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Latent Variable Path Modeling (LVPM)

Modeling a network of predictive relationships between Latent Variables measured by means of sets
of items (indicators, manifest variables)

Structural model: fy = (I − B)−1Γfx + ζ Outer model: X = λf + δ
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Two models in one
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Modeling Path Analysis with Latent Variables
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Jöreskog’s approach to LVPM: Covariance Structure Analysis

Assuming that:

the MVs, the LV and the errors (both in structural and measurement
models) are centered

Two errors of different type (structural, exogenous measurement and
endogenous measurement) do not covariate

Measurement errors and LVs do not covariate

The covariance between structural error and exogenous LVs is equal to zero

We can write the covariance matrix among the MVs in terms of model parameters
(implied covariance matrix)

C = Σ Ω( ) = Σ Γ,B,Λx ,Λy ,Φ,Ψ,Θδ ,Θε( )
Path Coefficients Loadings Exog. LV 

Covariance
Measurement 
Error 
Covariance

Structural 
Error 
Covariance
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CSA: parameter estimation

Population Covariance matrix 

“Implied” covariance matrix 

Empirical covariance matrix 
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CSA: parameter estimation

G. Russolillo – slide  112 
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A perfect match between a model and a PLS mode

Some observations on Jöreskog’s model

Psychometrical approach to measurement theory - latent variables are modeled
as common factors

Factor are theoretical (and random) variables

Factor indeterminacy

Estimation focuses on factor means and variances

Reproduce the sample covariance matrix of the manifest variables by
means of a model-implied covariance matrix which is a function of model
parameters
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Psychometrical approach to measurement theory - latent variables are modeled
as common factors

Factor are theoretical (and random) variables

Factor indeterminacy

Estimation focuses on factor means and variances

Reproduce the sample covariance matrix of the manifest variables by
means of a model-implied covariance matrix which is a function of model
parameters

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 9 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Wold’s approach to LVPM: Partial Least Squares Path Modeling algorithm

What is PLS-PM? Basically, an algorithm who provides weights for building
composites (components)

wq Initial 
step 

tq2 

tq1 

tqq 

zq 



eq1 

eq2 

eqq 

Updare weights w 
Mode A: wq = (1/n)Xq´zq

Mode B: wq = (Xq´Xq)-1Xq´zq 

Update weights eqq’: 
- Centroid: correlation signs 
- Factorial: correlations 
-  Path weighting scheme: multiple 
regression coefficients or correlations 

Reiterate till 
Numerical 

Convergence 

Outer 
estimation 

Inner 
estimation 

MVs are centered or standardized 

tq ∝Xqwq
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A perfect match between a model and a PLS mode

The three facets of Partial Least Squares Path Modeling algorithm

Data analysis tool (Hanafi [2007], Kramer (2007), Tenenhaus and
Tenenhaus [2011] among others)

Alternative Estimation tool for factor-based LVPMs (Wold [1977], Wold
[1980], Dijkstra & Henseler [2017])

Estimation tool for component-based LVPMs (Dijkstra 2017))
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PLS Path Modeling: algorithm and criteria

Given Q blocks of variables X q, q = {1, . . . ,Q}

1 Obtain Q vectors of weights w q through the PLS-PM iterative algorithm

2 Calculate the LV scores

3 Calculate loadings and path coefficients

General PLS-PM criterion [Tenenhaus & Tenenhaus, 2011]

Maximize
∀wq

∑
q 6=q′ cqq′g(cov(Xqwq ,Xq′wq′ ))

s. t. τq ||wq ||2 + (1− τq)var(Xqwq) = 1, q = {1, . . . ,Q}, τq = {0, 1}cqq′ = 1 if Xq et Xq′ are connected

cqq′ = 0 otherwise

{
g{} = square (factorial scheme)

g{} = absolut value (centroid scheme)

{
τq = 1 if Mode A / Mode new A

τq = 0 if Mode B
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PLS as a generalized data analysis tool

From Tenenhaus et Hanafi (2010) 
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Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Some considerations on PLS-PM

Data analysis approach – latent variables are defined as composites (compo-
nents): c := Xw

Composites are weighted sums of the manifest variables

Composites are fixed variables

Component estimation focuses on their weights and scores

Maximize the variances of the exogenous variables
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A perfect match between a model and a PLS mode

Partial Least Squares for Factor-based LVPMs

Can we consider PLS-PM as a proper estimation tool for Jöreskog’s model pa-
rameters?

NO, because:

Lack of unbiasedness and consistency

YES, because:

Consistency at large, i.e. large number of cases and of indicators for each
latent variable

PLSc [Dijkstra and Henseler, 2015], PLS algorithm yield all the ingredients
for obtaining CAN estimations of loadings and LVs squared correlations of
a factor model where all information between the blocks is conveyed solely
by the factors
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A perfect match between a model and a PLS mode

Dijkstra & Henseler (2015) : The model

Wold’s “basic design”, in essence a factor model specified as follows:

A number of i.i.d. vectors of indicators are assumed to exist from a
population with finite moments of at least order two.

All indicators have zero mean and unit variance.

The vector of indicators y is composed of at least two subvectors
xq = λqηq + εq, each measuring a unique latent variable, and each
subvector contains at least two elements.

The latent variables have zero mean and unit variance.

The elements of the error vectors are mutually independent, and
independent of all latent variables.
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The elements of the error vectors are mutually independent, and
independent of all latent variables.
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Dijkstra & Henseler (2015) : The estimation

Note that, since observations are i.i.d., the sample covariance matrix S is a CAN
estimator of the population covariance matrix Σ.

Dijkstra shows that, in this model, Mode A PLS weights are asymptotically
proportional to the factor loadings.

Starting from this, he proposes the following estimation procedure:

1 Estimate the loadings as λ̂q := cqŵq, where the scalar cq is such that the
off-diagonal elements of the covariance matrix Sqq are reproduced as best
as possible in a least squares sense. cqŵq are CAN estimates of λq

2 Get CAN estimates of the correlations between the LVs as a function of
the CAN estimators of the loadings.

3 Get CAN estimates of path coefficients using 2SLS or 3SLS on LV
correlation matrix
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A model for PLS-PM

Dijkstra [2017] has recently specified a Latent Variable Path Model in terms of
composites

In Dijkstra’s model all information between the blocks is conveyed solely by the
composites

He shows that (Mode B) PLS-PM provides CAN estimators for the composite
weights of this model
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A model for PLS-PM

Consider a random vector x of indicators that can be partitioned into Q subvec-
tors, as x = (x1; x2; . . . ; xQ).

Σ is the positive definite covariance matrix

Σqq is the positive definite within-block covariance matrix

Σqq is the positive definite between-block covariance matrix

Each block xqq is condensed in a composite, a scalar cq := w ′qxq, by means
of a weightvector wq.

Composites have normalized variance: w ′qΣqqwq = 1.

A regression of xq on cq and a constant gives a loadings vector λq = Σqqwq

The vector of composites c := (c1; c2; . . . ; cQ) has a p.d. correlation
matrix denoted by Rc = (rqq′) with rqq′ = w ′qΣqq′wq′

All information between the blocks is conveyed solely by the composites
rqq′ = rqq′λqλ

′
q′
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Estimating model parameters

Dijkstra uses a step-wise approach: first the weights, then the loadings and the
correlations between the composites, and finally the structural form coefficients

“So no explicit overall fit-criterion.. The view that a lack of an overall criterion
to be optimized is a major flaw is ill-founded. Estimators should be compared
on the basis of their distribution functions, the extent to which they satisfy
computational desiderata, and the induced quality of the predictions. There is
no theorem, and their cannot be one, to the effect that estimators that optimize
a function are better than those that are not so motivated.”
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Estimating model parameters

Dijkstra shows that most of generalized canonical analysis techniques provide
CAN estimator for the weights:

GENVAR, which minimizes the product of the eigenvalues (the
determinant) of R(w), in order to get eigenvalues as different as possible.

MAXVAR, which maximizes the largest eigenvalue of R(w).

MINVAR, which minimizes the smallest eigenvalue of R(w).

Mode B PLS

Mode A PLS (with a proper correction factor)

Once obtained CAN estimates for the weights, one can easily obtain CAN esti-
mates for composites scores, loadings, and composites correlations.

Structural coefficient can be obtained using regular regression for recursive paths
and 2SLS (or 3SLS) regression for non recursive paths

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 22 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Estimating model parameters

Dijkstra shows that most of generalized canonical analysis techniques provide
CAN estimator for the weights:

GENVAR, which minimizes the product of the eigenvalues (the
determinant) of R(w), in order to get eigenvalues as different as possible.

MAXVAR, which maximizes the largest eigenvalue of R(w).

MINVAR, which minimizes the smallest eigenvalue of R(w).

Mode B PLS

Mode A PLS (with a proper correction factor)

Once obtained CAN estimates for the weights, one can easily obtain CAN esti-
mates for composites scores, loadings, and composites correlations.

Structural coefficient can be obtained using regular regression for recursive paths
and 2SLS (or 3SLS) regression for non recursive paths

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 22 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Estimating model parameters

Dijkstra shows that most of generalized canonical analysis techniques provide
CAN estimator for the weights:

GENVAR, which minimizes the product of the eigenvalues (the
determinant) of R(w), in order to get eigenvalues as different as possible.

MAXVAR, which maximizes the largest eigenvalue of R(w).

MINVAR, which minimizes the smallest eigenvalue of R(w).

Mode B PLS

Mode A PLS (with a proper correction factor)

Once obtained CAN estimates for the weights, one can easily obtain CAN esti-
mates for composites scores, loadings, and composites correlations.

Structural coefficient can be obtained using regular regression for recursive paths
and 2SLS (or 3SLS) regression for non recursive paths

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 22 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Estimating model parameters

Dijkstra shows that most of generalized canonical analysis techniques provide
CAN estimator for the weights:

GENVAR, which minimizes the product of the eigenvalues (the
determinant) of R(w), in order to get eigenvalues as different as possible.

MAXVAR, which maximizes the largest eigenvalue of R(w).

MINVAR, which minimizes the smallest eigenvalue of R(w).

Mode B PLS

Mode A PLS (with a proper correction factor)

Once obtained CAN estimates for the weights, one can easily obtain CAN esti-
mates for composites scores, loadings, and composites correlations.

Structural coefficient can be obtained using regular regression for recursive paths
and 2SLS (or 3SLS) regression for non recursive paths

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 22 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Estimating model parameters

Dijkstra shows that most of generalized canonical analysis techniques provide
CAN estimator for the weights:

GENVAR, which minimizes the product of the eigenvalues (the
determinant) of R(w), in order to get eigenvalues as different as possible.

MAXVAR, which maximizes the largest eigenvalue of R(w).

MINVAR, which minimizes the smallest eigenvalue of R(w).

Mode B PLS

Mode A PLS (with a proper correction factor)

Once obtained CAN estimates for the weights, one can easily obtain CAN esti-
mates for composites scores, loadings, and composites correlations.

Structural coefficient can be obtained using regular regression for recursive paths
and 2SLS (or 3SLS) regression for non recursive paths

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 22 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Estimating model parameters

Dijkstra shows that most of generalized canonical analysis techniques provide
CAN estimator for the weights:

GENVAR, which minimizes the product of the eigenvalues (the
determinant) of R(w), in order to get eigenvalues as different as possible.

MAXVAR, which maximizes the largest eigenvalue of R(w).

MINVAR, which minimizes the smallest eigenvalue of R(w).

Mode B PLS

Mode A PLS (with a proper correction factor)

Once obtained CAN estimates for the weights, one can easily obtain CAN esti-
mates for composites scores, loadings, and composites correlations.

Structural coefficient can be obtained using regular regression for recursive paths
and 2SLS (or 3SLS) regression for non recursive paths

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 22 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Estimating model parameters

Dijkstra shows that most of generalized canonical analysis techniques provide
CAN estimator for the weights:

GENVAR, which minimizes the product of the eigenvalues (the
determinant) of R(w), in order to get eigenvalues as different as possible.

MAXVAR, which maximizes the largest eigenvalue of R(w).

MINVAR, which minimizes the smallest eigenvalue of R(w).

Mode B PLS

Mode A PLS (with a proper correction factor)

Once obtained CAN estimates for the weights, one can easily obtain CAN esti-
mates for composites scores, loadings, and composites correlations.

Structural coefficient can be obtained using regular regression for recursive paths
and 2SLS (or 3SLS) regression for non recursive paths

Giorgio Russolillo Seminaire Equipe MSDMA - 23 June 2017 22 / 23



Latent Variable Path Modeling
Factor-based LVPM and CSA

Composite-based LVPM and PLS-PM
Consistent Partial Least Squares

A perfect match between a model and a PLS mode

Thank you for your attention!
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