ± 0.03	-2.04 ± 0.02	-1.99 ± 0.09
Kin8nm	0.10 ± 0.00	0.10 ± 0.00	0.10 ± 0.00	0.90 ± 0.01	0.90 ± 0.01	0.95 ± 0.03
Naval Propulsion	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	3.73 ± 0.12	3.73 ± 0.01	3.80 ± 0.05
Power Plant	4.33 ± 0.04	4.12 ± 0.03	4.02 ± 0.18	-2.89 ± 0.01	-2.84 ± 0.01	-2.80 ± 0.05
Protein Structure	4.84 ± 0.03	4.73 ± 0.01	4.36 ± 0.04	-2.99 ± 0.01	-2.97 ± 0.00	$\textbf{-2.89} \pm \textbf{0.01}$
Wine Quality Red	0.65 ± 0.01	0.64 ± 0.01	0.62 ± 0.04	-0.98 ± 0.01	-0.97 ± 0.01	-0.93 ± 0.06
Yacht Hydrodynamics	6.89 ± 0.67	1.02 ± 0.05	1.11 ± 0.38	-3.43 ±0.16	-1.63 ± 0.02	-1.55 ± 0.12
Year Prediction MSD	$9.034 \pm NA$	$8.879 \ \pm \rm NA$	$8.849 \pm NA$	$-3.622 \pm \mathrm{NA}$	$\text{-}3.603 \pm \text{NA}$	$\textbf{-3.588} \pm \textbf{NA}$

Table 1. Average test performance in RMSE and predictive log likelihood for a popular variational inference method (VI, Graves (2011)), Probabilistic back-propagation (PBP, Hernández-Lobato & Adams (2015)), and dropout uncertainty (Dropout).

イロト イポト イヨト イヨト

æ

Conclusion

- Best of both worlds
- Deep learning:
 - \oplus Complex and powerful model for prediction
 - $\bullet \oplus$ Dropout scales well to big data
 - \ominus No uncertainty measure
- Bayesian Deep Learning:
 - $\bullet \ \oplus \ Uncertainty \ Measure$
 - $\bullet \ \ominus$ Computation issues, does not scale well and is practice is not used with deep learning

(日) (四) (王) (王) (王)

э

References I

Warren S McCulloch and Walter Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics 5 (1943), no. 4, 115–133.