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Introduction

published at KDD’18

team leader: Jure
Leskovec, from Stanford
(and Pinterest)

follows their recent
works on GCN (=GCNN)
[HamiltonYL17NIPS;
HYLtutoWWW; HYL17]
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Main contributions

very large scale recommender system

deployed in production

new Graph Convolutional NN algorithm

efficient training strategy (locality / choice of examples)
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Convolutional Neural Networks

An architecture for high-dimensional learning
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ConvNets

Assumption: data (video, sound, image) are compositional,
formed of patterns that are:

local (c.f. visual neurons)
stationary (global/local invariance)
multi-scale (hierarchy)

ConvNets extract compositional features and feed them to
classifier, recommender, etc.

Slide material from Xavier Bresson @ IPAM
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ConvNets

Assumption: data (video, sound, image) are compositional,
formed of patterns that are:

local (c.f. visual neurons) O(1) parameters per filter
stationary (global/local invariance) O(n log n) with FFT
multi-scale (hierarchy) O(n) downsampling & pooling

ConvNets extract compositional features and feed them to
classifier, recommender, etc.

Slide material from Xavier Bresson @ IPAM
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Challenges with graphs

Graph data

non euclidian

limited engineered features (inflexible)

Representation learning: extend CNN to graphs

node embeddings

Assumption: Non euclidian data are still stationary and
have hierarchy
Define convolution and pooling for graphs
(compositionality)

Convolution: spectral graph theory
Downsampling with clustering techniques

Fast computations?

Slide material partially from Xavier Bresson @ IPAM
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State of the art on GCNs

Seminal work on neural nets for graph data: [GMS05;
Sca+09]

Creation of GCNs in [Bru+13]

Several extensions of spectral convolutions, with
applications in different domains [KW16; MBB17]

Several extensions of spectral convolutions, with
applications in different domains [KW16; MBB17]
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State of the art on GCNs

Seminal work on neural nets for graph data: [GMS05;
Sca+09] Problem: message passing too expensive

Creation of GCNs in [Bru+13]

Several extensions of spectral convolutions, with
applications in different domains [KW16; MBB17]

Several extensions of spectral convolutions, with
applications in different domains [KW16; MBB17]
All beating matrix facto or random-walk -based approaches
(node2vec, DeepWalk)

Good survey in [HYL17; Bro+17]

Scalability problem remains
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PinSage Architecture

Assume we have a graph G

V is the vertex set

A is the adjacency matrix

X ∈ Rm×|V| is a matrix of node features (text, image data,
but also node degrees, cluster coefficients)

idea: generate node embeddings (neighborhood info) with
neural networks
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Neighborhood aggregation
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Neighborhood aggregation: layers

nodes have embeddings at each layer

layer 0 of node v is the feature vector xv
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Node embeddings

hkv = σ

(
Wk ∑

u∈N(v)

hk−1
u

|N(v)|
+Bkh

k−1
v

)
,∀k> 0

hkv: k
th layer embedding for v

σ : ReLU

∑u∈N(v)
hku−1
|N(v)| average neighbors’ previous layers

embeddings

Wk,Bk trainable matrices (weights, bias)

h0v = xv
zv = hKv , K= 2
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Architecture schema

Idea

Generalized aggregation: Replace the simple average by a
different pooling method

Item-wise mean/max, γ
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Random walks

Sampling neighborhoods with random walks

top T nodes with best Personalized PageRank
Advantages:

avoid storing all Laplacian in memory
fixed memory footprint
shared parameters between subgraphs
importance encoded in embedding aggregations
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Training

Supervised max-margin ranking loss

Idea: maximize inner product of positive examples
(proximity between embeddings of q and i)

and: product between query and negative example must be
smaller than any positive example by pre-defined margin

L = ∑
(q,i)∈D

max(0,−zTqzi+zTqzneg+∆)

∆: margin
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Negative sampling: a challenge

cannot be uniform (resolution too low)
cannot be individual (too expensive)

batching, fixed 500 negative samples per batch

Curriculum training [Ben+09]

needle in haystack: find 1000 similar items to query in 2B

500 in 2B is too low: bad parameters updates

find hard negative samples

between rank 2000-5000 in PPR with q
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Inductive capability
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Last idea: MapReduce computations

problem: expensive computation, due to overlap

offline embedding computation

producer-consumer CPU/GPU framework

recommendation by lookups in the embedding space

LSH-based retrieval

online recommendation served!
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Application: recommender system

Specific tasks, not exactly regular ones

recommending related pins (item similarity)

recommend pins for user’s home/feed
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Related pin after image query
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Home feed
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Dataset

positive examples: use history of interactions to create
(q, i) pairs (query image q, next pin i)

all other pins are considered negative

1.2 billions positive pairs use for training

6 hard negative items per pin

500 negatives per batch

total: 7.5 billions items
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Dataset: graph sampling

PinSage efficiently generate embeddings for unseen data

training on 20% of all boards (and all their pins)

70% of labeled examples

10% more during hyperparameter tuning

remaining 20% used for testing in offline evaluations

full datatsets: 18TB

4TB output embeddings
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Features

Each pin has image and (title, annotation)

visual embeddings (dim 4096) (VGG-16 architecture 6th
layer [SZ14])

textual annotations embeddings (dim 256, Word2vec)

log degree (only one direct graph feature)
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Variants

max-pooling γ

mean-pooling γ

mean-pooling with cross-entropy loss (previous work)

mean-pooling with hard negative samples

K= 2

m= 2048

embedding dimension d= 1024
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Computation resources

TensorFlow implementation

Training on a single machine with:
16 Tesla K80 GPU
32 cores
Linux HugePages
500 GB Mem for training

MapReduce on AWS 378 nodes Hadoop cluster
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Offline Evaluation

for each (q, i) pair in test set, compute K= 500 nearest
neighbors of q among 5 million test pins

hit rate: fraction of queries where i was ranked in the NN

Mean Reciprocal Rank MRR:

MRR=
1
n ∑

(q,i)

1
⌈Ri,q/100⌉

(scaling w/ factor 100 insures diff at rank 1000 and at rank 2000 are significant)

PinSage beats all variants, hit rate ∼ 67%, MRR 0.59
(second: mean pooling hard)

Also: checked that embeddings similarities is sufficiently distributed, so that there is enough resolution to

distinguish between items, LSH collision probabilities are low
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User studies

Head to head

image of query pin presented to user, with 2 images from
different algorithms

2/3 consensus between users

PinSage vs Baseline is ∼ 50% draws.

but when users have an opinion, it’s for PinSage (approx.
60% of wins)

A/B tests

metric: repin rate (home feed recos saved by users)

10-30% improvement over baselines
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Bonus

GCN can be inductive so:

training on subgraph (instead of full graph)

easy to compute embeddings for new nodes (cold-start
problem)
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Critiques

Limited graph features (node degree, and PPR proxy)

Performance claims…
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Conclusion

Random-walk based GCN

Highly scalable (10 000x !)

Performance improved by:
importance pooling (PageRank like sampling)
curriculum training (harder and harder examples)

Reusable embeddings

Comprehensive evaluation (possible thanks to production
context)
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Contact

Thank you for your attention.

Contact: fournier@cnam.fr
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