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Stability: Context

e Deep ConvNet: impressive results in various contexts, especially
image classification
e Deep ConvNet:
o Model local appearance at multiple scales
e Gain some invariance by pooling operations
e BUT: exact nature of this invariance and the characteristics of
functional spaces where convolutional neural networks live poorly
understood
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Context

o Understanding geometry of ConvNet functional spaces: fundamental
question
o Regularization: providing ways to control the variations of prediction
functions in a principled manner
o Small deformations of natural signals often preserve class info, but
these deformations much richer class of transfo than translations
o Representations stable to small deformations = more robust models,
improved sample complexity
@ = better generalization performances for a given number of training
samples OR
@ ~ generalization performances with fewer training samples
o Previsous stability studies for convolutional multilayer architectures
based on wavelets [Mal12, BM13], BUT
o Non learned parameters (filters)
o Architecture significantly different from state-of-the-art ConvNets
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Context

e This paper:

o Analysis of stability properties of functional space derived from a
kernel for multi-dimensional signals, which admits a multilayer and
convolutional structure that generalizes the construction of
convolutional kernel networks (CKNs) [MKHS14, Mail6]

o Generalization to continuous inputs

o Analysis of translation-invariance properties of the kernel

representation and its stability to the action of diffeomorphisms
o Using the framework of Mallat [Mal12], similar stability results
obtained WHILE preserving signal information

o Stability results can be translated to predictive models by controlling
their norm in the functional space

@ RKHS norm controls both stability and generalization, so that
stability may lead to improved sample complexity
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Multilayer Convolutional Kernel

k= ApMi Prxge1 0 Q@ — Hi rp(w) = Ap My Pray (w) € Hy

linear pooling

M Py« 8 — Hye My Pray_y(v) = @p(Prag_y (v) € Hy

kernel mapping

Prxi-1(v) € Pr (patch extraction)

tpop 22— Hpy

o Generalization of [Mail6] to continuous inputs

e Patch extraction operator
o Kernel mapping operator
e Pooling operator
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Multilayer Convolutional Kernel

Tp = ApMp Perieq 0 Q0 — Hpe rr(w) = Ap My Poay 1 (w) € H,

linear pooling

M Py - 0 — Hye M, Py 1(v) = @p(Prrg 1 (v) € Hie

kernel mapping

Pray1(v) € Pr (patch extraction)
g 0= Hi

e Patch extraction operator:

Prxpq (u) = (1} — Th_1 (u + U))Uesk € P
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Multilayer Convolutional Kernel

r(w) = AR My Py 1 (w) € H,

2p =AM Prryy = Q= Hy |
linear pooling

M Py - 0 — Hye M, Py 1(v) = @p(Prrg 1 (v) € Hie

e Kernel mapping operator:
MkPlchk—l(U) = gok(Pka:k_l(u)) € Hi.

e Homogeneous dot-product kernels:

Ki(z,2') = ||z||||z'||/£k< G, 2) > with #p(1) = 1

EalliE
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Multilayer Convolutional Kernel

Tp = ApMp Perieq 0 Q0 — Hpe rr(w) = Ap My Poay 1 (w) € H,

linear pooling

M Py - 0 — Hye M, Py 1(v) = @p(Prrg 1 (v) € Hie

kernel mapping

Pray1(v) € Pr (patch extraction)

g 20— Hi

e Pooling operator:

i (u) = Ag My Prry_1(u) = /d hoy (U — V) My Pyxy_1 (v)dv € Hy,
JR
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Multilayer Convolutional Kernel

e Multilayer construction:
(DTL(:E(}) =T = Anﬂ/[nPnAn—lA’frklpn—l T Alﬁflplm(} S LZ(SZ)HTL)

Lemma 1 (Signal preservation). Assume that Hj. contains linear functions (w, -) with w in Py, (this
is true for all kernels Ky described in Appendix @l then the signal x5, can be recovered from a
sampling of x, = ApMyPyxy_1 at discrete locations as soon as the union of patches centered at
these points covers all of §. It follows that xj, can be reconstructed from such a sampling.

nicolas.thome@cnam.fr Invariance and Stability of Deep Convolutional Representations 9/ 1


mailto:nicolas.thome@cnam.fr

Stability on Multilayer Convolutional Kernel

e Stability to diffeomorphisms: L, x(u) = x(u-7(u))
o Closely follwoing stability analysis of scattering [Mal12]
e Assumptions for each layer k:

(A1) Norm preservation: ||¢y(z)|| = ||z| for all z in Py;
(A2) Non-expansiveness: ||ox(z) — @i (2)|| < ||z — 2| for all z, 2’ in Py;
(A3) Patch sizes: there exists x > 0 such that at any layer k we have

sup le| < kog_1.
cESy

e Stability bound (proof apprendix C):

[®(Lra) — 2(2)]| < <Z N[PeAr-1, L] + I [An, Lol + | L7 An — A,,H> lzl
k=1

e With [A, B] = AB - BA commutator
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Stability on Multilayer Convolutional Kernel

|9(Lr2) — B ()| < (Z NPeAw—1, L]l + [ Aw, Lol + L A —A,,n) el

k=1

e Bound on |[[PxAk-1, L. ]||:
[ PrAk-1, L+ ]| € Gil|VT]|oo

e Bound on ||[L A, - A4l
G
1L+ Ag = Aoll < = [Tl
o
e Leading to

. C:
[9(2,2) = 8(@)] < (C1 0+ ) Vel + el ) o]

(43
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Stability on Multilayer Convolutional Kernel

e Stability bound valid for the kernel approximation (to gite finite
dimensional maps)

e Extension for designing global invariance to group actions
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Link to ConvNets

o Multilayer Convolutional Kernel (MKN) contains a set of CNNs on
continuous domains
o With certain type of smooth homogeneous activation functions

e CNN map construction: _
Ze(u) = ni(u)o ((w,, Pezp-i (w)) /n(u)

o ni(u) unsual (homogeneization, next), otherwise very standard
(except linear pooling!)
e Homogeneous activation: contains smoothed version of popular RelU

f:x e |x|o(wx/|x]|)

f:xpo(x)
2.0 RelU 41 — RelU, w=1
sRelLU sReLU, w =0
154 34 —— sRelLU,w=0.5
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Stability & Generalization

e recap stability bound:

, C:
[#(r) — @) < (€1 (14 ) 97l + 2l ) o]

mn

e Bound on ||f]]:
Pn

1£o1? <o D llwhi 3B,
1 =1
e Cauchy-Schawrtz:

[f(z) = £ < N fllalle(z) — () 13

e x,x’ close but different labels = large ||f|| generalization harder
o Link between stabilty & generalization
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Conclusion

e Linear pooling: what about max pooling

e Stability to diffeomorphisms:

e Beyond diffeomorphisms ? (Small deformations of natural signals
often preserve class info, but these deformations much richer class of
transfo than translations)

e adversarial examples ?
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